LOGCDF Function

Returns the logarithm of a left cumulative distribution function.

Category: Probability
See: CDF Function

Syntax

LOGCDF('dist',quantile<,parm-1,...,parm-k> )

Required Arguments

'dist'

is a character constant, variable, or expression that identifies the distribution. Valid distributions are as follows:

Distribution
Argument
Bernoulli
'BERNOULLI'
Beta
'BETA'
Binomial
'BINOMIAL'
Cauchy
'CAUCHY'
Chi-Square
'CHISQUARE'
Exponential
'EXPONENTIAL'
F
'F'
Gamma
'GAMMA'
Generalized Poisson
'GENPOISSON'
Geometric
'GEOMETRIC'
Hypergeometric
'HYPERGEOMETRIC'
Laplace
'LAPLACE'
Logistic
'LOGISTIC'
Lognormal
'LOGNORMAL'
Negative binomial
'NEGBINOMIAL'
Normal
'NORMAL'|'GAUSS'
Normal mixture
'NORMALMIX'
Pareto
'PARETO'
Poisson
'POISSON'
T
'T'
Tweedie
'TWEEDIE'
Uniform
'UNIFORM'
Wald (inverse Gaussian)
'WALD'|'IGAUSS'
Weibull
'WEIBULL'
Note: Except for T, F, and NORMALMIX, you can minimally identify any distribution by its first four characters.

quantile

is a numeric variable, constant, or expression that specifies the value of a random variable.

Optional Argument

parm-1,...,parm-k

are optional shape, location, or scale parameters appropriate for the specific distribution.

Details

The LOGCDF function computes the logarithm of a left cumulative distribution function (logarithm of the left side) from various continuous and discrete distributions. For more information, see the CDF Function.