This example fits a linear model to a function of the response probabilities
where is a matrix that compares each response category to the last category.
First, the Grizzle-Starmer-Koch approach (Grizzle, Starmer, and Koch, 1969) is used to obtain generalized least squares estimates of . These form the initial values for the Newton-Raphson solution for the maximum likelihood estimates. The CATMOD procedure can also be used to analyze these binary data (Cox, 1970).
proc iml ; /* Subroutine to compute new probability estimates */ /* Last column not needed since sum of each row is 1 */ start prob(x, beta, q); la = exp(x*shape(beta,0,q)); pi = la / ((1+la[,+])*repeat(1,1,q)); return( colvec(pi) ); finish prob; /* Categorical Linear Models */ /* by Least Squares and Maximum Likelihood */ /* Input: */ /* n the s by p matrix of response counts */ /* x the s by r design matrix */ start catlin(n, x); s = nrow(n); /* number of populations */ r = ncol(n); /* number of responses */ q = r-1; /* number of function values */ d = ncol(x); /* number of design parameters */ qd = q*d; /* total number of parameters */ /* initial (emprical) probability estimates */ rown = n[,+]; /* row totals */ pr = n/rown; /* probability estimates */ print pr[label="Initial Probability Estimates"]; /* function of probabilities */ p = colvec(pr[,1:q]); /* cut and shaped to vector */ f = log(p) - log(pr[,r])@repeat(1,q,1); /* estimate by the GSK method */ /* inverse covariance of f */ si = (diag(p)-p*p`) # (diag(rown)@repeat(1,q,q)); z = x@I(q); /* expanded design matrix */ h = z`*si*z; /* crossproducts matrix */ g = z`*si*f; /* cross with f */ beta = solve(h,g); /* least squares solution */ stderr = sqrt(vecdiag(inv(h))); /* standard errors */ pi = prob(x, beta, q); est = beta || stderr; pr = shape(pi, 0, q); print est[colname={"beta" "stderr"} label="GSK Estimates"], pr; /* ML solution */ crit = 1; do it = 1 to 8 while(crit>.0005);/* iterate until converge*/ /* block diagonal weighting */ si = (diag(pi)-pi*pi`) #( diag(rown)@repeat(1,q,q)); g = z`*(rown@repeat(1,q,1)#(p-pi)); /* gradient */ h = z`*si*z; /* hessian */ delta = solve(h,g); /* correction via Newton's method */ beta = beta+delta; /* apply the correction */ pi = prob(x, beta, q); /* compute prob estimates */ crit = max(abs(delta)); /* convergence criterion */ end; stderr = sqrt(vecdiag(inv(h))); /* standard errors */ est = beta || stderr; pr = shape(pi, 0, q); print est[colname={"beta" "stderr"} label="ML Estimates"], pr; print it[label="Iterations"] crit[label="Criterion"]; finish catlin;
The following statements call the CATLIN module to analyze data from Kastenbaum and Lamphiear (1959):
/* frequency counts*/ n= { 58 11 05, 75 19 07, 49 14 10, 58 17 08, 33 18 15, 45 22 10, 15 13 15, 39 22 18, 04 12 17, 05 15 08}; /* design matrix */ x= { 1 1 1 0 0 0, 1 -1 1 0 0 0, 1 1 0 1 0 0, 1 -1 0 1 0 0, 1 1 0 0 1 0, 1 -1 0 0 1 0, 1 1 0 0 0 1, 1 -1 0 0 0 1, 1 1 -1 -1 -1 -1, 1 -1 -1 -1 -1 -1}; run catlin(n, x);
The maximum likelihood estimates are shown in Output 9.5.1.
Output 9.5.1: Maximum Likelihood Estimates
Initial Probability Estimates | ||
---|---|---|
0.7837838 | 0.1486486 | 0.0675676 |
0.7425743 | 0.1881188 | 0.0693069 |
0.6712329 | 0.1917808 | 0.1369863 |
0.6987952 | 0.2048193 | 0.0963855 |
0.5 | 0.2727273 | 0.2272727 |
0.5844156 | 0.2857143 | 0.1298701 |
0.3488372 | 0.3023256 | 0.3488372 |
0.4936709 | 0.278481 | 0.2278481 |
0.1212121 | 0.3636364 | 0.5151515 |
0.1785714 | 0.5357143 | 0.2857143 |