The time series model is automatically selected by using the AIC. The TSUNIMAR call estimates the univariate autoregressive model and computes the AIC. You need to specify the maximum lag or order of the AR process by using the MAXLAG= option or position the maximum lag as the sixth argument of the TSUNIMAR call.
The following statements define and graph a time series, which is shown in Output 13.19:
proc iml; y = { 2.430 2.506 2.767 2.940 3.169 3.450 3.594 3.774 3.695 3.411 2.718 1.991 2.265 2.446 2.612 3.359 3.429 3.533 3.261 2.612 2.179 1.653 1.832 2.328 2.737 3.014 3.328 3.404 2.981 2.557 2.576 2.352 2.556 2.864 3.214 3.435 3.458 3.326 2.835 2.476 2.373 2.389 2.742 3.210 3.520 3.828 3.628 2.837 2.406 2.675 2.554 2.894 3.202 3.224 3.352 3.154 2.878 2.476 2.303 2.360 2.671 2.867 3.310 3.449 3.646 3.400 2.590 1.863 1.581 1.690 1.771 2.274 2.576 3.111 3.605 3.543 2.769 2.021 2.185 2.588 2.880 3.115 3.540 3.845 3.800 3.579 3.264 2.538 2.582 2.907 3.142 3.433 3.580 3.490 3.475 3.579 2.829 1.909 1.903 2.033 2.360 2.601 3.054 3.386 3.553 3.468 3.187 2.723 2.686 2.821 3.000 3.201 3.424 3.531 }; call series(1:ncol(y), y);
You can select the order of the AR process by finding the lag that minimizes the AIC. The following statements fit the various AR models. Notice that the first 20 observations are used as presample values. Output 13.20 shows that a model with a lag of 11 is the model that minimizes the AIC. The minimum AIC value is approximately . The innovation variance of that model is 0.03. Output 13.21 shows the parameter estimates for the model.
call tsunimar(arcoef,ev,nar,aic) data=y opt={-1 1} maxlag=20; print nar aic ev, arcoef;
Alternatively, you can invoke the TSUNIMAR subroutine as follows:
call tsunimar(arcoef,ev,nar,aic,y,20,{-1 1});
The optional arguments can be omitted. In this example, the argument MISSING is omitted, and thus the default value (MISSING=0) is used.
You can estimate the AR(11) model directly by specifying OPT= and using the first 11 observations as presample values. The AR(11) estimates shown in Output 13.22 are different from the minimum AIC estimates in Output 13.21 because the samples are slightly different. The following statements estimate and print the AR(11) estimates:
call tsunimar(arcoef11,ev,nar,aic,y,11,{-1 0}); print arcoef11;
The minimum AIC procedure can also be applied to the vector autoregressive (VAR) model by using the TSMULMAR subroutine. The following DATA step defines a time series in three variables: investment, durable consumption, and consumption expenditures. The data are found in the appendix to Lütkepohl (1993). The series is plotted in Output 13.23.
data var3; input invest income consum @@; n = _N_; datalines; 180 451 415 179 465 421 185 485 434 192 493 448 211 509 459 202 520 458 207 521 479 214 540 487 231 548 497 229 558 510 234 574 516 237 583 525 206 591 529 250 599 538 259 610 546 263 627 555 264 642 574 280 653 574 282 660 586 292 694 602 286 709 617 302 734 639 304 751 653 307 763 668 317 766 679 314 779 686 306 808 697 304 785 688 292 794 704 275 799 699 273 799 709 301 812 715 280 837 724 289 853 746 303 876 758 322 897 779 315 922 798 339 949 816 364 979 837 371 988 858 375 1025 881 432 1063 905 453 1104 934 460 1131 968 475 1137 983 496 1178 1013 494 1211 1034 498 1256 1064 526 1290 1101 519 1314 1102 516 1346 1145 531 1385 1173 573 1416 1216 551 1436 1229 538 1462 1242 532 1493 1267 558 1516 1295 524 1557 1317 525 1613 1355 519 1642 1371 526 1690 1402 510 1759 1452 519 1756 1485 538 1780 1516 549 1807 1549 570 1831 1567 559 1873 1588 584 1897 1631 611 1910 1650 597 1943 1685 603 1976 1722 619 2018 1752 635 2040 1774 658 2070 1807 675 2121 1831 700 2132 1842 692 2199 1890 759 2253 1958 782 2276 1948 816 2318 1994 844 2369 2061 830 2423 2056 853 2457 2102 852 2470 2121 833 2521 2145 860 2545 2164 870 2580 2206 830 2620 2225 801 2639 2235 824 2618 2237 831 2628 2250 830 2651 2271 ;
proc sgplot data=var3; series x=n y=invest; series x=n y=income; series x=n y=consum; run;
The following statements model the three variables as described in the section Multivariate Time Series Analysis. The maximum lag is specified as 10.
proc iml; use var3; read all var{invest income consum} into y; close var3; mdel = 1; maice = 2; misw = 0; opt = mdel || maice || misw; maxlag = 10; miss = 0; print = 1; call tsmulmar(ar_coef,variance,nar,aic,y,maxlag,opt,miss,print); print nar aic;
Output 13.24 shows that the VAR(3) model minimizes the AIC and is selected as an appropriate model. However, the LISTING output from the AICs of the VAR(4) and VAR(5) models (not shown) indicates little difference from VAR(3). You can also choose VAR(4) or VAR(5) as an appropriate model in the context of minimum AIC because this AIC difference is much less than 1.
The TSMULMAR subroutine estimates the instantaneous response model with diagonal error variance. For more information about the instantaneous response model, see the section Multivariate Time Series Analysis. Therefore, it is possible to select the minimum AIC model independently for each equation. The best model is selected by specifying MAXLAG=5, as shown in the following statements:
call tsmulmar(arcoef,variance,nar,aic) data=y maxlag=5 opt={1 1 0} print=1; print variance, arcoef[c={"invest" "income" "consum"}];
Output 13.26: Model Selection via Instantaneous Response Model: Estimates
arcoef | ||
---|---|---|
invest | income | consum |
13.312109 | 1.5459098 | 15.963897 |
0.8257397 | 0.2514803 | 0 |
0.0958916 | 1.0057088 | 0 |
0.0320985 | 0.3544346 | 0.4698934 |
0.044719 | -0.201035 | 0 |
0.0051931 | -0.023346 | 0 |
0.1169858 | -0.060196 | 0.0483318 |
0.1867829 | 0 | 0 |
0.0216907 | 0 | 0 |
-0.117786 | 0 | 0.3500366 |
0.1541108 | 0 | 0 |
0.0178966 | 0 | 0 |
0.0461454 | 0 | -0.191437 |
-0.389644 | 0 | 0 |
-0.045249 | 0 | 0 |
-0.116671 | 0 | 0 |
The error variance matrix is shown in Output 13.25. The AR coefficient matrix is shown in Output 13.26. You can print the intermediate results of the minimum AIC procedure by using the PRINT=2 option.
Notice that the AIC value depends on the MAXLAG=lag option and the number of parameters that are estimated. The minimum AIC VAR estimation procedure (MAICE=2) uses the following AIC formula:
In this formula, p is the order of the n-variate VAR process, and if the intercept is specified; otherwise, . When you specify MAICE=1 or MAICE=0, the AIC is computed as the sum of AIC for each response equation. Consequently, there is an AIC difference of , because the instantaneous response model contains the additional response variables as regressors.
The following statements estimate the instantaneous response model. The results are shown in Output 13.27.
call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3 opt={1 0 0}; print nar aic, arcoef[c={"invest" "income" "consum"}];
Output 13.27: AIC from Instantaneous Response Model
arcoef | ||
---|---|---|
invest | income | consum |
4.8245814 | 5.3559216 | 17.066894 |
0.8855926 | 0.3401741 | -0.014398 |
0.1684523 | 1.0502619 | 0.107064 |
0.0891034 | 0.4591573 | 0.4473672 |
-0.059195 | -0.298777 | 0.1629818 |
0.1128625 | -0.044039 | -0.088186 |
0.1684932 | -0.025847 | -0.025671 |
0.0637227 | -0.196504 | 0.0695746 |
-0.226559 | 0.0532467 | -0.099808 |
-0.303697 | -0.139022 | 0.2576405 |
The following statements estimate the VAR model. The results are shown in Output 13.28.
call tsmulmar(arcoef,ev,nar,aic) data=y maxlag=3 opt={1 2 0}; print nar aic, arcoef[c={"invest" "income" "consum"}];
Output 13.28: AIC from VAR Model
arcoef | ||
---|---|---|
invest | income | consum |
4.8245814 | 5.3559216 | 17.066894 |
0.8855926 | 0.3401741 | -0.014398 |
0.1684523 | 1.0502619 | 0.107064 |
0.0891034 | 0.4591573 | 0.4473672 |
-0.059195 | -0.298777 | 0.1629818 |
0.1128625 | -0.044039 | -0.088186 |
0.1684932 | -0.025847 | -0.025671 |
0.0637227 | -0.196504 | 0.0695746 |
-0.226559 | 0.0532467 | -0.099808 |
-0.303697 | -0.139022 | 0.2576405 |
The AIC that is computed from the instantaneous response model is greater than that obtained from the VAR model estimation by 6. Output 13.28 differs from Output 13.24 because different observations are used for estimation.
The following examples show how to manage nonstationary data by using TIMSAC calls. In practice, time series are considered to be stationary when the expected values of first and second moments of the series do not change over time. This weak or covariance stationarity can be modeled by using the TSMLOCAR, TSMLOMAR, TSDECOMP, and TSTVCAR subroutines.
Output 13.29 shows the time series to be analyzed. The series consists of 1,000 observations.
data nonsta; input y @@; N = _N_; datalines; .21232e1 .47451 -.171e-2 -.84434 -.10876e1 -.84429 -.15320e1 -.21097e1 -.28282e1 -.30424e1 ... more lines ... ;
proc sgplot data=nonsta; refline 0 / axis=y; series x=N y=y; run;
The following statements estimate the locally stationary model. The whole series (1,000 observations) is divided into three blocks of size 300 and one block of size 90, and the minimum AIC procedure is applied to each block of the data set. See the section Nonstationary Time Series for more details.
proc iml; use nonsta; read all var{y}; close nonsta; mdel = -1; lspan = 300; /* local span of data */ maice = 1; opt = mdel || lspan || maice; call tsmlocar(arcoef,ev,nar,aic,first,last) data=y maxlag=10 opt=opt print=2;
Estimation results are displayed with the graphs of power spectrum , where is a rational spectral density function. See the section Spectral Analysis. The estimates for the first block and third block are shown in Output 13.30 and Output 13.33, respectively. Because the first block and the second block do not have any sizable difference, the pooled model (AIC=45.892) is selected instead of the moving model (AIC=46.957) in Output 13.31. However, you can notice a slight change in the shape of the spectrum of the third block of the data (observations 611 through 910). See Output 13.32 and Output 13.34 for comparison. The moving model is selected since the AIC (106.830) of the moving model is smaller than that of the pooled model (108.867).
Output 13.30: Locally Stationary Model for First Block
line |
---|
INITIAL LOCAL MODEL: N_CURR = 300 |
NAR_CURR = 8 AIC = 37.583203 |
..........................CURRENT MODEL......................... |
. . |
. . |
. . |
. M AR Coefficients: AR(M) . |
. . |
. 1 1.605717 . |
. 2 -1.245350 . |
. 3 1.014847 . |
. 4 -0.931554 . |
. 5 0.394230 . |
. 6 -0.004344 . |
. 7 0.111608 . |
. 8 -0.124992 . |
. . |
. . |
. AIC = 37.5832030 . |
. Innovation Variance = 1.067455 . |
. . |
. . |
. INPUT DATA START = 11 FINISH = 310 . |
................................................................ |
Output 13.31: Locally Stationary Model Comparison
line |
---|
--- THE FOLLOWING TWO MODELS ARE COMPARED --- |
MOVING MODEL: (N_PREV = 300, N_CURR = 300) |
NAR_CURR = 7 AIC = 46.957398 |
CONSTANT MODEL: N_POOLED = 600 |
NAR_POOLED = 8 AIC = 45.892350 |
***** CONSTANT MODEL ADOPTED ***** |
..........................CURRENT MODEL......................... |
. . |
. . |
. . |
. M AR Coefficients: AR(M) . |
. . |
. 1 1.593890 . |
. 2 -1.262379 . |
. 3 1.013733 . |
. 4 -0.926052 . |
. 5 0.314480 . |
. 6 0.193973 . |
. 7 -0.058043 . |
. 8 -0.078508 . |
. . |
. . |
. AIC = 45.8923501 . |
. Innovation Variance = 1.047585 . |
. . |
. . |
. INPUT DATA START = 11 FINISH = 610 . |
................................................................ |
Output 13.32: Power Spectrum for First and Second Blocks
line |
---|
POWER SPECTRAL DENSITY |
20.00+ |
| |
| |
| |
| |
| XXXX |
XXX XX XXX |
| XXXX |
| X |
| |
10.00+ |
| X |
| |
| X |
| |
| X XX |
| X |
| X X |
| |
| X X X |
0+ X |
| X X X |
| XX XX |
| XXXX X |
| |
| X |
| X |
| |
| X |
| X |
-10.0+ X |
| XX |
| XX |
| XX |
| XXX |
| XXXXXX |
| |
| |
| |
| |
-20.0+-----------+-----------+-----------+-----------+-----------+ |
0.0 0.1 0.2 0.3 0.4 0.5 |
FREQUENCY |
Output 13.33: Locally Stationary Model for Third Block
line |
---|
--- THE FOLLOWING TWO MODELS ARE COMPARED --- |
MOVING MODEL: (N_PREV = 600, N_CURR = 300) |
NAR_CURR = 7 AIC = 106.829869 |
CONSTANT MODEL: N_POOLED = 900 |
NAR_POOLED = 8 AIC = 108.867091 |
************************************* |
***** ***** |
***** NEW MODEL ADOPTED ***** |
***** ***** |
************************************* |
..........................CURRENT MODEL......................... |
. . |
. . |
. . |
. M AR Coefficients: AR(M) . |
. . |
. 1 1.648544 . |
. 2 -1.201812 . |
. 3 0.674933 . |
. 4 -0.567576 . |
. 5 -0.018924 . |
. 6 0.516627 . |
. 7 -0.283410 . |
. . |
. . |
. AIC = 60.9375188 . |
. Innovation Variance = 1.161592 . |
. . |
. . |
. INPUT DATA START = 611 FINISH = 910 . |
................................................................ |
Output 13.34: Power Spectrum for Third Block
line |
---|
POWER SPECTRAL DENSITY |
20.00+ X |
| X |
| X |
| X |
| XXX |
| XXXXX |
| XX |
XX X |
| |
| |
10.00+ X |
| |
| |
| X |
| |
| X |
| X |
| X X |
| X |
| X X |
0+ X X X |
| X |
| X XX X |
| XXXXXX |
| X |
| |
| X |
| |
| X |
| X |
-10.0+ X |
| XX |
| XX XXXXX |
| XXXXXXX |
| |
| |
| |
| |
| |
| |
-20.0+-----------+-----------+-----------+-----------+-----------+ |
0.0 0.1 0.2 0.3 0.4 0.5 |
FREQUENCY |
The moving model is selected because there is a structural change in the last block of data. (The FIRST and LAST variables contain the values 911 amd 1,000, respectively; this correspond to observations 911 through 1,000.) The final estimates are stored in variables ARCOEF, EV, NAR, AIC, FIRST, and LAST. The final estimates and spectrum are given in Output 13.35 and Output 13.36, respectively. The power spectrum of the final model (Output 13.36) is significantly different from that of the first and second blocks (see Output 13.32).
Output 13.35: Locally Stationary Model for Last Block
line |
---|
--- THE FOLLOWING TWO MODELS ARE COMPARED --- |
MOVING MODEL: (N_PREV = 300, N_CURR = 90) |
NAR_CURR = 6 AIC = 139.579012 |
CONSTANT MODEL: N_POOLED = 390 |
NAR_POOLED = 9 AIC = 167.783711 |
************************************* |
***** ***** |
***** NEW MODEL ADOPTED ***** |
***** ***** |
************************************* |
..........................CURRENT MODEL......................... |
. . |
. . |
. . |
. M AR Coefficients: AR(M) . |
. . |
. 1 1.181022 . |
. 2 -0.321178 . |
. 3 -0.113001 . |
. 4 -0.137846 . |
. 5 -0.141799 . |
. 6 0.260728 . |
. . |
. . |
. AIC = 78.6414932 . |
. Innovation Variance = 2.050818 . |
. . |
. . |
. INPUT DATA START = 911 FINISH = 1000 . |
................................................................ |
Output 13.36: Power Spectrum for Last Block
line |
---|
POWER SPECTRAL DENSITY |
30.00+ |
| |
| |
| |
| |
| X |
| |
| X |
| |
| |
20.00+ X |
| |
| |
| X X |
| |
| X |
XXX X |
| XXXXX X |
| |
| |
10.00+ X |
| |
| X |
| |
| X |
| |
| X |
| X |
| X |
| XX |
0+ XX XXXXXX |
| XXXXXX XX |
| XX |
| XX XX |
| XX XXXX |
| XXXXXXXXX |
| |
| |
| |
| |
-10.0+-----------+-----------+-----------+-----------+-----------+ |
0.0 0.1 0.2 0.3 0.4 0.5 |
FREQUENCY |
The multivariate analysis for locally stationary data is a straightforward extension of the univariate analysis. This section uses data related to the rudder setting and yaw of an aircraft. A plot of the data is shown in Output 13.37.
data Aircraft; input Rudder Yawing @@; Time = _N_; datalines; 515 -96 553 -56 544 -57 512 -61 583 8 ... more lines ... ;
proc sgplot data=Aircraft; refline 0 / axis=y; series x=Time y=Rudder; series x=Time y=Yawing; yaxis label="Y"; run;
The following statements estimate bivariate locally stationary VAR models. The selected model is the VAR(7) process with some zero coefficients over the last block of data. There seems to be a structural difference between observations from 11 to 610 and those from 611 to 896.
proc iml; use Aircraft; read all var {rudder yawing} into y; close Aircraft; c = {0.01795 0.02419}; y = y # c; /*-- calibration of data --*/ mdel = -1; lspan = 300; /* local span of data */ maice = 1; call tsmlomar(arcoef,ev,nar,aic,first,last) data=y maxlag=10 opt = (mdel || lspan || maice) print=1;
The results of the analysis are shown in Output 13.38.
Output 13.38: Locally Stationary VAR Model Analysis
line |
---|
--- THE FOLLOWING TWO MODELS ARE COMPARED --- |
MOVING MODEL: (N_PREV = 600, N_CURR = 286) |
NAR_CURR = 7 AIC = -823.845234 |
CONSTANT MODEL: N_POOLED = 886 |
NAR_POOLED = 10 AIC = -716.818588 |
************************************* |
***** ***** |
***** NEW MODEL ADOPTED ***** |
***** ***** |
************************************* |
..........................CURRENT MODEL......................... |
. . |
. . |
. . |
. M AR Coefficients . |
. . |
. 1 0.932904 -0.130964 . |
. -0.024401 0.599483 . |
. 2 0.163141 0.266876 . |
. -0.135605 0.377923 . |
. 3 -0.322283 0.178194 . |
. 0.188603 -0.081245 . |
. 4 0.166094 -0.304755 . |
. -0.084626 -0.180638 . |
. 5 0 0 . |
. 0 -0.036958 . |
. 6 0 0 . |
. 0 0.034578 . |
. 7 0 0 . |
. 0 0.268414 . |
. . |
. . |
. AIC = -114.6911872 . |
. . |
. Innovation Variance . |
. . |
. 1.069929 0.145558 . |
. 0.145558 0.563985 . |
. . |
. . |
. INPUT DATA START = 611 FINISH = 896 . |
................................................................ |
Consider the time series decomposition
where and are trend and seasonal components, respectively, and is a stationary AR(p) process. The annual real GNP series in Example 13.1 is analyzed under second difference stochastic constraints on the trend component and the stationary AR(2) process.
The seasonal component is ignored if you specify SORDER=0. Therefore, the following state space model is estimated:
where
The parameters of this state space model are , , , and . The following statements compute the decomposition:
proc iml; use gnp; read all var {y}; close gnp; mdel = 0; trade = 0; year = 0; period= 0; log = 0; maxit = 100; update = .; /* use default update method */ line = .; /* use default line search method */ sigmax = 0; /* no upper bound for variances */ back = 100; opt = mdel || trade || year || period || log || maxit || update || line || sigmax || back; call tsdecomp(cmp,coef,aic) data=y order=2 sorder=0 nar=2 npred=5 opt=opt icmp={1 3} print=1;
The estimated parameters are printed when you specify the PRINT= option. In Output 13.39, the estimated variances are printed under the title of TAU2(I), showing that and . The AR coefficient estimates are and . These estimates are also stored in the output matrix COEF.
Output 13.39: Nonstationary Time Series and State Space Modeling
line |
---|
<< |
--- PARAMETER VECTOR --- |
1.607423E-01 6.283820E+00 8.761627E-01 -5.94879E-01 |
--- GRADIENT --- |
3.352158E-04 5.237221E-06 2.907539E-04 -1.24376E-04 |
LIKELIHOOD = -249.937193 SIG2 = 18.135085 |
AIC = 509.874385 |
I TAU2(I) AR(I) PARCOR(I) |
1 2.915075 1.397374 0.876163 |
2 113.957607 -0.594879 -0.594879 |
The trend and stationary AR components are estimated by using the smoothing method, and out-of-sample forecasts are computed by using a Kalman filter prediction algorithm. The trend and AR components are stored in the matrix CMP since the ICMP={1 3} option is specified. The last 10 observations of the original series Y and the last 15 observations of two components are shown in Output 13.40. Note that the first column of CMP is the trend component and the second column is the AR component. The last 5 observations of the CMP matrix are out-of-sample forecasts.
y = y[52:61]; cmp = cmp[52:66,]; obs = T(52:66); print obs y cmp;
Consider the simple time series decomposition
The TSBAYSEA subroutine computes seasonally adjusted series by estimating the seasonal component. The seasonally adjusted series is computed as . The details of the adjustment procedure are given in the section Bayesian Seasonal Adjustment.
The monthly labor force series (1972–1978) are analyzed. You do not need to specify the options vector if you want to use the default options. However, you should change OPT[2] when the data frequency is not monthly (OPT[2]=12). The NPRED= option produces the multistep forecasts for the trend and seasonal components. The stochastic constraints are specified as ORDER=2 and SORDER=1.
In Output 13.41, the first column shows the trend components; the second column shows the seasonal components; the third column shows the forecasts; the fourth column shows the seasonally adjusted series; the last column shows the value of ABIC. The last 12 rows are the forecasts. The figure is generated by using the following statements:
proc iml; y = { 5447 5412 5215 4697 4344 5426 5173 4857 4658 4470 4268 4116 4675 4845 4512 4174 3799 4847 4550 4208 4165 3763 4056 4058 5008 5140 4755 4301 4144 5380 5260 4885 5202 5044 5685 6106 8180 8309 8359 7820 7623 8569 8209 7696 7522 7244 7231 7195 8174 8033 7525 6890 6304 7655 7577 7322 7026 6833 7095 7022 7848 8109 7556 6568 6151 7453 6941 6757 6437 6221 6346 5880 }`; call tsbaysea(trend,season,series,adj,abic) data=y order=2 sorder=1 npred=12 print=2; print trend season series adj abic;
Output 13.41: Trend and Seasonal Component Estimates and Forecasts
obs | trend | season | series | adj | abic |
---|---|---|---|---|---|
1 | 4843.2502 | 576.86675 | 5420.1169 | 4870.1332 | 874.04585 |
2 | 4848.6664 | 612.79607 | 5461.4624 | 4799.2039 | |
3 | 4871.2876 | 324.02004 | 5195.3077 | 4890.98 | |
4 | 4896.6633 | -198.7601 | 4697.9032 | 4895.7601 | |
5 | 4922.9458 | -572.5562 | 4350.3896 | 4916.5562 | |
. | . | . | . | . | |
71 | 6551.6017 | -266.2162 | 6285.3855 | 6612.2162 | |
72 | 6388.9012 | -440.3472 | 5948.5539 | 6320.3472 | |
73 | 6226.2006 | 650.7707 | 6876.9713 | ||
74 | 6063.5001 | 800.93733 | 6864.4374 | ||
75 | 5900.7995 | 396.19866 | 6296.9982 | ||
76 | 5738.099 | -340.2852 | 5397.8137 | ||
77 | 5575.3984 | -719.1146 | 4856.2838 | ||
78 | 5412.6979 | 553.19764 | 5965.8955 | ||
79 | 5249.9973 | 202.06582 | 5452.0631 | ||
80 | 5087.2968 | -54.44768 | 5032.8491 | ||
81 | 4924.5962 | -295.2747 | 4629.3215 | ||
82 | 4761.8957 | -487.6621 | 4274.2336 | ||
83 | 4599.1951 | -266.1917 | 4333.0034 | ||
84 | 4436.4946 | -440.3354 | 3996.1591 |
The estimated spectral density function of the irregular series is shown in Output 13.42 and Output 13.43.
Output 13.42: Spectrum of Irregular Component
line |
---|
I Rational 0.0 10.0 20.0 30.0 40.0 50.0 60.0 |
Spectrum +---------+---------+---------+---------+---------+---------+ |
0 1.366798E+00 |* ===>X |
1 1.571261E+00 |* |
2 2.414836E+00 | * |
3 5.151906E+00 | * |
4 1.634887E+01 | * |
5 8.085674E+01 | * |
6 3.805530E+02 | * |
7 8.082536E+02 | * |
8 6.366350E+02 | * |
9 3.479435E+02 | * |
10 3.872650E+02 | * ===>X |
11 1.264805E+03 | * |
12 1.726138E+04 | * |
13 1.559041E+03 | * |
14 1.276516E+03 | * |
15 3.861089E+03 | * |
16 9.593184E+03 | * |
17 3.662145E+03 | * |
18 5.499783E+03 | * |
19 4.443303E+03 | * |
20 1.238135E+03 | * ===>X |
21 8.392131E+02 | * |
22 1.258933E+03 | * |
23 2.932003E+03 | * |
24 1.857923E+03 | * |
25 1.171437E+03 | * |
26 1.611958E+03 | * |
27 4.822498E+03 | * |
28 4.464961E+03 | * |
29 1.951547E+03 | * |
30 1.653182E+03 | * ===>X |
31 2.308152E+03 | * |
32 5.475758E+03 | * |
33 2.349584E+04 | * |
34 5.266969E+03 | * |
35 2.058667E+03 | * |
36 2.215595E+03 | * |
37 8.181540E+03 | * |
38 3.077329E+03 | * |
39 7.577961E+02 | * |
40 5.057636E+02 | * ===>X |
41 7.312090E+02 | * |
42 3.131377E+03 | * ===>T |
43 8.173276E+03 | * |
44 1.958359E+03 | * |
45 2.216458E+03 | * |
46 4.215465E+03 | * |
47 9.659340E+02 | * |
48 3.758466E+02 | * |
49 2.849326E+02 | * |
50 3.617848E+02 | * ===>X |
51 7.659839E+02 | * |
52 3.191969E+03 | * |
Output 13.43: continued
line |
---|
53 1.768107E+04 | * |
54 5.281385E+03 | * |
55 2.959704E+03 | * |
56 3.783522E+03 | * |
57 1.896625E+04 | * |
58 1.041753E+04 | * |
59 2.038940E+03 | * |
60 1.347568E+03 | * ===>X |
X: If peaks (troughs) appear |
at these frequencies, |
try lower (higher) values |
of rigid and watch ABIC |
T: If a peaks appears here |
try trading-day adjustment |
The forecast values of multivariate time series are computed by using the TSPRED call. In the following example, the multistep-ahead forecasts are produced from the VARMA(2,1) estimates. Because the VARMA model is estimated by using the mean deleted series, you should specify the CONSTANT = –1 option. You need to provide the original series instead of the mean deleted series to get the correct predictions. The forecast variance MSE and the impulse response function IMPULSE are also produced.
The VARMA() model is written
Then the COEF matrix is constructed by stacking matrices . The following statements analyze the data, which contains 40 observations and four variables:
proc iml; c = { 264 235 239 239 275 277 274 334 334 306 308 309 295 271 277 221 223 227 215 223 241 250 270 303 311 307 322 335 335 334 309 262 228 191 188 215 215 249 291 296 }; f = { 690 690 688 690 694 702 702 702 700 702 702 694 708 702 702 708 700 700 702 694 698 694 700 702 700 702 708 708 710 704 704 700 700 694 702 694 710 710 710 708 }; t = { 1152 1288 1288 1288 1368 1456 1656 1496 1744 1464 1560 1376 1336 1336 1296 1296 1280 1264 1280 1272 1344 1328 1352 1480 1472 1600 1512 1456 1368 1280 1224 1112 1112 1048 1176 1064 1168 1280 1336 1248 }; p = { 254.14 253.12 251.85 250.41 249.09 249.19 249.52 250.19 248.74 248.41 249.95 250.64 250.87 250.94 250.96 251.33 251.18 251.05 251.00 250.99 250.79 250.44 250.12 250.19 249.77 250.27 250.74 250.90 252.21 253.68 254.47 254.80 254.92 254.96 254.96 254.96 254.96 254.54 253.21 252.08 }; y = c` || f` || t` || p`; /* AR coefficients */ ar = { .82028 -.97167 .079386 -5.4382, -.39983 .94448 .027938 -1.7477, -.42278 -2.3314 1.4682 -70.996, .031038 -.019231 -.0004904 1.3677, -.029811 .89262 -.047579 4.7873, .31476 .0061959 -.012221 1.4921, .3813 2.7182 -.52993 67.711, -.020818 .01764 .00037981 -.38154 }; /* AR coefficients */ ma = { .083035 -1.0509 .055898 -3.9778, -.40452 .36876 .026369 -.81146, .062379 -2.6506 .80784 -76.952, .03273 -.031555 -.00019776 -.025205 }; coef = ar // ma; /* stack the coefficients */ ev = { 188.55 6.8082 42.385 .042942, 6.8082 32.169 37.995 -.062341, 42.385 37.995 5138.8 -.10757, .042942 -.062341 -.10757 .34313 }; nar = 2; nma = 1; call tspred(forecast,impulse,mse,y,coef,nar,nma,ev, 5,nrow(y),-1);
If you write the data and the predicted values to a SAS data set, you can use the SGPANEL procedure to visualize the original series and the forecasts. The result is shown in Output 13.44.
The forecast
variable contains 45 observations. The first 40 rows are one-step predictions. The last five rows contain the five-step forecast
values of the variables C, F, T, and P. You can construct the confidence interval for these forecasts by using the mean square
error matrix, MSE. See the section Multivariate Time Series Analysis for more details about impulse response functions and the mean square error matrix.
The TSROOT call computes the polynomial roots of the AR and MA equations. When the AR(p) process is written
you can specify the following polynomial equation:
When all p roots of the preceding equation are inside the unit circle, the AR(p) process is stationary. The MA(q) process is invertible if the following polynomial equation has all roots inside the unit circle:
where are the MA coefficients.
For example, the following program analyzes the time series data that are shown in Output 13.19. The TSUNIMAR subroutine (see Output 13.45) selects the best AR model and estimates the AR coefficients, as shown in Output 13.45.
proc iml; y = { 2.430 2.506 2.767 2.940 3.169 3.450 3.594 3.774 3.695 3.411 2.718 1.991 2.265 2.446 2.612 3.359 3.429 3.533 3.261 2.612 2.179 1.653 1.832 2.328 2.737 3.014 3.328 3.404 2.981 2.557 2.576 2.352 2.556 2.864 3.214 3.435 3.458 3.326 2.835 2.476 2.373 2.389 2.742 3.210 3.520 3.828 3.628 2.837 2.406 2.675 2.554 2.894 3.202 3.224 3.352 3.154 2.878 2.476 2.303 2.360 2.671 2.867 3.310 3.449 3.646 3.400 2.590 1.863 1.581 1.690 1.771 2.274 2.576 3.111 3.605 3.543 2.769 2.021 2.185 2.588 2.880 3.115 3.540 3.845 3.800 3.579 3.264 2.538 2.582 2.907 3.142 3.433 3.580 3.490 3.475 3.579 2.829 1.909 1.903 2.033 2.360 2.601 3.054 3.386 3.553 3.468 3.187 2.723 2.686 2.821 3.000 3.201 3.424 3.531 }; call tsunimar(ar,innov_var,nar,aic) data=y maxlag=5 opt=({-1 1}) print=0; lag = (1:5)`; print lag ar, aic innov_var;
You can obtain the associated roots by calling the TSROOT subroutine. The TSROOT subroutine expects to receive complex AR or MA coefficients, whereas the matrix from the TSUNIMAR subroutine contains real coefficients. To represent complex coefficients, append a column of zeros (the value of the imaginary coefficients) and pass in the two-column matrix to the TSROOT subroutine by using the MATIN= argument, as follows:
/*-- set up complex coefficient matrix --*/ ar_cx = ar || j(nrow(ar),1,0); call tsroot(root) matin=ar_cx nar=nar nma=0;
The output of the TSROOT subroutine is the ROOT matrix, which has two columns and five rows. Each row contains the real and imaginary parts of the roots of the characteristic polynomial , where the are the AR coefficients. Sometimes it is useful to display other information about the roots, as shown in Output 13.9 and Output 13.13. The following module prints the roots, their moduli, and their angles in the complex plane.
start PrintRootInfo(z); /* print Re(z), Im(z), |z|), and Arg(z) */ m = j(nrow(z), 6); m[,1] = t(1:nrow(z)); m[,{2 3}] = z; m[,4] = sqrt(z[,##]); /* modulus */ m[,5] = atan2(z[,2], z[,1]); /* atan(I/R) */ m[,6] = m[,5] * 180 / constant('pi'); /* degree */ print m[L="Roots of AR Characteristic Polynomial" c={I "Real" "Imaginary" "MOD(z)" "ATan(I/R)" "Deg"}]; finish; run PrintRootInfo(root);
The result is shown in Output 13.46. All roots are within the unit circle. The modulus values of the fourth and fifth roots are sizable (0.9194).
Output 13.46: Roots of AR Characteristic Polynomial Equation
Roots of AR Characteristic Polynomial | ||||||
---|---|---|---|---|---|---|
I | Real | Imaginary | MOD(z) | ATan(I/R) | Deg | |
ROW1 | 1 | -0.297546 | 0.5599112 | 0.6340618 | 2.0592605 | 117.98694 |
ROW2 | 2 | -0.297546 | -0.559911 | 0.6340618 | -2.059261 | -117.9869 |
ROW3 | 3 | 0.4052936 | 0 | 0.4052936 | 0 | 0 |
ROW4 | 4 | 0.7450529 | 0.5386556 | 0.9193768 | 0.6259805 | 35.866038 |
ROW5 | 5 | 0.7450529 | -0.538656 | 0.9193768 | -0.62598 | -35.86604 |
The TSROOT subroutine can also recover the polynomial coefficients if the roots are provided as an input. Specify the QCOEF=1 option when you want to compute the polynomial coefficients instead of polynomial roots. The results are shown in Output 13.47, which you should compare with Output 13.45.
call tsroot(ar_cx) matin=root nar=nar qcoef=1 nma=0; reset fuzz; print (lag || ar_cx)[L="Polyomial Coefficients" c={"I" "AR(real)" "AR(imag)"}];