Gsas

SAS/OR 12.1 User’s Guide Mathematical Programming

The correct bibliographic citation for this manual is as follows: SAS Institute Inc. 2012. SAS/OR ${ }^{\circledR} 12.1$ User's Guide: Mathematical Programming. Cary, NC: SAS Institute Inc.

SAS/OR ${ }^{\circledR}$ 12.1 User's Guide: Mathematical Programming

Copyright © 2012, SAS Institute Inc., Cary, NC, USA
All rights reserved. Produced in the United States of America.
For a hard-copy book: No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, or otherwise, without the prior written permission of the publisher, SAS Institute Inc.

For a Web download or e-book: Your use of this publication shall be governed by the terms established by the vendor at the time you acquire this publication.

The scanning, uploading, and distribution of this book via the Internet or any other means without the permission of the publisher is illegal and punishable by law. Please purchase only authorized electronic editions and do not participate in or encourage electronic piracy of copyrighted materials. Your support of others' rights is appreciated.
U.S. Government Restricted Rights Notice: Use, duplication, or disclosure of this software and related documentation by the U.S. government is subject to the Agreement with SAS Institute and the restrictions set forth in FAR 52.227-19, Commercial Computer Software-Restricted Rights (June 1987).
SAS Institute Inc., SAS Campus Drive, Cary, North Carolina 27513.
Electronic book 1, August 2012
SAS ${ }^{\circledR}$ Publishing provides a complete selection of books and electronic products to help customers use SAS software to its fullest potential. For more information about our e-books, e-learning products, CDs, and hard-copy books, visit the SAS Publishing Web site at support.sas.com/publishing or call 1-800-727-3228.
SAS ${ }^{\circledR}$ and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. $\circledR_{\text {indicates USA registration. }}$

Other brand and product names are registered trademarks or trademarks of their respective companies.

Contents

What's New in SAS/OR 12.1 V
Chapter 1. Using This Book 1
Chapter 2. Introduction to Optimization 7
Chapter 3. Shared Concepts and Topics 17
Chapter 4. The OPTMODEL Procedure 23
Chapter 5. The Linear Programming Solver 171
Chapter 6. The Mixed Integer Linear Programming Solver 237
Chapter 7. The Nonlinear Programming Solver 287
Chapter 8. The Quadratic Programming Solver 327
Chapter 9. The OPTLP Procedure 349
Chapter 10. The OPTMILP Procedure 405
Chapter 11. The OPTQP Procedure 463
Chapter 12. The Decomposition Algorithm 493
Chapter 13. The OPTMILP Option Tuner 559
Chapter 14. The MPS-Format SAS Data Set 581
Subject Index 597
Syntax Index 605

Acknowledgments

Credits

Documentation

Writing Ioannis Akrotirianakis, Hao Cheng, Philipp Christophel, Matthew Galati, Dmitry V. Golovashkin, Melanie Gratton, Joshua Griffin, Jennie Hu, Tao Huang, Trevor Kearney, Zhifeng Li, Richard Liu, Amar Narisetty, Michelle Opp, Imre Pólik, Girish Ramachandra, Jack Rouse, Ben-Hao Wang, Kaihong Xu, Yan Xu, Wenwen Zhou
Editing Anne Baxter, Virginia Clark, Ed Huddleston, Donna Sawyer
Documentation Support Tim Arnold, Natalie Baerlocher, Remya Chandran, Melanie Gratton, Richard Liu, Jianzhe Luo, Michelle Opp, Portia Parker, Girish Ramachandra, Daniel Underwood
Technical Review Shahrzad Azizzadeh, Tonya Chapman, Donna Fulenwider, Bill Gjertsen, Tao Huang, Edward P. Hughes, John Jasperse, Rui Kang, Charles B. Kelly, Radhika Kulkarni, Yu-Min Lin, M. Muraleetharan, Bengt Pederson, Rob Pratt, Kaihong Xu, Lois Zhu

Software

The procedures in SAS/OR software were implemented by the Operations Research and Development Department. Substantial support was given to the project by other members of the Analytical Solutions Division. Core Development Division, Display Products Division, Graphics Division, and the Host Systems Division also contributed to this product.

In the following list, the name of the developer(s) currently supporting the procedure is listed.

OPTMODEL

LP Interior Point Algorithm

LP Simplex Algorithms Philipp Christophel, Matthew Galati, Imre Pólik, Ben-Hao Wang, Yan Xu
Leo Lopes, Jack Rouse

Hao Cheng

MILP Solver	Philipp Christophel, Matthew Galati, Menal Guzelsoy, Amar Narisetty, Yan Xu
NLP Solver	Joshua Griffin, Tao Huang, Wenwen Zhou
QP Solver	Hao Cheng
OPTLP	Hao Cheng, Matthew Galati, Imre Pólik, Ben-Hao Wang, Yan Xu
OPTQP	Hao Cheng, Wenwen Zhou
OPTMILP	Philipp Christophel, Amar Narisetty, Yan Xu
Decomposition Algorithm	Matthew Galati
OPTMILP Option Tuner	Ben-Hao Wang
MPS-Format SAS Data Set	Hao Cheng, Amar Narisetty
ODS Output	Philipp Christophel
Linear Algebra Specialist	Alexander Andrianov

Support Groups

Software Testing	Shahrzad Azizzadeh, Wei Huang, Rui Kang, Yu-Min Lin, M. Muraleetharan, Sanjeewa Naranpanawe, Bengt Pederson, Aysegul Peker, Rob Pratt, Jennifer Sloan, Jonathan Stephenson, Kaihong
	Xu, Wei Zhang, Lois Zhu

Acknowledgments

Many people have been instrumental in the development of SAS/OR software. The individuals acknowledged here have been especially helpful.

Richard Brockmeier	Union Electric Company
Ken Cruthers	Goodyear Tire \& Rubber Company
Patricia Duffy	Auburn University

Richard A. Ehrhardt	University of North Carolina at Greensboro
Paul Hardy	Babcock \& Wilcox
Don Henderson	ORI Consulting Group
Dave Jennings	Lockheed Martin
Vidyadhar G. Kulkarni	University of North Carolina at Chapel Hill
Wayne Maruska	Basin Electric Power Cooperative
Roger Perala	United Sugars Corporation
Bruce Reed	Auburn University
Charles Rissmiller	Lockheed Martin
David Rubin	University of North Carolina at Chapel Hill
John Stone	North Carolina State University
Keith R. Weiss	ICI Americas Inc.

The final responsibility for the SAS System lies with SAS Institute alone. We hope that you will always let us know your opinions about the SAS System and its documentation. It is through your participation that SAS software is continuously improved.

What's New in SAS/OR 12.1

Contents

Overview v
Highlights of Enhancements in SAS/OR 12.1 v
The CLP Procedure vi
The DTREE, GANTT, and NETDRAW Procedures vii
Supporting Technologies for Optimization vii
PROC OPTMODEL: Nonlinear Optimization vii
Linear Optimization with PROC OPTMODEL and PROC OPTLP viii
Mixed Integer Linear Optimization with PROC OPTMODEL and PROC OPTMILP viii
The Decomposition Algorithm viii
Setting the Cutting Plane Strategy ix
Conflict Search ix
PROC OPTMILP: Option Tuning x
PROC OPTMODEL: The SUBMIT Block x
Network Optimization with PROC OPTNET \mathbf{x}
SAS Simulation Studio 12.1 xi

Overview

SAS/OR 12.1 delivers a broad range of new capabilities and enhanced features, encompassing optimization, constraint programming, and discrete-event simulation. SAS/OR 12.1 enhancements significantly improve performance and expand your tool set for building, analyzing, and solving operations research models.

In previous years, SAS/OR ${ }^{\circledR}$ software was updated only with new releases of Base SAS $^{\circledR}$ software, but this is no longer the case. This means that SAS/OR software can be released to customers when enhancements are ready, and the goal is to update SAS/OR every 12 to 18 months. To mark this newfound independence, the release numbering scheme for SAS/OR is changing with this release. This new numbering scheme will be maintained when new versions of Base SAS and SAS/OR ship at the same time. For example, when Base SAS 9.4 is released, SAS/OR 13.1 will be released.

Highlights of Enhancements in SAS/OR 12.1

Highlights of the SAS/OR enhancements include the following:

- multithreading is used to improve performance in these three areas:
- PROC OPTMODEL problem generation
- multistart for nonlinear optimization
- option tuning for mixed integer linear optimization
- concurrent solve capability (experimental) for linear programming (LP) and nonlinear programming (NLP)
- improvements to all simplex LP algorithms and mixed integer linear programming (MILP) solver
- new decomposition (DECOMP) algorithm for LP and MILP
- new option for controlling MILP cutting plane strategy
- new conflict search capability for MILP solver
- option tuning for PROC OPTMILP
- new procedure, PROC OPTNET, for network optimization and analysis
- new SUBMIT block for invoking SAS code within PROC OPTMODEL
- SAS Simulation Studio improvements:
- one-click connection of remote blocks in large models
- autoscrolling for navigating large models
- new search capability for block types and label content
- alternative Experiment window configuration for large experiments
- selective animation capability
- new submodel component (experimental)

The CLP Procedure

In SAS/OR 12.1, the CLP procedure adds two classes of constraints that expand its capabilities and can accelerate its solution process. The LEXICO statement imposes a lexicographic ordering between pairs of variable lists. Lexicographic order is essentially analogous to alphabetical order but expands the concept to include numeric values. One vector (list) of values is lexicographically less than another if the corresponding elements are equal up to a certain point and immediately after that point the next element of the first vector is numerically less than the second. Lexicographic ordering can be useful in eliminating certain types of symmetry that can arise among solutions to constraint satisfaction problems (CSPs). Imposing a lexicographic ordering eliminates many of the mutually symmetric solutions, reducing the number of permissible solutions to the problem and in turn shortening the solution process.

Another constraint class that is added to PROC CLP for SAS/OR 12.1 is the bin-packing constraint, imposed via the PACK statement. A bin-packing constraint directs that a specified number of items must be placed into a specified number of bins, subject to the capacities (expressed in numbers of items) of the bins. The PACK statement provides a compact way to express such constraints, which can often be useful components of larger CSPs or optimization problems.

The DTREE, GANTT, and NETDRAW Procedures

In SAS/OR 12.1 the DTREE, GANTT, and NETDRAW procedures each add procedure-specific graph styles that control fonts, line colors, bar and node fill colors, and background images.

Supporting Technologies for Optimization

The underlying improvements in optimization in SAS/OR 12.1 are chiefly related to multithreading, which denotes the use of multiple computational cores to enable computations to be executed in parallel rather than serially. Multithreading can provide dramatic performance improvements for optimization because these underlying computations are performed many times in the course of an optimization process.

The underlying linear algebra operations for the linear, quadratic, and nonlinear interior point optimization algorithms are now multithreaded. The LP, QP, and NLP solvers can be used by PROC OPTMODEL, PROC OPTLP, and PROC OPTQP in SAS/OR. For nonlinear optimization with PROC OPTMODEL, the evaluation of nonlinear functions is multithreaded for improved performance.
Finally, the process of creating an optimization model from PROC OPTMODEL statements has been multithreaded. PROC OPTMODEL contains powerful declarative and programming statements and is adept at enabling data-driven definition of optimization models, with the result that a rather small section of PROC OPTMODEL code can create a very large optimization model when it is executed. Multithreading can dramatically shorten the time that is needed to create an optimization model.

In SAS/OR 12.1 you can use the NTHREADS= option in the PERFORMANCE statement in PROC OPTMODEL and other SAS/OR optimization procedures to specify the number of cores to be used. Otherwise, SAS detects the number of cores available and uses them.

PROC OPTMODEL: Nonlinear Optimization

The nonlinear optimization solver that PROC OPTMODEL uses builds on the introduction of multithreading for its two most significant improvements in SAS/OR 12.1. First, in addition to the nonlinear solver options ALGORITHM=ACTIVESET and ALGORITHM=INTERIORPOINT, SAS/OR 12.1 introduces the ALGORITHM=CONCURRENT option (experimental), with which you can invoke both the active set and interior point algorithms for the specified problem, running in parallel on separate threads. The solution process terminates when either of the algorithms terminates. For repeated solves of a number of similarly structured problems or simply for problems for which the best algorithm isn't readily apparent, ALGORITHM=CONCURRENT should prove useful and illuminating.
Second, multithreading is central to the nonlinear optimization solver's enhanced multistart capability, which now takes advantage of multiple threads to execute optimizations from multiple starting points in parallel. The multistart capability is essential for problems that feature nonconvex nonlinear functions in either or both of the objective and the constraints because such problems might have multiple locally optimal points. Starting optimization from several different starting points helps to overcome this difficulty, and multithreading this process helps to ensure that the overall optimization process runs as fast as possible.

Linear Optimization with PROC OPTMODEL and PROC OPTLP

Extensive improvements to the primal and dual simplex linear optimization algorithms produce better performance and better integration with the crossover algorithm, which converts solutions that are found by the interior point algorithm into more usable basic optimal solutions. The crossover algorithm itself has undergone extensive enhancements that improve its speed and stability.

Paralleling developments in nonlinear optimization, SAS/OR 12.1 linear optimization introduces a concurrent algorithm, invoked with the ALGORITHM=CONCURRENT option, in the SOLVE WITH LP statement for PROC OPTMODEL or in the PROC OPTLP statement. The concurrent LP algorithm runs a selection of linear optimization algorithms in parallel on different threads, with settings to suit the problem at hand. The optimization process terminates when the first algorithm identifies an optimal solution. As with nonlinear optimization, the concurrent LP algorithm has the potential to produce significant reductions in the time needed to solve challenging problems and to provide insights that are useful when you solve a large number of similarly structured problems.

Mixed Integer Linear Optimization with PROC OPTMODEL and PROC OPTMILP

Mixed integer linear optimization in SAS/OR 12.1 builds on and extends the advances in linear optimization. Overall, solver speed has increased by over 50% (on a library of test problems) compared to SAS/OR 9.3. The branch-and-bound algorithm has approximately doubled its ability to evaluate and solve component linear optimization problems (which are referred to as nodes in the branch-and-bound tree). These improvements have significantly reduced solution time for difficult problems.

The Decomposition Algorithm

The most fundamental change to both linear and mixed integer linear optimization in SAS/OR 12.1 is the addition of the decomposition (DECOMP) algorithm, which is invoked with a specialized set of options in the SOLVE WITH LP and SOLVE WITH MILP statements for PROC OPTMODEL or in the DECOMP statement for PROC OPTLP and PROC OPTMILP. For many linear and mixed integer linear optimization problems, most of the constraints apply only to a small set of decision variables. Typically there are many such sets of constraints, complemented by a small set of linking constraints that apply to all or most of the decision variables. Optimization problems with these characteristics are said to have a "block-angular" structure, because it is easy to arrange the rows of the constraint matrix so that the nonzero values, which correspond to the local sets of constraints, appear as blocks along the main diagonal.

The DECOMP algorithm exploits this structure, decomposing the overall optimization problem into a set of component problems that can be solved in parallel on separate computational threads. The algorithm repeatedly solves these component problems and then cycles back to the overall problem to update key information that is used the next time the component problems are solved. This process repeats until it produces a solution to the complete problem, with the linking constraints present. The combination of parallelized solving of the component problems and the iterative coordination with the solution of the overall
problem can greatly reduce solution time for problems that were formerly regarded as too time-consuming to solve practically.

To use the DECOMP algorithm, you must either manually or automatically identify the blocks of the constraint matrix that correspond to component problems. The METHOD= option controls the means by which blocks are identified. METHOD=USER enables you to specify the blocks yourself, using the .block suffix to declare blocks. This is by far the most common method of defining blocks. If your problem has a significant or dominant network structure, you can use METHOD=NETWORK to identify the blocks in the problem automatically. Finally, if no linking constraints are present in your problem, then METHOD=AUTO identifies the blocks automatically.

The DECOMP algorithm uses a number of detailed options that specify how the solution processes for the component problems and the overall problem are configured and how they coordinate with each other. You can also specify the number of computational threads to make available for processing component problems and the level of detail in the information to appear in the SAS log. Options specific to the linear and mixed integer linear solvers that are used by the DECOMP algorithm are largely identical to those for the respective solvers.

Setting the Cutting Plane Strategy

Cutting planes are a major component of the mixed integer linear optimization solver, accelerating its progress by removing fractional (not integer feasible) solutions. SAS/OR 12.1 adds the CUTSTRATEGY = option in the PROC OPTMILP statement and in the SOLVE WITH MILP statement for PROC OPTMODEL, enabling you to determine the aggressiveness of your overall cutting plane strategy. This option complements the individual cut class controls (CUTCLQUE=, CUTGOMORY=, CUTMIR=, and so on), with which you can enable or disable certain cut types, and the ALLCUTS=option, which enables or disables all cutting planes. In contrast, the CUTSTRATEGY= option controls cuts at a higher level, creating a profile for cutting plane use. As the cut strategy becomes more aggressive, more effort is directed toward creating cutting planes and more cutting planes are applied. The available values of the CUTSTRATEGY= option are AUTOMATIC, BASIC, MODERATE, and AGGRESSIVE; the default is AUTOMATIC. The precise cutting plane strategy that corresponds to each of these settings can vary from problem to problem, because the strategy is also tuned to suit the problem at hand.

Conflict Search

Another means of accelerating the solution process for mixed integer linear optimization takes information from infeasible linear optimization problems that are encountered during an initial exploratory phase of the branch-and-bound process. This information is analyzed and ultimately is used to help the branch-andbound process avoid combinations of decision variable values that are known to lead to infeasibility. This approach, known as conflict analysis or conflict search, influences presolve operations on branch-and-bound nodes, cutting planes, computation of decision variable bounds, and branching. Although the approach is complex, its application in SAS/OR 12.1 is straightforward. The CONFLICTSEARCH= option in the PROC OPTMILP statement or the SOLVE WITH MILP statement in PROC OPTMODEL enables you to specify the level of conflict search to be performed. The available values for the CONFLICTSEARCH=
option are NONE, AUTOMATIC, MODERATE, and AGGRESSIVE. A more aggressive search strategy explores more branch-and-bound nodes initially before the branch-and-bound algorithm is restarted with information from infeasible nodes included. The default value is AUTOMATIC, which enables the solver to choose the search strategy.

PROC OPTMILP: Option Tuning

The final SAS/OR 12.1 improvement to the mixed integer linear optimization solver is option tuning, which helps you determine the best option settings for PROC OPTMILP. There are many options and settings available, including controls on the presolve process, branching, heuristics, and cutting planes. The TUNER statement enables you to investigate the effects of the many possible combinations of option settings on solver performance and determine which should perform best. The PROBLEMS= option enables you to submit several problems for tuning at once. The OPTIONMODE= option specifies the options to be tuned. OPTIONMODE=USER indicates that you will supply a set of options and initial values via the OPTIONVALUES = data set, OPTIONMODE=AUTO (the default) tunes a small set of predetermined options, and OPTIONMODE=FULL tunes a much more extensive option set.

Option tuning starts by using an initial set of option values to solve the problem. The problem is solved repeatedly with different option values, with a local search algorithm to guide the choices. When the tuning process terminates, the best option values are output to a data set specified by the SUMMARY= option. You can control the amount of time used by this process by specifying the MAXTIME= option. You can multithread this process by using the NTHREADS= option in the PERFORMANCE statement for PROC OPTMILP, permitting analyses of various settings to occur simultaneously.

PROC OPTMODEL: The SUBMIT Block

In SAS/OR 12.1, PROC OPTMODEL adds the ability to execute other SAS code nested inside PROC OPTMODEL syntax. This code is executed immediately after the preceding PROC OPTMODEL syntax and before the syntax that follows. Thus you can use the SUBMIT block to, for example, invoke other SAS procedures to perform analyses, to display results, or for other purposes, as an integral part of the process of creating and solving an optimization model with PROC OPTMODEL. This addition makes it even easier to integrate the operation of PROC OPTMODEL with other SAS capabilities.

To create a SUBMIT block, use a SUBMIT statement (which must appear on a line by itself) followed by the SAS code to be executed, and terminate the SUBMIT block with an ENDSUBMIT statement (which also must appear on a line by itself). The SUBMIT statement enables you to pass PROC OPTMODEL parameters, constants, and evaluated expressions to the SAS code as macro variables.

Network Optimization with PROC OPTNET

PROC OPTNET, new in SAS/OR 12.1, provides several algorithms for investigating the characteristics of networks and solving network-oriented optimization problems. A network, sometimes referred to as a graph,
consists of a set of nodes that are connected by a set of arcs, edges, or links. There are many applications of network structures in real-world problems, including supply chain analysis, communications, transportation, and utilities problems. PROC OPTNET addresses the following classes of network problems:

- biconnected components
- maximal cliques
- connected components
- cycle detection
- weighted matching
- minimum-cost network flow
- minimum cut
- minimum spanning tree
- shortest path
- transitive closure
- traveling salesman

PROC OPTNET syntax provides a dedicated statement for each problem class in the preceding list.
The formats of PROC OPTNET input data sets are designed to fit network-structured data, easing the process of specifying network-oriented problems. The underlying algorithms are highly efficient and can successfully address problems of varying levels of detail and scale. PROC OPTNET is a logical destination for users who are migrating from some of the legacy optimization procedures in SAS/OR. Former users of PROC NETFLOW can turn to PROC OPTNET to solve shortest-path and minimum-cost network flow problems, and former users of PROC ASSIGN can instead use the LINEAR_ASSIGNMENT statement in PROC OPTNET to solve assignment problems.

SAS Simulation Studio 12.1

SAS Simulation Studio 12.1, a component of SAS/OR 12.1 for Windows environments, adds several features that improve your ability to build, explore, and work with large, complex discrete-event simulation models. Large models present a number of challenges to a graphical user interface such as that of SAS Simulation Studio. Connection of model components, navigation within a model, identification of objects or areas of interest, and management of different levels of modeling are all tasks that can become more difficult as the model size grows significantly beyond what can be displayed on one screen. An indirect effect of model growth is an increased number of factors and responses that are needed to parameterize and investigate the performance of the system being modeled.

Improvements in SAS Simulation Studio 12.1 address each of these issues. In SAS Simulation Studio, you connect blocks by dragging the cursor to create links between output and input ports on regular blocks and Connector blocks. SAS Simulation Studio 12.1 automatically scrolls the display of the Model window as
you drag the link that is being created from its origin to its destination, thus enabling you to create a link between two blocks that are located far apart (additionally you can connect any two blocks by clicking on the OutEntity port of the first block and then clicking on the InEntity port of the second block). Automatic scrolling also enables you to navigate a large model more easily. To move to a new area in the Model window, you can simply hold down the left mouse button and drag the visible region of the model to the desired area. This works for simple navigation and for moving a block to a new, remote location in the model.

SAS Simulation Studio 12.1 also enables you to search among the blocks in a model and identify the blocks that have a specified type, a certain character string in their label, or both. From the listing of identified blocks, you can open the Properties dialog box for each identified block and edit its settings. Thus, if you can identify a set of blocks that need similar updates, then you can make these updates without manually searching through the model for qualifying blocks and editing them individually. For very large models, this capability not only makes the update process easier but also makes it more thorough because you can identify qualifying blocks centrally.

When you design experiments for large simulation models, you often need a large number of factors to parameterize the model and a large number of responses to track system performance in sufficient detail. This was a challenge prior to SAS Simulation Studio 12.1 because the Experiment window displayed factors and responses in the header row of a table, with design points and their replications' results displayed in the rows below. A very large number of factors and responses did not fit on one screen in this display scheme, and you had to scroll across the Experiment window to view all of them.

SAS Simulation Studio 12.1 provides you with two alternative configurations for the Experiment window. The Design Matrix tab presents the tabular layout described earlier. The Design Point tab presents each design point in its own display. Factors and responses (summarized over replications) are displayed in separate tables, each with the factor or response names appearing in one column and the respective values in a second column. This layout enables a large number of factors and responses to be displayed. Response values for each replication of the design point can be displayed in a separate window.
SAS Simulation Studio 12.1 enhances its multilevel model management features by introducing the submodel component (experimental). Like the compound block, the submodel encapsulates a group of SAS Simulation Studio blocks and their connections, but the submodel outpaces the compound block in some important ways. The submodel, when expanded, opens in its own window. This means a submodel in its collapsed form can be placed close to other blocks in the Model window without requiring space for its expanded form (as is needed for compound blocks). The most important property of the submodel is its ability to be copied and instantiated in several locations simultaneously, whether in the same model, in different models in the same project, or in different projects. Each such instance is a direct reference to the original submodel, not a disconnected copy. Thus you can edit the submodel by editing any of its instances; changes that are made to any instance are propagated to all current and future instances of the submodel. This feature enables you to maintain consistency across your models and projects.

Finally, SAS Simulation Studio 12.1 introduces powerful new animation controls that should prove highly useful in debugging simulation models. In the past, animation could be switched on or off and its speed controlled, but these choices were made for the entire model. If you needed to animate a particular segment of the model, perhaps during a specific time span for the simulation clock, you had to focus your attention on that area and pay special attention when the time period of interest arrived. In SAS Simulation Studio 12.1 you can select both the area of the model to animate (by selecting a block or a compound block) and the time period over which animation should occur (by specifying the start and end times for animation). You can also control simulation speed for each such selection. Multiple selections are supported so that you can choose to animate several areas of the model, each during its defined time period and at its chosen speed.

Chapter 1 Using This Book

Contents

Purpose . 1

Organization . 1
Typographical Conventions . 3
Conventions for Examples . 3
Accessing the SAS/OR Sample Library . 4
Online Documentation . 4
Additional Documentation for SAS/OR Software . 4

Purpose

SAS/OR User's Guide: Mathematical Programming provides a complete reference for the mathematical programming procedures in SAS/OR software. This book serves as the primary documentation for the OPTLP, OPTMILP, OPTMODEL, and OPTQP procedures, the various solvers used by PROC OPTMODEL, and the MPS-format SAS data set specification.

This chapter describes the organization of this book and the conventions used in the text and example code. To gain full benefit from using this book, you should familiarize yourself with the information presented in this section and refer to it when needed. The section "Additional Documentation for SAS/OR Software" on page 4 refers to other documents that contain related information.

Organization

Chapter 2, "Introduction to Optimization," contains a brief overview of the mathematical programming procedures in SAS/OR software and provides an introduction to optimization and the use of the optimization tools in the SAS System. That chapter also describes the flow of data between the procedures and how the components of the SAS System fit together.

After the introductory chapter, the next chapter describes the OPTMODEL procedure. The four subsequent chapters describe the linear programming, mixed integer linear programming, nonlinear programming, and quadratic programming solvers, which are used by the OPTMODEL procedure. The next chapter is the specification of the newly introduced MPS-format SAS data set. The last three chapters describe the new OPTLP, OPTMILP, and OPTQP procedures for solving linear programming, mixed linear programming, and quadratic programming problems, respectively. Each procedure description is self-contained; you need to be familiar with only the basic features of the SAS System and SAS terminology to use most procedures.

The statements and syntax necessary to run each procedure are presented in a uniform format throughout this book.

The following list summarizes the types of information provided for each procedure:

Overview provides a general description of what the procedure does. It outlines major capabilities of the procedure and lists all input and output data sets that are used with it.

Getting Started illustrates simple uses of the procedure using a few short examples. It provides introductory hands-on information for the procedure.

Syntax constitutes the major reference section for the syntax of the procedure. First, the statement syntax is summarized. Next, a functional summary table lists all the statements and options in the procedure, classified by function. In addition, the online version includes a Dictionary of Options, which provides an alphabetical list of all options. Following these tables, the PROC statement is described, and then all other statements are described in alphabetical order.

Details describes the features of the procedure, including algorithmic details and computational methods. It also explains how the various options interact with each other. This section describes input and output data sets in greater detail, with definitions of the output variables, and explains the format of printed output, if any.

Examples consists of examples that are designed to illustrate the use of the procedure. Each example includes a description of the problem and lists the options that are highlighted by the example. The example shows the data and the SAS statements needed, and includes the output produced. You can duplicate the examples by copying the statements and data and running the SAS program. The SAS Sample Library contains the code used to run the examples shown in this book; consult your SAS Software representative for specific information about the Sample Library.

References lists references that are relevant to the chapter.

Typographical Conventions

The printed version of SAS/OR User's Guide: Mathematical Programming uses various type styles, as explained by the following list:

roman	is the standard type style used for most text. UPPERCASE ROMAN
is used for SAS statements, options, and other SAS lan- guage elements when they appear in the text. However, you can enter these elements in your own SAS code in lowercase, uppercase, or a mixture of the two. This style is also used for identifying arguments and values (in the syntax specifications) that are literals (for example, to denote valid keywords for a specific option).	
UPPERCASE BOLD	is used in the "Syntax" section to identify SAS key- words, such as the names of procedures, statements, and options.
VariableName	is used for the names of SAS variables and data sets when they appear in the text.
oblique	is used to indicate an option variable for which you must supply a value (for example, DUPLICATE=dup indi- cates that you must supply a value for dup).
monospace	is used for terms that are defined in the text, for empha- sis, and for publication titles.
is used to show examples of SAS statements. In most	
cases, this book uses lowercase type for SAS code. You	

Conventions for Examples

Most of the output shown in this book is produced with the following SAS System options:

```
options linesize=80 pagesize=60 nonumber nodate;
```


Accessing the SAS/OR Sample Library

The SAS/OR sample library includes many examples that illustrate the use of SAS/OR software, including the examples used in this documentation. To access these sample programs from the SAS windowing environment, select Help from the main menu and then select Getting Started with SAS Software. On the Contents tab, expand the Learning to Use SAS, Sample SAS Programs, and SAS/OR items. Then click Samples.

Online Documentation

This documentation is available online with the SAS System. To access SAS/OR documentation from the SAS windowing environment, select Help from the main menu and then select SAS Help and Documentation. On the Contents tab, expand the SAS Products and SAS/OR items. Then expand the book you want to view. You can search the documentation by using the Search tab.

You can also access the documentation by going to http://support.sas.com/documentation.

Additional Documentation for SAS/OR Software

In addition to SAS/OR User's Guide: Mathematical Programming, you might find the following documents helpful when using SAS/OR software:

SAS/OR User's Guide: Bill of Material Processing

provides documentation for the BOM procedure and all bill of material postprocessing SAS macros. The BOM procedure and SAS macros provide the ability to generate different reports and to perform several transactions to maintain and update bills of material.

SAS/OR User's Guide: Constraint Programming

provides documentation for the constraint programming procedure in SAS/OR software. This book serves as the primary documentation for the CLP procedure.

SAS/OR User's Guide: Local Search Optimization

provides documentation for the local search optimization procedure in SAS/OR software. This book serves as the primary documentation for the GA procedure, which uses genetic algorithms to solve optimization problems.

SAS/OR User's Guide: Mathematical Programming Examples

supplements the SAS/OR User's Guide: Mathematical Programming with additional examples that demonstrate best practices for building and solving linear programming, mixed integer linear programming, and quadratic programming problems. The problem statements are reproduced with permission from the book Model Building in Mathematical Programming by H. Paul Williams.

SAS/OR User's Guide: Mathematical Programming Legacy Procedures

provides documentation for the older mathematical programming procedures in SAS/OR software.

This book serves as the primary documentation for the INTPOINT, LP, NETFLOW, and NLP procedures. Guidelines are also provided on migrating from these older procedures to the newer OPTMODEL family of procedures.

SAS/OR User's Guide: Network Optimization Algorithms

provides documentation for a set of algorithms that can be used to investigate the characteristics of networks and to solve network-oriented optimization problems. This book also documents PROC OPTNET, which invokes these algorithms and provides network-structured formats for input and output data.

SAS/OR User's Guide: Project Management

provides documentation for the project management procedures in SAS/OR software. This book serves as the primary documentation for the CPM, DTREE, GANTT, NETDRAW, and PM procedures, in addition to the PROJMAN Application, a graphical user interface for project management.

SAS/OR Software: Project Management Examples, Version 6

contains a series of examples that illustrate how to use SAS/OR software to manage projects. Each chapter contains a complete project management scenario and describes how to use PROC GANTT, PROC CPM, and PROC NETDRAW, in addition to other reporting and graphing procedures in the SAS System, to perform the necessary project management tasks.

SAS Simulation Studio: User's Guide

provides documentation about using SAS Simulation Studio, a graphical application for creating and working with discrete-event simulation models. This book describes in detail how to build and run simulation models and how to interact with SAS software for analysis and with JMP software for experimental design and analysis.

Chapter 2 Introduction to Optimization

Contents

Overview 7
Linear Programming Problems 9
The OPTLP Procedure 9
The OPTMODEL Procedure 9
Mixed Integer Linear Problems 10
The OPTMILP Procedure 10
The OPTMODEL Procedure 10
Quadratic Programming Problems 10
The OPTQP Procedure 10
The OPTMODEL Procedure 11
Nonlinear Problems 11
The OPTMODEL Procedure 11
Model Building with PROC OPTMODEL 11
References 15

Overview

Operations research tools are directed toward the solution of resource management and planning problems. Models in operations research are representations of the structure of a physical object or a conceptual or business process. Using the tools of operations research involves the following:

- defining a structural model of the system under investigation
- collecting the data for the model
- solving the model
- interpreting the results

SAS/OR software is a set of procedures for exploring models of distribution networks, production systems, resource allocation problems, and scheduling problems using the tools of operations research.

The following list suggests some of the application areas in which optimization-based decision support systems have been used. In practice, models often contain elements of several applications listed here.

- Product-mix problems find the mix of products that generates the largest return when several products compete for limited resources.
- Blending problems find the mix of ingredients to be used in a product so that it meets minimum standards at minimum cost.
- Time-staged problems are models whose structure repeats as a function of time. Production and inventory models are classic examples of time-staged problems. In each period, production plus inventory minus current demand equals inventory carried to the next period.
- Scheduling problems assign people to times, places, or tasks so as to optimize people's preferences or performance while satisfying the demands of the schedule.
- Multiple objective problems have multiple, possibly conflicting, objectives. Typically, the objectives are prioritized, and the problems are solved sequentially in a priority order.
- Capital budgeting and project selection problems ask for the project or set of projects that yield the greatest return.
- Location problems seek the set of locations that meets the distribution needs at minimum cost.
- Cutting stock problems find the partition of raw material that minimizes waste and fulfills demand.

The basic optimization problem is that of minimizing or maximizing an objective function subject to constraints imposed on the variables of that function. The objective function and constraints can be linear or nonlinear; the constraints can be bound constraints, equality or inequality constraints, or integer constraints. Traditionally, optimization problems are divided into various types depending on the sets of values that the variables are restricted to (real, integer, or binary, or a combination) and the nature of functional form of the constraints and objectives (linear, quadratic, or general nonlinear). An expression of an optimization problem in mathematical form is called a mathematical program.

When the complete description of a mathematical program is supplied to an appropriate algorithm (such as one of the solvers described in this book), the algorithm determines the optimal values for the decision variables so the objective is either maximized or minimized, the optimal values that are assigned to decision variables are on or between allowable bounds, and the constraints are obeyed. This process of solving mathematical programs is called mathematical programming, mathematical optimization, or just optimization.

When the constraints in an optimization problem are linear and the objective is either linear or quadratic, the optimization problem can be encapsulated in SAS data sets and then solved using the appropriate SAS/OR procedure: the OPTLP, OPTMILP, or OPTQP procedure.
Often optimization problems, and especially those with nonlinear elements, are formalized in an algebraic model that represents the problem. When formulated in its most abstract form, such an algebraic model is independent of problem data. A specific optimization problem instance (including the original problem) is then just an instantiation of the algebraic model with the specific data associated with that instance. An optimization modeling language (also called an algebraic modeling language) is a programming environment that has syntax, structures, and operations that enable you to express a mathematical program in a form that corresponds in a natural and transparent way to its algebraic model. The syntax, structures, and operations
also enable you to populate an algebraic model with a specific data instance and then solve the resulting optimization problem instance with an appropriate solver. The OPTMODEL procedure is such an algebraic modeling language in SAS/OR software and can be viewed as a single, unified environment to formulate and solve mathematical programming problems of many different types.

Whether mathematical programs are represented in SAS data sets or in an algebraic model in PROC OPTMODEL, they can be saved, easily changed, and solved again. The SAS/OR procedures also output SAS data sets that contain the solutions. These data sets can then be used to produce customized reports or as input to other SAS procedures. This structure enables you to use the tools of operations research and other SAS tools as building blocks to build decision support systems.

This chapter describes how to use SAS/OR software to solve a wide variety of optimization problems. It describes various types of optimization problems, indicates which SAS/OR procedures you can use, and shows how you provide data, run the procedure, and obtain optimal solutions. For additional examples that demonstrate the features of the OPTMODEL procedure, see SAS/OR User's Guide: Mathematical Programming Examples.

The next section broadly classifies the SAS/OR procedures based on the types of mathematical programming problems they can solve.

Linear Programming Problems

The OPTLP Procedure

The OPTLP procedure solves linear programming problems that are submitted in a SAS data set that uses a mathematical programming system (MPS) format.

The MPS file format is a format commonly used for describing linear programming (LP) and integer programming (IP) problems (Murtagh 1981; IBM 1988). MPS-format files are in text format and have specific conventions for the order in which the different pieces of the mathematical model are specified. The MPSformat SAS data set corresponds closely to the MPS file format and is used to describe linear programming problems for PROC OPTLP. For more details, see Chapter 14, "The MPS-Format SAS Data Set."

PROC OPTLP provides three solvers to solve general LPs: primal simplex, dual simplex, and interior point. The simplex solvers implement a two-phase simplex method, and the interior point solver implements a primal-dual predictor-corrector algorithm. For pure network LPs or LPs with significant network structure and additional linear side constraints, PROC OPTLP also provides a network simplex based solver. For more details about solving LPs with PROC OPTLP, see Chapter 9, "The OPTLP Procedure."

The OPTMODEL Procedure

The OPTMODEL procedure, a general purpose optimization modeling language, can also be used for concisely modeling linear programming problems. If an LP has special network structure, the structure is typically natural and evident in a well-formulated model of the problem in PROC OPTMODEL.

Within PROC OPTMODEL you can declare a model, pass it directly to various solvers, and review the solver result. You can also save an instance of a linear model in data set form for use by the OPTLP procedure. For more details, see Chapter 4, "The OPTMODEL Procedure."

Mixed Integer Linear Problems

The OPTMILP Procedure

The OPTMILP procedure solves general mixed integer linear programs (MILPs) -linear programs in which a subset of the decision variables are constrained to be integers. The OPTMILP procedure solves MILPs with an LP-based branch-and-bound algorithm augmented by advanced techniques such as cutting planes and primal heuristics. For more details about the OPTMILP procedure, see Chapter 10, "The OPTMILP Procedure."

The OPTMILP procedure requires a MILP to be specified by a SAS data set that adheres to the MPS format. See Chapter 14, "The MPS-Format SAS Data Set," for details about the MPS-format data set.

The OPTMODEL Procedure

The OPTMODEL procedure, a general purpose optimization modeling language, can also be used for concisely modeling mixed integer linear programming problems. In fact, except for the declaration of some subset of variables to be integer or binary, modeling these problems is quite analogous to modeling LPs. Within OPTMODEL you can declare a model, pass it directly to various solvers, and review the solver result. You can also save an instance of a mixed integer linear model in data set form for use by PROC OPTMILP. For more details, see Chapter 4, "The OPTMODEL Procedure."

Quadratic Programming Problems

The OPTQP Procedure

The OPTQP procedure solves quadratic programs-problems with a quadratic objective function and a collection of linear constraints, including general linear constraints along with lower or upper bounds (or both) on the decision variables.

You can specify the problem input data in one SAS data set that uses a quadratic programming system (QPS) format. For details about the QPS-format data specification, see Chapter 14, "The MPS-Format SAS Data Set." For more details about the OPTQP procedure, see Chapter 11, "The OPTQP Procedure."

The OPTMODEL Procedure

The OPTMODEL procedure, a general purpose optimization modeling language, can also be used for concisely modeling quadratic programming problems. Within OPTMODEL you can declare a model, pass it directly to various solvers, and review the solver result. You can also save an instance of a quadratic model in data set form for use by PROC OPTQP. For more details, see Chapter 4, "The OPTMODEL Procedure."

Nonlinear Problems

The OPTMODEL Procedure

The OPTMODEL procedure, a general purpose optimization modeling language, can also be used for concisely modeling nonlinear programming problems. Within OPTMODEL you can declare a nonlinear optimization model, pass it directly to various solvers, and review the solver result. For more details, see Chapter 4, "The OPTMODEL Procedure."

You can solve many different types of nonlinear programming problems with PROC OPTMODEL using its nonlinear solver functionality. For more details about the nonlinear programming solver, see Chapter 7, "The Nonlinear Programming Solver."

Model Building with PROC OPTMODEL

Model generation and maintenance are often difficult and expensive aspects of applying mathematical programming techniques. The richly expressive syntax and features of PROC OPTMODEL, in addition to the flexible data input and output capabilities, simplify this task considerably. Although PROC OPTMODEL offers almost unlimited latitude in how a particular optimization problem is formulated, the most effective use of OPTMODEL is achieved when the model is abstracted away from the data. This aspect makes PROC OPTMODEL somewhat unusual among SAS procedures and is important enough to illustrate with a simple example.

A small product-mix problem serves as a starting point for a discussion of two different ways of modeling with PROC OPTMODEL.

A candy manufacturer makes two products: chocolate and toffee. What combination of chocolate and toffee should be produced in a day in order to maximize the company's profit? Chocolate contributes $\$ 0.25$ per pound to profit, and toffee contributes $\$ 0.75$ per pound. The decision variables are chocolate and toffee.

Four processes are used to manufacture the candy:

1. Process 1 combines and cooks the basic ingredients for both chocolate and toffee.
2. Process 2 adds colors and flavors to the toffee, then cools and shapes the confection.
3. Process 3 chops and mixes nuts and raisins, adds them to the chocolate, and then cools and cuts the bars.
4. Process 4 is packaging: chocolate is placed in individual paper shells; toffee is wrapped in cellophane packages.

During the day, there are 7.5 hours (27,000 seconds) available for each process.
Firm time standards have been established for each process. For Process 1, mixing and cooking take 15 seconds for each pound of chocolate, and 40 seconds for each pound of toffee. Process 2 takes 56.25 seconds per pound of toffee. For Process 3 , each pound of chocolate requires 18.75 seconds of processing. In packaging, a pound of chocolate can be wrapped in 12 seconds, whereas a pound of toffee requires 50 seconds. These data are summarized as follows:

Process	Available Time (sec)	Required per chocolate (sec)	Pound toffee (sec)
1 Cooking	27,000	15	40
2 Color/Flavor	27,000		56.25
3 Condiments	27,000	18.75	
4 Packaging	27,000	12	50

The objective is to maximize the company's total profit, which is represented as

$$
\text { Maximize: } \quad 0.25(\text { chocolate })+0.75(\text { toffee })
$$

The production of the candy is limited by the time available for each process. The limits placed on production by Process 1 are expressed by the following inequality:

Process 1: $\quad 15($ chocolate $)+40($ toffee $) \leq 27,000$
Process 1 can handle any combination of chocolate and toffee that satisfies this inequality.
The limits on production by other processes generate constraints described by the following inequalities:

$$
\begin{array}{ll}
\text { Process 2: } & 56.25(\text { toffee }) \leq 27,000 \\
\text { Process 3: } & 18.75(\text { chocolate }) \leq 27,000 \\
\text { Process 4: } & 12(\text { chocolate })+50(\text { toffee }) \leq 27,000
\end{array}
$$

This linear program illustrates an example of a product mix problem. The mix of products that maximizes the objective without violating the constraints is the solution.

First, the following statements demonstrate a way of representing the optimization model in PROC OPTMODEL that is almost a verbatim translation of the mathematical model:

```
proc optmodel;
    /* declare variables */
    var choco >= 0, toffee >= 0;
    /* maximize objective function (profit) */
    maximize profit = 0.25*choco + 0.75*toffee;
```

```
    /* subject to constraints */
    con process1: 15*choco + 40*toffee <= 27000;
    con process2: 56.25*toffee <= 27000;
    con process3: 18.75*choco <= 27000;
    con process4: 12*choco + 50*toffee <= 27000;
    /* solve LP using primal simplex solver */
    solve with lp / solver = primal_spx;
    /* display solution */
    print choco toffee;
quit;
```

The optimal objective value and the optimal solution are displayed in Figure 2.1:
Figure 2.1 Solution Summary

You can observe from the preceding example that PROC OPTMODEL provides an easy and very direct way of modeling and solving mathematical programming models. Although this way of modeling, where the data are intertwined heavily with model elements, is correct, has significant practical limitations. The model is not easy to explain, it is hard to generalize, and clearly this approach does not scale to large problems of the same similar type. To overcome these issues, you need to separate the data from the essential algebraic structure of the model. Along those lines, you can make the reasonable assumption that you have the following two data sets (one for the products and one for processes that capture the parameters and data elements of this product mix problem):

```
data Products;
    length Name $10.;
    input Name $ Profit;
datalines;
Chocolate 0.25
Toffee 0.75
;
```

```
data Processes;
    length Name $15.;
    input Name $ Available_time Chocolate Toffee;
datalines;
\begin{tabular}{lccc} 
Cooking & 27000 & 15 & 40 \\
Color/Flavor & 27000 & 0 & 56.25 \\
Condiments & 27000 & 18.75 & 0 \\
Packaging & 27000 & 12 & 50
\end{tabular}
;
```

The following alternative model in PROC OPTMODEL can solve the same problem by taking these data sets as input:

```
proc optmodel;
    /* declare sets and data indexed by sets */
    set <string> Products;
    set <string> Processes;
    num Profit{Products};
    num AvailableTime{Processes};
    num RequiredTime{Products,Processes};
    /* declare the variable */
    var Amount{Products};
    /* maximize objective function (profit) */
    maximize TotalProfit = sum{p in Products} Profit[p]*Amount[p];
    /* subject to constraints */
    con Availability{r in Processes}:
        sum{p in Products} RequiredTime[p,r]*Amount[p] <= AvailableTime[r];
    /* abstract algebraic model that captures the structure of the */
    /* optimization problem has been defined without referring */
    /* to a single data constant */
    /* populate model by reading in the specific data instance */
    read data Products into Products=[name] Profit;
    read data Processes into Processes=[name] AvailableTime=Available_time
        {p in Products} <RequiredTime[p,name]= col(p)>;
    /* solve LP using primal simplex solver */
    solve with lp / solver = primal_spx;
    /* display solution */
    print Amount;
quit;
```

The details of the syntax and elements of the PROC OPTMODEL language are discussed in Chapter 4, "The OPTMODEL Procedure." The key observation here is that the preceding version of the PROC OPTMODEL statements capture the essence of the optimization model concisely, but completely, and the model can be explained, modified, and maintained easily. It also achieves total separation of the data from the model in that the same PROC OPTMODEL statements can be applied to any other specific problem of this type (and of any size) by simply changing the data sets appropriately and rerunning the same PROC OPTMODEL statements. Also, because of PROC OPTMODEL's ability to read data very flexibly and from any number of data sets, the problem data can be in its most natural form, making the model easier to explain and understand.

References

IBM (1988), Mathematical Programming System Extended/370 (MPSX/370) Version 2 Program Reference Manual, volume SH19-6553-0, IBM.

Murtagh, B. A. (1981), Advanced Linear Programming: Computation and Practice, New York: McGrawHill.

Rosenbrock, H. H. (1960), "An Automatic Method for Finding the Greatest or Least Value of a Function," Computer Journal, 3, 175-184.

Chapter 3 Shared Concepts and Topics

Contents
Multithreaded Parallel Computing 17
Syntax 17
PERFORMANCE Statement 17
ODS Tables 19
Memory Limit 20
Numerical Difficulties 20
References 21

Multithreaded Parallel Computing

Although the speed of a single-core processor has increased considerably over the decades, further gains in computing power are possible through the use of multiple cores or processors. This practice is called parallel computing, in which certain computations are partitioned into independent smaller subcomputations. Each subcomputation is then processed on separate cores or processors simultaneously. Consumer-grade PCs and servers are often equipped with multicore processors; multiprocessor configurations are becoming relatively common and inexpensive. As a result, parallel computing is becoming increasingly important. One type of parallel computing is multithreaded computing, in which several threads use the processors of a single server to work concurrently on subtasks. These threads share the random access memory (RAM) of that server. In another type of parallel computing, distributed computing, computation is parallelized over several processors (possibly multithreaded), each of which owns an independent memory allocation.

Syntax

PERFORMANCE Statement

PERFORMANCE < performance-options > ;
The PERFORMANCE statement is available in the OPTMODEL, OPTLP, OPTMILP, and OPTQP procedures. This statement can be used to control the parallel execution of multithreaded features such as the concurrent LP algorithm and the OPTMILP option tuner. For an example that demonstrates the use of the PERFORMANCE statement in the OPTMODEL procedure, see Example 7.5 in Chapter 7, "The Nonlinear Programming Solver."

The PERFORMANCE statement is available in both multithreaded and distributed computing environments. This section focuses on the multithreaded computing environment. For information about the PERFORMANCE statement in a distributed computing environment, see Chapter 3, "Shared Concepts and Topics" (SAS High-Performance Analytics Server: User's Guide).

NOTE: Distributed computing mode requires SAS ${ }^{\circledR}$ High-Performance Analytics software.
The PERFORMANCE statement enables you to control the number of threads used and the output of the ODS table that reports procedure timing. When you specify the PERFORMANCE statement, the PerformanceInfo ODS table is produced. This table lists performance characteristics such as execution mode and number of threads.

You can specify the following performance-options in the PERFORMANCE statement:

DETAILS

requests that the procedure produce the Timing ODS table. This table shows a breakdown of the time used in each step of the procedure.

NTHREADS=number | CPUCOUNT

specifies the number of threads that a procedure can use. It overrides the SAS system option THREADS I NOTHREADS. The value of number can be any integer between 1 and 256 inclusive. The default value is CPUCOUNT, which sets the thread count to the number that is determined by the SAS system option CPUCOUNT=.

Setting the NTHREADS= option to a number greater than the actual number of available cores might result in reduced performance. Specifying a high NTHREADS= value does not guarantee shorter solution time; the actual change in solution time depends on the computing hardware and the scalability of the underlying algorithms in the specified procedure. In some circumstances, a procedure might use fewer threads than the specified value of the NTHREADS= option because the procedure's internal algorithms have determined that a smaller number is preferable.

PARALLELMODE=number | string

specifies the parallel processing mode. This mode determines the solution results that are obtained from running the same model with the same option values on the same platform multiple times.

The values of number and the corresponding values of string are listed in Table 3.1.
Table 3.1 Values for PARALLELMODE= Option

number	string	Description
0	DETERMINISTIC	Requires algorithms to produce the same results every time.
1	NONDETERMINISTIC	Permits algorithms to produce different solution results. This mode requires less synchronization
		and might attain better performance than DETER-
	MINISTIC mode.	

Some procedures support only one mode; the modes that a procedure supports are detailed in its documentation.

ODS Tables

Anytime you specify the PERFORMANCE statement in a procedure, the procedure generates an ODS table called PerformanceInfo that summarizes the performance characteristics of the procedure. The information comes from the actual characteristics used and does not necessarily match the option values specified in the PERFORMANCE statement. When you specify the DETAILS option in the PERFORMANCE statement, the procedure generates an additional ODS table called Timing.

Output 3.1 shows a typical PerformanceInfo table in multithreaded computing mode.
Figure 3.1 Performancelnfo Table

If you specify the NOTHREADS system option and do not specify the NTHREADS= option in the PERFORMANCE statement, then the PerformanceInfo table contains the information shown in Output 3.2.

Figure 3.2 PerformanceInfo Table: NOTHREADS Option Specified

Output 3.3 demonstrates the contents of a typical Timing table.
Figure 3.3 Timing Table

Procedure Task Timing		
Task	$\begin{array}{r} \text { Time } \\ \text { (sec.) } \end{array}$	\% Time
Presolve Time	0.00	0.00\%
Solver Time	0.00	0.00\%
Wait Time	0.70	100.0\%

Memory Limit

The system option MEMSIZE sets a limit on the amount of memory that the SAS System uses. If you do not specify a value for this option, then the SAS System sets a default memory limit. Your operating environment determines the actual size of the default memory limit set by the SAS System, which is sufficient for many applications. However, the solution of many realistic optimization problems can require more memory than the default. It is therefore recommended that the memory limit be increased above the default when you are solving optimization problems. This reduces the chance of a procedure failing because of an out-of-memory error.

Note: The MEMSIZE system option is not available in some operating environments. See the documentation for your operating environment for more information.

You can specify -MEMSIZE 0 to indicate that all available memory can be used, but use this setting with caution. In most operating environments, it is better to specify an adequate amount of memory than to specify -MEMSIZE 0 . For example, if you are running PROC OPTLP to solve LP problems with only a few hundred thousand variables and constraints, -MEMSIZE 500 M might be sufficient to enable the procedure to run without an out-of-memory error. When a problem has millions of variables, -MEMSIZE 2G or higher might be needed. These are rules of thumb; problems with atypical structure, density, or other characteristics can increase the optimizer's memory requirements.

No matter how much memory is installed, 32-bit Windows operating systems permit the SAS System to use at most 4 gigabytes of memory. This memory limit might be lower, depending on which version of Windows you are running. The limit is enforced by the Windows operating system, not the SAS System.

You can specify the MEMSIZE option at system invocation, on the SAS command line, or in a configuration file. The syntax is described in the SAS Companion book for your operating environment.

To report a procedure's memory consumption, you can use the FULLSTIMER option. The syntax is described in the SAS Companion book for your operating environment.

Numerical Difficulties

Extremely large or extremely small numerical values might cause computational difficulties (singularities, stalled solution progress, false infeasibilities, and so on) for optimization solvers, but the occurrence of such difficulties is hard to predict. For this reason, solvers issue a data error message when they detect model data that exceed a specific threshold number. The value of the threshold number depends on your operating environment and is printed in the log as part of the data error message.

The following conditions produce a data error:

- The absolute value of an objective coefficient, constraint coefficient, or range (difference between the upper and lower bounds on a constraint) is greater than the threshold number.
- A variable's lower bound, $\mathrm{a} \geq$ or $=$ constraint's right-hand side, or a range constraint's lower bound is greater than the threshold number.
- A variable's upper bound, $\mathrm{a} \leq$ or $=$ constraint's right-hand side, or a range constraint's upper bound is smaller than the negative threshold number.

If a variable's upper bound is greater than 1E20, then solvers treats the bound as ∞. Similarly, if a variable's lower bound is less than -1 E 20 , then LP solver treats the bound as $-\infty$.

If a solver fails or experiences numerical difficulties when solving a problem, try one of the following remedies:

- Improve the input data: Rescale very large and very small numbers in constraints, objectives, righthand sides, and variable bounds. It is recommended that the magnitudes of the largest and smallest constraint coefficients not exceed 1E6.
- Specify different algorithms or options (or both): For example, to solve a linear program, you can choose from the primal simplex, dual simplex, interior point, and network simplex algorithms. Using available options, you can tighten or relax feasibility or optimality tolerances.

References

Andrews, G. R. (1999), Foundations of Multithreaded, Parallel, and Distributed Programming, Reading, MA: Addison-Wesley.

Chapter 4 The OPTMODEL Procedure

Contents

Overview: OPTMODEL Procedure 25
Getting Started: OPTMODEL Procedure 25
An Unconstrained Optimization Example 27
The Rosenbrock Problem 29
A Transportation Problem 31
OPTMODEL Modeling Language: Basic Concepts 33
Named Parameters 33
Indexing 33
Types 35
Names 36
Parameters 36
Expressions 38
Identifier Expressions 40
Function Expressions 41
Index Sets 42
Syntax: OPTMODEL Procedure 42
Functional Summary 44
PROC OPTMODEL Statement 46
Declaration Statements 48
Programming Statements 57
OPTMODEL Expression Extensions 92
AND Aggregation Expression 92
CARD Function 92
CROSS Expression 92
DIFF Expression 93
IF-THEN/ELSE Expression 93
IN Expression 94
Index Set Expression 95
INTER Expression 95
INTER Aggregation Expression 95
MAX Aggregation Expression 96
MIN Aggregation Expression 96
OR Aggregation Expression 96
PROD Aggregation Expression 97
Range Expression 97
Set Constructor Expression 98
Set Literal Expression 98
SETOF Aggregation Expression 99
SLICE Expression 99
SUM Aggregation Expression 100
SYMDIFF Expression 101
Tuple Expression 101
UNION Expression 101
UNION Aggregation Expression 102
WITHIN Expression 102
Details: OPTMODEL Procedure 102
Conditions of Optimality 102
Data Set Input/Output 105
Control Flow 109
Formatted Output 109
ODS Table and Variable Names 112
Constraints 116
Suffixes 121
Integer Variable Suffixes 124
Dual Values 124
Reduced Costs 130
Presolver 131
Model Update 132
Multiple Subproblems 136
Problem Symbols 137
OPTMODEL Options 138
Automatic Differentiation 139
Conversions 141
More on Index Sets 141
Threaded Processing 142
Macro Variable _OROPTMODEL 143
Examples: OPTMODEL Procedure 144
Example 4.1: Matrix Square Root 144
Example 4.2: Reading From and Creating a Data Set 145
Example 4.3: Model Construction 147
Example 4.4: Set Manipulation 152
Example 4.5: Multiple Subproblems 153
Example 4.6: Traveling Salesman Problem 157
Rewriting PROC NLP Models for PROC OPTMODEL 161
References 169

Overview: OPTMODEL Procedure

The OPTMODEL procedure includes the powerful OPTMODEL modeling language and state-of-the-art solvers for several classes of mathematical programming problems. The problems and their solvers are listed in Table 4.1.

Table 4.1 Solvers in PROC OPTMODEL

Problem	Solver
Linear programming	LP
Mixed integer linear programming	MILP
Quadratic programming	QP
General nonlinear programming	NLP

The OPTMODEL modeling language provides a modeling environment tailored to building, solving, and maintaining optimization models. This makes the process of translating the symbolic formulation of an optimization model into OPTMODEL virtually transparent since the modeling language mimics the symbolic algebra of the formulation as closely as possible. The OPTMODEL language also streamlines and simplifies the critical process of populating optimization models with data from SAS data sets. All of this transparency produces models that are more easily inspected for completeness and correctness, more easily corrected, and more easily modified, whether through structural changes or through the substitution of new data for old.

In addition to invoking optimization solvers directly with PROC OPTMODEL as already mentioned, you can use the OPTMODEL language purely as a modeling facility. You can save optimization models built with the OPTMODEL language in SAS data sets that can be submitted to other SAS/OR optimization procedures. In general, the OPTMODEL language serves as a common point of access for many of the SAS/OR optimization capabilities, whether providing both modeling and solver access or acting as a modeling interface for other optimization procedures.

For details and examples of the problems addressed and corresponding solvers, please see the dedicated chapters in this book. This chapter aims to give you a comprehensive understanding of the OPTMODEL procedure by discussing the framework provided by the OPTMODEL modeling language. For additional examples that demonstrate the features of the OPTMODEL procedure, see SAS/OR User's Guide: Mathematical Programming Examples.

The OPTMODEL modeling language features automatic differentiation, advanced flow control, optimization-oriented syntax (parameters, variables, arrays, constraints, objective functions), dynamic model generation, model-data separation, and transparent access to SAS data sets.

Getting Started: OPTMODEL Procedure

Optimization or mathematical programming is a search for a maximum or minimum of an objective function (also called a cost function), where search variables are restricted to particular constraints. Constraints are said to define a feasible region (see Figure 4.1).

Figure 4.1 Examples of Feasible Regions

A more rigorous general formulation of such problems is as follows.
Let

$$
f: S \rightarrow \mathbb{R}
$$

be a real-valued function. Find x^{*} such that

- $x^{*} \in S$
- $f\left(x^{*}\right) \leq f(x), \quad \forall x \in S$

Note that the formulation is for the minimum of f and that the maximum of f is simply the negation of the minimum of $-f$.

Here, function f is the objective function, and the variable in the objective function is called the optimization variable (or decision variable). S is the feasible region. Typically S is a subset of the Euclidean space \mathbb{R}^{n} specified by the set of constraints, which are often a set of equalities $(=)$ or inequalities (\leq, \geq) that every element in S is required to satisfy simultaneously. For the special case where $S=\mathbb{R}^{n}$, the problem is an unconstrained optimization. An element x of S is called a feasible solution to the optimization problem, and the value $f(x)$ is called the objective value. A feasible solution x^{*} that minimizes the objective function is called an optimal solution to the optimization problem, and the corresponding objective value is called the optimal value.

In mathematics, special notation is used to denote an optimization problem. Generally, you can write an optimization problem as follows:

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & x \in S
\end{array}
$$

Normally, an empty body of constraint (the part after "subject to") implies that the optimization is unconstrained (that is, the feasible region is the whole space \mathbb{R}^{n}). The optimal solution $\left(x^{*}\right)$ is denoted as

$$
x^{*}=\underset{x \in S}{\operatorname{argmin}} f(x)
$$

The optimal value $\left(f\left(x^{*}\right)\right)$ is denoted as

$$
f\left(x^{*}\right)=\min _{x \in S} f(x)
$$

Optimization problems can be classified by the forms (linear, quadratic, nonlinear, and so on) of the functions in the objective and constraints. For example, a problem is said to be linearly constrained if the functions in the constraints are linear. A linear programming problem is a linearly constrained problem with a linear objective function. A nonlinear programming problem occurs where some function in the objective or constraints is nonlinear, and so on.

An Unconstrained Optimization Example

An unconstrained optimization problem formulation is simply

$$
\operatorname{minimize} \quad f(x)
$$

For example, suppose you wanted to find the minimum value of this polynomial:

$$
z(x, y)=x^{2}-x-2 y-x y+y^{2}
$$

You can compactly specify and solve the optimization problem by using the OPTMODEL modeling language. Here is the program:

```
/* invoke procedure */
proc optmodel;
    var x, y; /* declare variables */
    /* objective function */
    min z=x**2 - x - 2*y - x*y + y**2;
    /* now run the solver */
    solve;
    print x y;
    quit;
```

This program produces the output in Figure 4.2.

Figure 4.2 Optimizing a Simple Polynomial

In PROC OPTMODEL you specify the mathematical formulas that describe the behavior of the optimization problem that you want to solve. In the preceding example there were two independent variables in the polynomial, x and y. These are the optimization variables of the problem. In PROC OPTMODEL you declare optimization variables with the VAR statement. The formula that defines the quantity that you are seeking to optimize is called the objective function, or objective. The solver varies the values of the optimization variables when searching for an optimal value for the objective.

In the preceding example the objective function is named z, declared with the MIN statement. The keyword MIN is an abbreviation for MINIMIZE. The expression that follows the equal sign (=) in the MIN statement defines the function to be minimized in terms of the optimization variables.

The VAR and MIN statements are just two of the many available PROC OPTMODEL declaration and programming statements. PROC OPTMODEL processes all such statements interactively, meaning that each statement is processed as soon as it is complete.

After PROC OPTMODEL has completed processing of declaration and programming statements, it processes the SOLVE statement, which submits the problem to a solver and prints a summary of the results. The PRINT statement displays the optimal values of the optimization variables x and y found by the solver.
It is worth noting that PROC OPTMODEL does not use a RUN statement but instead operates on an interactive basis throughout. You can continue to interact with PROC OPTMODEL even after invoking a solver. For example, you could modify the problem and issue another SOLVE statement (see the section "Model Update" on page 132).

The Rosenbrock Problem

You can use parameters to produce a clear formulation of a problem. Consider the Rosenbrock problem,

$$
\operatorname{minimize} f\left(x_{1}, x_{2}\right)=\alpha\left(x_{2}-x_{1}^{2}\right)^{2}+\left(1-x_{1}\right)^{2}
$$

where $\alpha=100$ is a parameter (constant), x_{1} and x_{2} are optimization variables (whose values are to be determined), and $f\left(x_{1}, x_{2}\right)$ is an objective function.

Here is a PROC OPTMODEL program that solves the Rosenbrock problem:

```
proc optmodel;
    number alpha = 100; /* declare parameter */
    var x {1..2}; /* declare variables */
    /* objective function */
    min f = alpha*(x[2] - x[1]**2)**2 +
            (1 - x[1])**2;
    /* now run the solver */
    solve;
    print x;
    quit;
```

The PROC OPTMODEL output is shown in Figure 4.3.

Figure 4.3 Rosenbrock Function Results

A Transportation Problem

You can easily translate the symbolic formulation of a problem into the OPTMODEL procedure. Consider the transportation problem, which is mathematically modeled as the following linear programming problem:

$$
\begin{align*}
\operatorname{minimize} & \sum_{i \in O, j \in D} c_{i j} x_{i j} & & \\
\text { subject to } \sum_{j \in D} x_{i j} & =a_{i}, & \forall i \in O & \tag{SUPPLY}\\
\sum_{i \in O} x_{i j} & =b_{j}, & \forall j \in D & \text { (SUPPLY) } \\
x_{i j} & \geq 0, & \forall(i, j) \in O \times D &
\end{align*}
$$

where O is the set of origins, D is the set of destinations, $c_{i j}$ is the cost to transport one unit from i to j, a_{i} is the supply of origin i, b_{j} is the demand of destination j, and $x_{i j}$ is the decision variable for the amount of shipment from i to j.

Here is a very simple example. The cities in the set O of origins are Detroit and Pittsburgh. The cities in the set D of destinations are Boston and New York. The cost matrix, supply, and demand are shown in Table 4.2.

Table 4.2 A Transportation Problem

	Boston	New York	Supply
Detroit	30	20	200
Pittsburgh	40	10	100
Demand	150	150	

The problem is compactly and clearly formulated and solved by using the OPTMODEL procedure with the following statements:

```
proc optmodel;
    /* specify parameters */
    set O={'Detroit','Pittsburgh'};
    set D={'Boston','New York'};
    number c{O,D}=[30 20
            40 10];
    number a{O}=[200 100];
    number b{D}=[150 150];
    /* model description */
    var x{O,D} >= 0;
    min total_cost = sum{i in O, j in D}c[i,j]*x[i,j];
    constraint supply{i in O}: sum{j in D}x[i,j]=a[i];
    constraint demand{j in D}: sum{i in O}x[i,j]=b[j];
    /* solve and output */
    solve;
    print x;
```

The output is shown in Figure 4.4.

Figure 4.4 Solution to the Transportation Problem

OPTMODEL Modeling Language: Basic Concepts

As seen from the examples in the previous section, a PROC OPTMODEL model consists of one or more declarations of variables, objectives, constraints, and parameters, in addition to possibly intermixed programming statements, which use the components that are created by the declarations. The declarations define the mathematical form of the problem to solve. The programming statements define data values, invoke the solver, or print the results. This section describes some basic concepts, such as variables, indices, and so on, which are used in the section "Syntax: OPTMODEL Procedure" on page 42.

Named Parameters

In the example described in the section "An Unconstrained Optimization Example" on page 27, all the numeric constants that describe the behavior of the objective function were specified directly in the objective expression. This is a valid way to formulate the objective expression. However, in many cases it is inconvenient to specify the numeric constants directly. Direct specification of numeric constants can also hide the structure of the problem that is being solved. The objective expression text would need to be modified when the numeric values in the problem change. This can be very inconvenient with large models.

In PROC OPTMODEL, you can create named numeric values that behave as constants in expressions. These named values are called parameters. You can write an expression by using mnemonic parameter names in place of numeric literals. This produces a clearer formulation of the optimization problem. You can easily modify the values of parameters, define them in terms of other parameters, or read them from a SAS data set.

The model from this same example can be reformulated in a more general polynomial form, as follows:

```
data coeff;
    input c_xx c_x c_y c_xy c_yy;
    datalines;
    1 -1 -2 -1 1
    ;
proc optmodel;
    var x, y;
    number c_xx, c_x, c_y, c_xy, c_yy;
    read data coeff into c_xx c_x c_y c_xy c_yy;
    min z=c_xx*x**2 + c_x*x + c_y*y + c_xy*x*y + c_yy*y**2;
    solve;
```

These statements read the coefficients from a data set, COEFF. The NUMBER statement declares the parameters. The READ DATA statement reads the parameters from the data set. You can apply this model easily to coefficients that you have generated by various means.

Indexing

Many models have large numbers of variables or parameters that can be categorized into families of similar purpose or behavior. Such families of items can be compactly represented in PROC OPTMODEL by using indexing. You can use indexing to assign each item in such families to a separate value location.

PROC OPTMODEL indexing is similar to array indexing in the DATA step, but it is more flexible. Index values can be numbers or strings, and are not required to fit into some rigid sequence. PROC OPTMODEL indexing is based on index sets, described further in the section "Index Sets" on page 42. For example, the following statement declares an indexed parameter:

```
number p{1..3};
```

The construct that follows the parameter name p, "\{1..3\}," is a simple index set that uses a range expression (see "Range Expression" on page 97). The index set contains the numeric members 1, 2, and 3. The parameter has distinct value locations for each of the index set members. The first such location is referenced as $\mathrm{p}[1]$, the second as $\mathrm{p}[2]$, and the third as $\mathrm{p}[3]$.

The following statements show an example of indexing:

```
proc optmodel;
    number p{1..3};
    p[1]=5;
    p[2]=7;
    p[3]=9;
    put p[*]=;
```

The preceding statements produce a line such as the one shown in Figure 4.5 in the log.
Figure 4.5 Indexed Parameter Output

```
p[1]=5 p[2]=7 p[3]=9
```

Index sets can also specify local dummy parameters. A dummy parameter can be used as an operand in the expressions that are controlled by the index set. For example, the assignment statements in the preceding statements could be replaced by an initialization in the parameter declaration, as follows:

```
number p{i in 1..3} init 3 + 2*i;
```

The initialization value of the parameter location $\mathrm{p}[1]$ is evaluated with the value of the local dummy parameter i equal to 1 . So the initialization expression $3+2 * i$ evaluates to 5 . Similarly for location $p[2]$, the value of i is 2 and the initialization expression evaluates to 7 .

The OPTMODEL modeling language supports aggregation operators that combine values of an expression where a local dummy parameter (or parameters) ranges over the members of a set. For example, the SUM aggregation operator combines expression values by adding them together. The following statements output 21 , since $\mathrm{p}[1]+\mathrm{p}[2]+\mathrm{p}[3]=5+7+9=21$:

```
proc optmodel;
    number p{i in 1..3} init 3 + 2*i;
    put (sum{i in 1..3} p[i]);
```

Aggregation operators like SUM are especially useful in objective expressions because they can combine a large number of similar expressions into a compact representation. As an example, the following statements define a trivial least squares problem:

```
proc optmodel;
    number n init 100000;
    var x{1..n};
    min z = sum{i in 1..n}(x[i] - log(i))**2;
    solve;
```

The objective function in this case is
$z=\sum_{i=1}^{n}\left(x_{i}-\log i\right)^{2}$
Effectively, the objective expression expands to the following large expression:

```
min z = (x[1] - log(1))**2
    + (x[2] - log(2))**2
    + (x[99999] - log(99999))**2
    + (x[100000] - log(100000))**2;
```

Even though the problem has 100,000 variables, the aggregation operator SUM enables a compact objective expression.

NOTE: PROC OPTMODEL classifies as mathematically impure any function that returns a different value each time it is called. The RAND function, for example, falls into this category. PROC OPTMODEL disallows impure functions inside array index sets, objectives, and constraint expressions.

Types

In PROC OPTMODEL, parameters and expressions can have numeric or character values. These correspond to the elementary types named NUMBER and STRING, respectively. The NUMBER type is the same as the SAS data set numeric type. The NUMBER type includes support for missing values. The STRING type corresponds to the SAS character type, except that strings can have lengths up to a maximum of 65,534 characters (versus 32,767 for SAS character-type variables). The NUMBER and STRING types together are called the scalar types. You can abbreviate the type names as NUM and STR, respectively.

PROC OPTMODEL also supports set types for parameters and expressions. Sets represent collections of values of a member type, which can be a NUMBER, a STRING, or a vector of scalars (the latter is called a tuple and described in the following paragraphs). Members of a set all have the same member type. Members that have the same value are stored only once. For example, PROC OPTMODEL stores the set 2, 2,2 as the set 2 .

Specify a set of numbers with SET<NUMBER>. Similarly, specify a set of strings as SET<STRING>.
A set can also contain a collection of tuples, all of the same fixed length. A tuple is an ordered collection that contains a fixed number of elements. Each element in a tuple contains a scalar value. In PROC OPTMODEL, tuples of length 1 are equivalent to scalars. Two tuples have equal values if the elements at corresponding positions in each tuple have the same value. Within a set of tuples, the element type at a particular position in each tuple is the same for all set members. The element types are part of the set type. For example, the following statement declares parts as a set of tuples that have a string in the first element
position and a number in the second element position and then initializes its elements to be $<\mathrm{R} 1>,<\mathrm{R} 2>$, $<\mathrm{C} 1>$, and $<\mathrm{C} 2>$.

```
set<string,number> parts = /<R 1> <R 2> <C 1> <C 2>/;
```

To create a compact model, use sets to take advantage of the structure of the problem being modeled. For example, a model might contain various values that specify attributes for each member of a group of suppliers. You could create a set that contains members that represent each supplier. You can then model the attribute values by using arrays that are indexed by members of the set.

The section "Parameters" on page 36 has more details and examples.

Names

Names are used in the OPTMODEL modeling language to refer to various entities such as parameters or variables. Names must follow the usual rules for SAS names. Names can be up to 32 characters long and are not case sensitive. They must be declared before they are used.

Avoid declarations with names that begin with an underscore (_). These names can have special uses in PROC OPTMODEL.

Parameters

In the OPTMODEL modeling language, parameters are named locations that hold constant values. Parameter declarations specify the parameter type followed by a list of parameter names to declare. For example, the following statement declares numeric parameters named a and b :

```
number a, b;
```

Similarly, the following statements declare a set s of strings, a set n of numbers, and a set sn of tuples:

```
set<string> s;
set<number> n;
set<string, number> sn;
```

You can assign values to parameters in various ways. A parameter can be assigned a value with an assignment statement. For example, the following statements assign values to the parameter s, n, and sn in the preceding declaration:

```
s = {'a', 'b', 'c'};
n = {1, 2, 3};
sn = {<'a',1>, <'b',2>, <'c',3>};
```

Parameter values can also be assigned using a READ DATA statement (see the section "READ DATA Statement" on page 79).

A parameter declaration can provide an explicit value. To specify the value, follow the parameter name with an equal sign (=) and an expression. The value expression can be written in terms of other parameters. The declared parameter takes on a new value each time a parameter that is used in the expression changes. This automatic value update is shown in the following example:

```
proc optmodel;
    number pi=4*atan(1);
    number r;
    number circum=2*pi*r;
    r=1;
    put circum; /* prints 6.2831853072 */
    r=2;
    put circum; /* prints 12.566370614 */
```

The automatic update of parameter values makes it easy to perform "what if" analysis since, after the solver finds a solution, you can change parameters and reinvoke the solver. You can easily examine the effects of the changes on the optimal values.

If you declare a set parameter that has only the SET type specifier, then the element type is determined from the initialization expression. If the initialization expression is omitted or if the expression is an empty set, then the set type defaults to SET<NUMBER>. For example, the following statement implicitly declares s1 as a set of numbers:

```
set s1;
```

The following statement declares s2 as a set of strings:

```
set s2 = {'A'};
```

You can declare an array parameter by following the parameter name with an index set specification (see the section "Index Sets" on page 42). For example, declare an array of 10 numbers as follows:

```
number c{1..10};
```

Individual locations of a parameter array can be referred to with an indexing expression. For example, you can refer to the third location of parameter c as $\mathrm{c}[3]$. Array index sets cannot be specified using a function such as RAND that returns a different value each time it is called.

Parameter names must be declared before they are used. Nonarray names become available at the end of the parameter declaration item. Array names become available after the index set specification. The latter case permits some forms of recursion in the optional initialization expression that can be supplied for a parameter.

You do not need to assign values to parameters before they are referenced. Most information in PROC OPTMODEL is stored symbolically and resolved when necessary. Values are resolved in certain statements. For example, PROC OPTMODEL resolves a parameter used in the objective during the execution of a SOLVE statement. If no value is available during resolution, then an error is diagnosed.

Expressions

Expressions are grouped into three categories based on the types of values they can produce: logical, set, and scalar (that is, numeric or character).

Logical expressions test for a Boolean (true or false) condition. As in the DATA step, logical operators produce a value equal to either 0 or 1 . A value of 0 represents a false condition, while a value of 1 represents a true condition.

Logical expression operators are not allowed in certain contexts due to syntactic considerations. For example, in the VAR statement a logical operator might indicate the start of an option. Enclose a logical expression in parentheses to use it in such contexts. The difference is illustrated by the output (Figure 4.6) of the following statements, where two variables, x and y, are declared with initial values. The PRINT statement and the EXPAND statement are used to check the initial values and the variable bounds, respectively.

```
proc optmodel;
    var x init 0.5 >= 0 <= 1;
    var y init (0.5 >= 0) <= 1;
    print x y;
    expand;
```

Figure 4.6 Logical Expression in the VAR Statement

Contexts that expect a logical expression also accept numeric expressions. In such cases zero or missing values are interpreted as false, and all nonzero nonmissing numeric values are interpreted as true.

Set expressions return a set value. PROC OPTMODEL supports a number of operators that create and manipulate sets. See the section "OPTMODEL Expression Extensions" on page 92 for a description of the various set expressions. Index-set syntax is described in the section "Index Sets" on page 42.

Scalar expressions are similar to the expressions in the DATA step except for PROC OPTMODEL extensions. PROC OPTMODEL provides an IF expression (described in the section "IF-THEN/ELSE Expression" on page 93). String lengths are assigned dynamically, so there is generally no padding or truncation of string values.

Table 4.3 shows the expression operators from lower to higher precedence (a higher precedence is given a larger number). Operators that have higher precedence are applied in compound expressions before operators that have lower precedence. The table also gives the order of evaluation that is applied when multiple operators of the same precedence are used together. Operators available in both PROC OPTMODEL and the DATA step have compatible precedences, except that in PROC OPTMODEL the NOT operator has a lower precedence than the relational operators. This means that, for example, not $1<2$ is equal to not $(1<2)$ (which is 0), rather than (NOT 1) <2 (which is 1).

Table 4.3 Expression Operator Table

Precedence	Associativity	Operator	Alternates
Logic Expression Operators			
1	Left to right	OR	।
2	Unary	OR $\{$ index-set $\}$	
		AND $\{$ index-set $\}$	
3	Left to right	And	
4	Unary	NOT	sim ${ }^{\wedge} \neg$
5	Left to right	<	LT
		>	GT
		<	LE
		>=	GE
		$=$	EQ
		sim=	NE ^= ${ }^{\text {a }}$
6	Left to right	In	
		NOT IN	
7	Left to right	WIthin	
		Not WIthin	
Set Expression Operators			
11		IF 1 THEN s1 ELSE s2	
12	Left to right	Union	
		DIFF	
		SYMDIFF	
13	Unary	UnIon $\{$ index-set $\}$	
14	Left to right	Inter	
15	Unary	Inter $\{$ index-set $\}$	
16	Left to right	cross	
17	Unary	Setof \{index-set \}	
	Right to left	..	T0
		.. e BY	TO e BY
Scalar Expression Operators			
21		IF 1 THEN e	
		If 1 then e1 ELSE e2	
22	Left to right Left to right Unary	11	!
23		+ -	
24		Sum $\{$ index-set $\}$	
		PROD $\{$ index-set $\}$	
		min $\{$ index-set $\}$	
		MAX $\{$ index-set $\}$	
25	Left to right	* /	
26	Unary	+ -	
	Right to left	><	
		<>	
		**	-

Primary expressions are the individual operands that are combined using the expression operators. Simple primary expressions can represent constants or named parameter and variable values. More complex primary expressions can be used to call functions or construct sets.

Table 4.4 Primary Expression Table

Expression	Description
identifier-expression	Parameter/variable reference; see the section "Identifier Expressions" on page 40
name (arg-list)	Function call; arg-list is 0 or more expressions separated by commas
n	Numeric constant
. or .c	Missing value constant
"string" or 'string'	String constant
\{ member-list \}	Set constructor; member-list is 0 or more scalar expressions or tuple expressions separated by commas
\{ index-set \}	Index set expression; returns the set of all index set members
/ members /	Set literal expression; compactly specifies a simple set value
(expression)	Expression enclosed in parentheses
< expr-list >	Tuple expression; used with set operations; contains one or more scalar expressions separated by commas

Identifier Expressions

Use an identifier-expression to refer to a variable, objective, constraint, parameter or problem location in expressions or initializations. This is the syntax for identifier-expressions:

```
name [[ expression-1 [, ...expression-n ] ]] [. suffix ] ;
```

To refer to a location in an array, follow the array name with a list of scalar expressions in square brackets ([]). The expression values are compared to the index set that was used to declare name. If there is more than one expression, then the values are formed into a tuple. The expression values for a valid array location must match a member of the array's index set. For example, the following statements define a parameter array A that has two valid indices that match the tuples $<1,2>$ and $<3,4>$:

```
proc optmodel;
    set<number, number> ISET = {<1,2>, <3,4>};
    number A{ISET};
    a[1,2] = 0; /* OK */
    a[3,2] = 0; /* invalid index */
```

The first assignment is valid with this definition of the index set, but the second fails because $<3,2>$ is not a member of the set parameter ISET.

Specify a suffix to refer to auxiliary locations for variables or objectives. See the section "Suffixes" on page 121 for more information.

Function Expressions

Most functions that can be invoked from the DATA step or the \%SYSFUNC macro can be used in PROC OPTMODEL expressions. Certain functions are specific to the DATA step and cannot be used in PROC OPTMODEL. Functions specific to the DATA step include these:

- functions in the LAG, DIF, and DIM families
- functions that access the DATA step program data vector
- functions that access symbol attributes

The CALL statement can invoke SAS library subroutines. These subroutines can read and update the values of the parameters and variables that are used as arguments. See the section "CALL Statement" on page 58 for an example.

OPTMODEL arrays can be passed to SAS library functions and subroutines using the argument syntax:

```
OF array-name[`] [. suffix] ;
```

The array-name is the name of an array symbol. The optional suffix allows auxiliary values to be referenced, as described in section "Suffixes" on page 121.

The OF argument form is resolved into a sequence of arguments, one for each index in the array. The array elements appear in order of the array's index set. The OF array form is a compact alternative to listing the array elements explicitly.

As an example, the following statements use the CALL SORTN function to sort the elements of a numeric array:

```
proc optmodel;
    number original{i in 1..8} = sin(i);
    number sorted{i in 1..8} init original[i];
    call sortn(of sorted[*]);
    print original sorted;
```

The output is shown in Figure 4.7. Eight arguments are passed to the SORTN routine. The original column shows the original order, and the sorted column has the sorted order.

Figure 4.7 Sorting Using an OF Array Argument

| | original | sorted |
| :--- | ---: | ---: | ---: |
| | | |
| 1 | 0.84147 | -0.95892 |
| 2 | 0.90930 | -0.75680 |
| 3 | 0.14112 | -0.27942 |
| 4 | -0.75680 | 0.14112 |
| 5 | -0.95892 | 0.65699 |
| 6 | -0.27942 | 0.84147 |
| 7 | 0.65699 | 0.90930 |
| 8 | 0.98936 | 0.98936 |

NOTE: OF array arguments cannot be used with function calls in declarations when any of the function arguments depend on variables, objectives, or implicit variables.

Index Sets

An index set represents a set of combinations of members from the component set expressions. The index set notation is used in PROC OPTMODEL to describe collections of valid array indices and to specify sets of values with which to perform an operation. Index sets can declare local dummy parameters and can further restrict the set of combinations by a selection expression.

In an index-set specification, the index set consists of one or more index-set-items that are separated by commas. Each index-set-item can include local dummy parameter declarations. An optional selection expression follows the list of index-set-items. The following syntax, which describes an index set, usually appears in braces ($\}$):

```
index-set-item [, . . index-set-item ] [ : logic-expression ] ;
```

index-set-item has these forms:
set-expression ;
name IN set-expression ;
< name-1 [, ... name-n] > IN set-expression ;
Names that precede the IN keyword in index-set-items declare local dummy parameter names. Dummy parameters correspond to the dummy index variables in mathematical expressions. For example, the following statements output the number 385:

```
proc optmodel;
    put (sum{i in 1..10} i**2);
```

The preceding statements evaluate this summation:

$$
\sum_{i=1}^{10} i^{2}=385
$$

In both the statements and the summation, the index name is i.
The last form of index-set-item in the list can be modified to use the SLICE expression implicitly. See the section "More on Index Sets" on page 141 for details.

Array index sets cannot be defined using functions that return different values each time the functions are called. See the section "Indexing" on page 33 for details.

Syntax: OPTMODEL Procedure

PROC OPTMODEL statements are divided into three categories: the PROC statement, the declaration statements, and the programming statements. The PROC statement invokes the procedure and sets initial option values. The declaration statements declare optimization model components. The programming statements
read and write data, invoke the solver, and print results. In the following text, the statements are listed in the order in which they are grouped, with declaration statements first.

NOTE: Solver specific options are described in the individual chapters that correspond to the solvers.

PROC OPTMODEL options;

```
Declaration Statements:
CONSTRAINT constraints ;
IMPVAR optimization expression declarations ;
MAX objective ;
MIN objective ;
NUMBER parameter declarations;
PROBLEM problem declaration;
SET [ < types > ] parameter declarations ;
STRING parameter declarations;
VAR variable declarations ;
Programming Statements:
Assignment parameter = expression ;
CALL name [( expressions)];
CLOSEFILE files;
CONTINUE ;
CREATE DATA SAS-data-set FROM columns;
DO ; statements ; END ;
DO variable = specifications ; statements ; END ;
DO UNTIL ( logic ) ; statements ; END ;
DO WHILE ( logic ) ; statements ; END ;
DROP constraint;
EXPAND name [/ options];
FILE file;
FIX variable [ = expression] ;
FOR { index-set } statement;
IF logic THEN statement ; [ ELSE statement];
LEAVE ;
(null statement) ;
PERFORMANCE options;
PRINT print items;
PUT put items;
QUIT ;
READ DATA SAS-data-set INTO columns ;
RESET OPTIONS options;
RESTORE constraint;
SAVE MPS SAS-data-set[( OBJECTIVE | OBJ ) name];
SAVE QPS SAS-data-set[( OBJECTIVE | OBJ ) name];
SOLVE [ WITH solver] [ OBJECTIVE name ] [ RELAXINT ] [ / options ] ;
STOP ;
SUBMIT arguments [/ options ];
UNFIX variable [ = expression ];
USE PROBLEM problem;
```


Functional Summary

The statements and options available with PROC OPTMODEL are summarized by purpose in Table 4.5.
Table 4.5 Functional Summary

Description	Statement	Option
Declaration Statements:		
Declares a constraint	CONSTRAINT	
Declares optimization expressions	IMPVAR	
Declares a maximization objective	MAX	
Declares a minimization objective	MIN	
Declares a number type parameter	NUMBER	
Declares a problem	PROBLEM	
Declares a set type parameter	SET	
Declares a string type parameter	STRING	
Declares optimization variables	VAR	
Programming Statements:		
Assigns a value to a variable or parameter	=	
Invokes a library subroutine	CALL	
Closes the opened file	CLOSEFILE	
Terminates one iteration of a loop statement	CONTINUE	
Creates a new SAS data set and copies data into it from PROC OPTMODEL parameters and variables	CREATE DATA	
Groups a sequence of statements together as a single statement	DO	
Executes statements repeatedly	DO (iterative)	
Executes statements repeatedly until some condition is satisfied	DO UNTIL	
Executes statements repeatedly as long as some condition is satisfied	DO WHILE	
Ignores the specified constraint	DROP	
Prints the specified constraint, variable, or objective declaration expressions after expanding aggregation operators, and so on	EXPAND	
Selects a file for the PUT statement	FILE	
Treats a variable as fixed in value	FIX	
Executes the statement repeatedly	FOR	
Executes the statement conditionally	IF	
Terminates the execution of the entire loop body	LEAVE	
Null statement	;	
Controls parallel execution	PERFORMANCE	
Outputs string and numeric data	PRINT	
Writes text data to the current output file	PUT	
Terminates the PROC OPTMODEL session	QUIT	

Description	Statement	Option
Sets PROC OPTMODEL option values or restores them to their defaults	RESET OPTIONS	
Adds a constraint that was previously dropped back into the model	RESTORE	
Saves the structure and coefficients for a linear programming model into a SAS data set	SAVE MPS	
Saves the structure and coefficients for a quadratic programming model into a SAS data set	SAVE QPS	
Invokes a PROC OPTMODEL solver	SOLVE	
Halts the execution of all statements that contain it	STOP	
Submits SAS code for execution	SUBMIT	
Reverses the effect of FIX statement	UNFIX	
Selects the current problem	USE PROBLEM	
PROC OPTMODEL Options:		
Specifies the accuracy for nonlinear constraints	PROC OPTMODEL	CDIGITS=
Specifies the maximum number of error messages displayed	PROC OPTMODEL	ERRORLIMIT=
Specifies the method used to approximate numeric derivatives	PROC OPTMODEL	$\mathrm{FD}=$
Specifies the accuracy for the objective function	PROC OPTMODEL	FDIGITS $=$
Passes initial values for variables to the solver	PROC OPTMODEL	INITVAR/NOINITVAR
Specifies the tolerance for rounding the bounds on integer and binary variables	PROC OPTMODEL	INTFUZZ=
Specifies the maximum length for MPS row and column labels	PROC OPTMODEL	MAXLABLEN=
Checks missing values	PROC OPTMODEL	MISSCHECK/NOMISSCHECK
Specifies the maximum number of non-error messages displayed	PROC OPTMODEL	MSGLIMIT=
Specifies the number of digits to display	PROC OPTMODEL	PDIGITS $=$
Adjusts how two-dimensional array is displayed	PROC OPTMODEL	PMATRIX=
Specifies the type of presolve performed by the PROC OPTMODEL presolver	PROC OPTMODEL	PRESOLVER=
Specifies the tolerance, enabling the PROC OPTMODEL presolver to remove slightly infeasible constraints	PROC OPTMODEL	PRESTOL=
Enables or disables printing summary	PROC OPTMODEL	PRINTLEVEL=
Specifies the width to display numeric columns	PROC OPTMODEL	PWIDTH=
Specifies the smallest difference that is permitted by the PROC OPTMODEL presolver between the upper and lower bounds of an unfixed variable	PROC OPTMODEL	VARFUZZ=

PROC OPTMODEL Statement

PROC OPTMODEL [options] ;

The PROC OPTMODEL statement invokes the OPTMODEL procedure. You can specify options to control how the optimization model is processed and how results are displayed. You can specify the following options (these options can also be specified in the RESET statement).

CDIGITS=number

specifies the expected number of decimal digits of accuracy for nonlinear constraints. The value can be fractional. PROC OPTMODEL uses this option to choose a step length when numeric derivative approximations are required to evaluate the Jacobian of nonlinear constraints. The default value depends on your operating environment. It is assumed that constraint values are accurate to the limits of machine precision.

See the section "Automatic Differentiation" on page 139 for more information about numeric derivative approximations.

ERRORLIMIT=number | NONE

specifies the maximum number of error messages that can be displayed. Specifying a value of number in the range 1 to $2^{31}-1$ sets a specific limit. Specifying ERRORLIMIT=NONE removes any existing limit.

NOTE: Some errors abort processing immediately.

FD=FORWARD | CENTRAL

selects the method used to approximate numeric derivatives when analytic derivatives are unavailable. Most solvers require the derivatives of the objective and constraints. The methods available are as follows:
$\mathrm{FD}=\mathrm{FORWARD}$ use forward differences
FD=CENTRAL use central differences
The default value is FORWARD. See the section "Automatic Differentiation" on page 139 for more information about numeric derivative approximations.

FDIGITS=number

specifies the expected number of decimal digits of accuracy for the objective function. The value can be fractional. PROC OPTMODEL uses the value to choose a step length when numeric derivatives are required. The default value depends on your operating environment. It is assumed that objective function values are accurate to the limits of machine precision.
See the section "Automatic Differentiation" on page 139 for more information about numeric derivative approximations.

INITVAR | NOINITVAR

selects whether or not to pass initial values for variables to the solver when the SOLVE statement is executed. INITVAR enables the current variable values to be passed. NOINITVAR causes the solver to be invoked without any specific initial values for variables. The INITVAR option is the default.

The LP and QP solvers always ignore initial values. The NLP solvers attempt to use specified initial values. The MILP solver uses initial values only if the PRIMALIN option is specified.

INTFUZZ=number

specifies the tolerance for rounding the bounds on integer and binary variables to integer values. Bounds that differ from an integer by at most number are rounded to that integer. Otherwise lower boundsare rounded up to the next greater integer and upper bounds are rounded down to the next lesser integer. The value of number can range between 0 and 0.5 . The default value is 0.00001 .

MAXLABLEN=number

specifies the maximum length for MPS row and column labels. The allowed range is 8 to 256 , with 32 as the default. This option can also be used to control the length of row and column names displayed by solvers, such as those found in the LP solver iteration log. See also the description of the .label suffix in the section "Suffixes" on page 121.

MISSCHECK | NOMISSCHECK

enables detailed checking of missing values in expressions. MISSCHECK requests that a message be produced each time PROC OPTMODEL evaluates an arithmetic operation or built-in function that has missing value operands (except when the operation or function specifically supports missing values). The MISSCHECK option can increase processing time. NOMISSCHECK turns off this detailed reporting. NOMISSCHECK is the default.

MSGLIMIT=number | NONE

specifies the maximum number of non-error messages that can be displayed, including notes and warnings. Specifying a value of number in the range 0 to $2^{31}-1$ sets a specific limit. Specifying MSGLIMIT=NONE removes any existing limit.

PDIGITS=number

requests that the PRINT statement display number significant digitsfor numeric columns for which no format is specified. The value can range from 1 to 9 . The default is 5 .

PMATRIX=number

adjusts the density evaluation of a two-dimensional array to affect how it is displayed. The value number scales the total number of nonempty array elements and is used by the PRINT statement to evaluate whether a two-dimensional array is "sparse" or "dense." Tables that contain a single twodimensional array are printed in list form if they are sparse and in matrix form if they are dense. Any nonnegative value can be assigned to number; the default value is 1 . Specifying a value for the PMATRIX $=$ option that is less than 1 causes the list form to be used in more cases, while specifying a value greater than 1 causes the matrix form to be used in more cases. If the value is 0 , then the list form is always used. See the section "PRINT Statement" on page 74 for more information.

PRESOLVER=number | string

specifies a presolve string or its corresponding value number, as listed in Table 4.6.
Table 4.6 Values for the PRESOLVER= Option

number	string	Description
-1	AUTOMATIC	Applies presolver using default setting.
0	NONE	Disables presolver.
1	BASIC	Performs minimal processing, only substituting fixed variables and removing empty feasible con-
straints.		
3	MODERATE	Applies a higher level of presolve processing.
3	AGGRESSIVE	Applies the highest level of presolve processing.

The OPTMODEL presolver tightens variable bounds and eliminates redundant constraints. In general, this improves the performance of any solver. The AUTOMATIC option is intermediate between the MODERATE and AGGRESSIVE levels.

NOTE: The OPTMODEL presolver is bypassed when using the LP, QP, or MILP solvers and when saving problem data with the SAVE MPS and SAVE QPS statements.

PRESTOL=number

provides a tolerance so that slightly infeasible constraints can be eliminated by the OPTMODEL presolver. If the magnitude of the infeasibility is no greater than num $(|X|+1)$, where X is the value of the original bound, then the empty constraint is removed from the presolved problem. OPTMODEL's presolver does not print messages about infeasible constraints and variable bounds when the infeasibility is within the PRESTOL tolerance. The value of PRESTOL can range between 0 and 0.1 ; the default value is $1 \mathrm{E}-12$.

PRINTLEVEL=number

controls the level of listing output during a SOLVE command. The Output Delivery System (ODS) tables printed at each level are listed in Table 4.7. Some solvers can produce additional tables; see the individual solver chapters for more information.

Table 4.7 Values for the PRINTLEVEL= Option

number	Description
0	Disables all tables.
1	Prints Problem Summary and Solution Summary.
2	Prints Problem Summary, Solution Summary, Methods of Derivative Com-
	putation (for NLP solvers), Solver Options, Optimization Statistics, and \quadsolver-specific ODS tables.

For more details about the ODS tables produced by PROC OPTMODEL, see the section "ODS Table and Variable Names" on page 112.

PWIDTH=number

sets the width used by the PRINT statement to display numeric columns when no format is specified. The smallest value number can take is the value of the PDIGITS $=$ option plus 7 ; the largest value number can take is 16 . The default value is equal to the value of the PDIGITS $=$ option plus 7 .

VARFUZZ=number

specifies the smallest difference that is permitted by the OPTMODEL presolver between the upper and lower bounds of an unfixed variable. If the difference is smaller than number, then the variable isfixed to the average of the upper and lower bounds before it is presented to the solver. Any nonnegative value can be assigned to number; the default value is 0 .

Declaration Statements

The declaration statements define the parameters, variables, constraints, and objectives that describe a PROC OPTMODEL optimization model. Declarations in the PROC OPTMODEL input are saved for later use.

Unlike programming statements, declarations cannot be nested in other statements. Declaration statements are terminated by a semicolon.

Many declaration attributes, such as variable bounds, are defined using expressions. Expressions in declarations are handled symbolically and are resolved as needed. In particular, expressions are generally reevaluated when one of the parameter values they use has been changed.

CONSTRAINT Declaration

CONSTRAINT constraint [, ... constraint] ;

CON constraint [, . . constraint] ;
The constraint declaration defines one or more constraints on expressions in terms of the optimization variables. You can specify multiple constraint declaration statements.

Constraints can have an upper bound, a lower bound, or both bounds. The allowed forms are as follows:
[name [\{ index-set \}]:] expression = expression
declares an equality constraint or, when an index-set is specified, a family of equality constraints. The solver attempts to assign values to the optimization variables to make the two expressions equal.
[name [\{ index-set \}] :] expression relation expression
declares an inequality constraint that has a single upper or lower bound. index-set declares a family of inequality constraints. relation is the $<=$ or $>=$ operator. When relation is the <= operator, the solver tries to assign optimization variable values so that the left expression has a value less than or equal to the right expression. When relation is the $>=$ operator, the solver tries to assign optimization variable values so that the left expression has a value greater than or equal to the right expression.
[name [\{ index-set \}] :] bound relation body relation bound
declares an inequality constraint that is bounded on both sides, called a range constraint. index-set declares a family of range constraints. relation is the $<=$ or $>=$ operator. The same operator must be used in both positions. The first bound expression defines the lower bound (if the $<=$ operator is used) or the upper bound (if the $>=$ operator is used). The second bound defines the upper bound (if the <= operator is used) or the lower bound (if the $>=$ operator is used). The solver tries to assign optimization variables so that the value of the body expression is in the range between the upper and lower bounds.
name defines the name for the constraint. Use the name to reference constraint attributes, such as the bounds, elsewhere in the PROC OPTMODEL model. If no name is provided, then a default name is created of the form _ACON_ $[n]$, where n is an integer. See the section "Constraints" on page 116 for more information.

Here is a simple example that defines a constraint with a lower bound:

```
proc optmodel;
    var x, y;
    number low;
    con a: x+y >= low;
```

The following example adds an upper bound:

```
var x, y;
number low;
con a: low <= x+y <= low+10;
```

Indexed families of constraints can be defined by specifying an index-set after the name. Any dummy parameters that are declared in the index-set can be referenced in the expressions that define the constraint. A particular member of an indexed family can be specified by using an identifier-expression with a bracketed index list, in the same fashion as array parameters and variables. For example, the following statements create an indexed family of constraints named incr:

```
proc optmodel;
    number n;
    var x{1..n}
    /* require nondecreasing x values */
    con incr{i in 1..n-1}: x[i+1] >= x[i];
```

The CON statement in the example creates constraints incr[1] through incr[$n-1$].
Constraint expressions cannot be defined using functions that return different values each time they are called. See the section "Indexing" on page 33 for details.

IMPVAR Declaration

IMPVAR impvar-decl [, . . impvar-decl];
The IMPVAR statement declares one or more names that refer to optimization expressions in the model. The declared name is called an implicit variable. An implicit variable is useful for structuring models so that complex expressions do not need to be repeated each time they are used. The value of an implicit variable needs to be computed only once instead of at each place where the original expression is used, which helps reduce computational overhead. Implicit variables are evaluated without intervention from the solver.

Multiple IMPVAR statements are allowed. The names of implicit variables must be distinct from other model declarations, such as variables and constraints. Implicit variables can be used in model expressions in the same places where ordinary variables are allowed.

This is the syntax for an impvar-decl:

```
name [ { index-set } ] = expression ;
```

Each impvar-decl declares a name for an implicit variable. The name can be followed by an index-set specification to declare a family of implicit variables. The expression that the name refers to follows. Dummy parameters that are declared in the index-set specification can be used in the expression. The expression can refer to other model components, including variables, the current implicit variable, and other implicit variables.

As an example, in the following model statements the implicit variable total_weight is used in multiple constraints to set a limit on various product quantities, represented by locations in array x :

```
impvar total_weight = sum{p in PRODUCTS} Weight[p]*x[p];
con prod1_limit: Weight['Prod1'] * x['Prod1'] <= 0.3 * total_weight;
con prod2_limit: Weight['Prod2'] * x['Prod2'] <= 0.25 * total_weight;
```


MAX and MIN Objective Declarations

MAX name [\{ index-set \}] = expression ;
MIN name [$\{$ index-set \}] = expression ;
The MAX or MIN declaration specifies an objective for the solver. The name names the objective function for later reference. When a non-array objective declaration is read, the declaration becomes the new objective of the current problem, replacing any previous objective. The solver maximizes an objective that is specified with the MAX keyword and minimizes an objective that is specified with the MIN keyword. An objective is not allowed to have the same name as a parameter or variable. Multiple objectives are permitted, but the solver processes only one objective at a time.
expression specifies the numeric function to maximize or minimize in terms of the optimization-variables. Specify an index-set to declare a family of objectives. Dummy parameters declared in the index-set specification can be used in the following expression.

Objectives can also be used as implicit variables. When used in an expression, an objective name refers to the current value of the named objective function. The value of an unsuffixed objective name can depend on the value of optimization variables, so objective names cannot be used in constant expressions such as variable bounds. You can reference objective names in objective or constraint expressions. For example, the following statements declare two objective names, q and I, which are immediately referred to in the objective declaration of z and the declarations of the constraints.

```
proc optmodel;
    var x, y;
    min q=(x+y)**2;
    max l=x+2*y;
    min z=q+1;
    con c1: q<=4;
    con c2: l>=2;
```

Objectives cannot be defined using functions that return different values each time they are called. See the section "Indexing" on page 33 for details.

NUMBER, STRING, and SET Parameter Declarations

NUMBER parameter-decl [, . . parameter-decl];
STRING parameter-decl[, . . parameter-decl];
SET [< scalar-type, ...scalar-type >] parameter-decl [, ... parameter-decl] ;
Parameters provide names for constants. Parameters are declared by specifying the parameter type followed by a list of parameter names. Declarations of parameters that have NUMBER or STRING types start with a scalar-type specification:

NUMBER|NUM ;
STRING|STR ;
The NUM and STR keywords are abbreviations for the NUMBER and STRING keywords, respectively.

The declaration of a parameter that has the set type begins with a set-type specification:

```
SET [ < scalar-type, . . . scalar-type > ] ;
```

In a set-type declaration, the SET keyword is followed by a list of scalar-type items that specify the member type. A set with scalar members is specified with a single scalar-type item. A set with tuple members has a scalar-type item for each tuple element. The scalar-type items specify the types of the elements at each tuple position.

If the SET keyword is not followed by a list of scalar-type items, then the set type is determined from the type of the initialization expression. The declared type defaults to SET<NUMBER $>$ if no initialization expression is given or if the expression type cannot be determined.

For any parameter type, the type declaration is followed by a list of parameter-decl items that specify the names of the parameters to declare. In a parameter-decl item the parameter name can be followed by an optional index specification and any necessary options, as follows:

```
name [ \{ index-set \}] [parameter-options ] ;
```

The parameter name and index-set can be followed by a list of parameter-options. Dummy parameters declared in the index-set can be used in the parameter-options. The parameter options can be specified with the following forms:

```
= expression
```

provides an explicit value for each parameter location. In this case the parameter acts like an alias for the expression value.

INIT expression

specifies a default value that is used when a parameter value is required but no other value has been supplied. For example:

```
number n init 1;
set s init {'a', 'b', 'c'};
```

PROC OPTMODEL evaluates the expression for each parameter location the first time the parameter needs to be resolved. The expression is not used when the parameter already has a value.
= [initializers]
provides a compact means to define the values for an array, in which each array location value can be individually specified by the initializers.

INIT [initializers]

provides a compact means to define multiple default values for an array. Each array location value can be individually specified by the initializers. With this option the array values can still be updated outside the declaration.

The =expression parameter option defines a parameter value by using a formula. The formula can refer to other parameters. The parameter value is updated when the referenced parameters change. The following example shows the effects of the update:

```
proc optmodel;
    number n;
```

```
set<number> s = 1..n;
number a{s};
n = 3;
a[1] = 2; /* OK */
a[7] = 19; /* error, 7 is not in s */
n = 10;
a[7] = 19; /* OK now */
```

In the preceding example the value of set s is resolved for each use of array a that has an index. For the first use of a[7], the value 7 is not a member of the set s . However, the value 7 is a member of s at the second use of $a[7]$.

The INIT expression parameter option specifies a default value for a parameter. The following example shows the usage of this option:

```
proc optmodel;
    num a{i in 1..2} init i**2;
    a[1] = 2;
    put a[*]=;
```

When the value of a parameter is needed but no other value has been supplied, the default value specified by INIT expression is used, as shown in Figure 4.8.

Figure 4.8 INIT Option: Output

```
a[1]=2 a[2]=4
```

Note: Parameter values can also be read from files or specified with assignment statements. However, the value of a parameter that is assigned with the =expression or =[initializers] forms can be changed only by modifying the parameters used in the defining expressions. Parameter values specified by the INIT option can be reassigned freely.

Initializing Arrays

Arrays can be initialized with the $=$ [initializers] or INIT [initializers] forms. These forms are convenient when array location values need to be individually specified. The forms behave the same way, except that the INIT [initializers] form allows the array values to be modified after the declaration. These forms of initialization are used in the following statements:

```
proc optmodel;
    number a{1..3} = [5 4 7];
    number b{1..3} INIT [5 4 7];
    put a[*]=;
    b[1] = 1;
    put b[*]=;
```

Each array location receives a different value, as shown in Figure 4.9. The displayed values for bare a combination of the default values from the declaration and the assigned value in the statements.

Figure 4.9 Array Initialization

```
a[1]=5 a[2]=4 a[3]=7
b[1]=1 b[2]=4 b[3]=7
```

Each initializer takes the following form:
[[index]] value ;
The value specifies the value of an array location and can be a numeric or string constant, a set literal, or an expression enclosed in parentheses.

In array initializers, string constants can be specified using quoted strings. When the string text follows the rules for a SAS name, the text can also be specified without quotation marks. String constants that begin with a digit, contain blanks, or contain other special characters must be specified with a quoted string.

As an example, the following statements define an array parameter that could be used to map numeric days of the week to text strings:

```
proc optmodel;
    string dn{1..5} =
        [Monday Tuesday Wednesday Thursday Friday];
```

The optional index in square brackets specifies the index of the array location to initialize. The index specifies one or more numeric or string subscripts. The subscripts allow the same syntactic forms as the value items. Commas can be used to separate index subscripts. For example, location a[1,'abc'] of an array a could be specified with the index [1 abc]. The following example initializes just the diagonal locations in a square array:

```
proc optmodel;
    number m{1..3,1..3} = [[llll 0.1 [2 2] 0.2 [3 3] 0.3];
```

An index does not need to specify all the subscripts of an array location. If the index begins with a comma, then only the rightmost subscripts of the index need to be specified. The preceding subscripts are supplied from the index that was used by the preceding initializer. This can simplify the initialization of arrays that are indexed by multiple subscripts. For example, you can add new entries to the matrix of the previous example by using the following statements:

```
proc optmodel;
    number m{1..3,1..3} = [[llll 0.1 [,3] 1
                                    [2 2] 0.2 [,3] 2
                                    [3 3] 0.3];
```

The spacing shows the layout of the example array. The previous example was updated by initializing two more values at $\mathrm{m}[1,3]$ and $\mathrm{m}[2,3]$.
If an index is omitted, then the next location in the order of the array's index set is initialized. If the index set has multiple index-set-items, then the rightmost indices are updated before indices to the left are updated.

At the beginning of the initializer list, the rightmost index is the first member of the index set. The index set must use a range expression to avoid unpredictable results when an index value is omitted.

The initializers can be followed by commas. The use of commas has no effect on the initialization. The comma can be used to clarify layout. For example, the comma could separate rows in a matrix.

Not every array location needs to be initialized. The locations without an explicit initializer are set to zero for numeric arrays, set to an empty string for string arrays, and set to an empty set for set arrays.

NOTE: An array location must not be initialized more than once during the processing of the initializer list.

PROBLEM Declaration

PROBLEM name [\{ index-set \}] [FROM problem-id] [INCLUDE problem-items] ;
Problems are declared with the PROBLEM declaration. Problem declarations track an objective, a set of included variables and constraints, and some status information that is associated with the variables and constraints. The problem name can optionally be followed by an index-set to create a family of problems. When a problem is first used (via the USE PROBLEM statement), the specifications from the optional FROM and INCLUDE clauses create the initial set of included variables, constraints, and the problem objective. An empty problem is created if neither clause is specified. The clauses are applied only when the problem is first used with the USE PROBLEM statement.

The FROM clause specifies an existing problem from which to copy the included symbols. The problem-id is an identifier expression. The dropped and fixed status for these symbols in the specified problem is also copied.

The INCLUDE clause specifies a list of variables, constraints, and objectives to include in the problem. These items are included with default status (unfixed and undropped) which overrides the status from the FROM clause, if it exists. Each item is specified with one of the following forms:
identifier-expression
includes the specified items in the problem. The identifier-expression can be a symbol name or an array symbol with explicit index. If an array symbol is used without an index, then all array elements are included.
\{ index-set \} identifier-expression
includes the specified subset of items in the problem. The item specified by the identifierexpression is added to the problem for each member of the index-set. The dummy parameters from the index-set can be used in the indexing of the identifier-expression. If the identifier-expression is an array symbol without indexing, then the index-set provides the indices for the included locations.

You can use the FROM and INCLUDE clauses to designate the initial objective for a problem. The objective is copied from the problem designated by the FROM clause, if present. Then the INCLUDE clause, if any, is applied, and the last objective specified becomes the initial objective.

The following statements declare some problems with a variable x and different objectives to illustrate some of the ways of including model components. Note that the statements use the predeclared problem _START_ to avoid resetting the objective in prob2 when the objective $z 3$ is declared.

```
proc optmodel;
    problem prob1;
    use problem prob1;
    var x >= 0; /* included in prob1 */
    min z1 = (x-1)**2; /* included in prob1 */
    expand; /* prob1 contains x, z1 */
    problem prob2 from prob1;
    use problem prob2; /* includes x, z1 */
    min z2 = (x-2)**2; /* resets prob2 objective to z2 */
    expand; /* prob2 contains x, z2 */
    use problem _start_; /* don't modify prob2 */
    min z3 = (x-3)**2;
    problem prob3 include x z3;
    use problem prob3;
    expand; /* prob3 contains x, z3 */
```

See the section "Multiple Subproblems" on page 136 for more details about problem processing.

VAR Declaration

VAR var-decl [, ... var-decl];
The VAR statement declares one or more optimization variables. Multiple VAR statements are permitted. A variable is not allowed to have the same name as a parameter or constraint.

Each var-decl specifies a variable name. The name can be followed by an array index-set specification and then variable options. Dummy parameters declared in the index set specification can be used in the following variable options.

Here is the syntax for a var-decl:

```
name [ { index-set }] [ var-options ] ;
```

For example, the following statements declare a group of 100 variables, $\mathrm{x}[1]-\mathrm{x}[100]$:

```
proc optmodel;
    var x{1..100};
```

Here are the available variable options:

INIT expression

sets an initial value for the variable. The expression is used only the first time the value is required. If no initial value is specified, then 0 is used by default.
>= expression
sets a lower bound for the variable value. The default lower bound is $-\infty$.
<= expression
sets an upper bound for the variable value. The default upper bound is ∞.

INTEGER

BINARY

requests that the solver assign the variable a value of either 0 or 1 .
For example, the following statements declare a variable that has an initial value of 0.5 . The variable is bounded between 0 and 1:

```
proc optmodel;
    var x init 0.5 >= 0 <= 1;
```

The values of the bounds can be determined later by using suffixed references to the variable. For example, the upper bound for variable x can be referred to as x .ub. In addition the bounds options can be overridden by explicit assignment to the suffixed variable name. Suffixes are described further in the section "Suffixes" on page 121 .

When used in an expression, an unsuffixed variable name refers to the current value of the variable. Unsuffixed variables are not allowed in the expressions for options that define variable bounds or initial values. Such expressions have values that must be fixed during execution of the solver.

Programming Statements

PROC OPTMODEL supports several programming statements. You can perform various actions with these statements, such as reading or writing data sets, setting parameter values, generating text output, or invoking a solver.

Statements are read from the input and are executed immediately when complete. Certain statements can contain one or more substatements. The execution of substatements is held until the statements that contain them are submitted. Parameter values that are used by expressions in programming statements are resolved when the statement is executed; this resolution might cause errors to be detected. For example, the use of undefined parameters is detected during resolution of the symbolic expressions from declarations.

A statement is terminated by a semicolon. The positions at which semicolons are placed are shown explicitly in the following statement syntax descriptions.

The programming statements can be grouped into the categories shown in Table 4.8.
Table 4.8 Types of Programming Statements in PROC OPTMODEL

Control	Looping	General	Input/Output	Model
DO	CONTINUE	Assignment	CLOSEFILE	DROP
IF	FOR	CALL	CREATE DATA	EXPAND
Null (;)	DO Iterative	PERFORMANCE	FILE	FIX
QUIT	DO UNTIL	RESET OPTIONS	PRINT	RESTORE
STOP	DO WHILE	SUBMIT	PUT	SOLVE
	LEAVE		READ DATA	UNFIX
			SAVE MPS	USE PROBLEM
			SAVE QPS	

Assignment Statement

```
identifier-expression = expression;
```

The assignment statement assigns a variable or parameter value. The type of the target identifier-expression must match the type of the right-hand-side expression.
For example, the following statements set the current value for variable x to 3 :

```
proc optmodel;
    var x;
    x = 3;
```

Note: Parameters that were declared with the equal sign (=) initialization forms must not be reassigned a value with an assignment statement. If this occurs, PROC OPTMODEL reports an error.

CALL Statement

CALL name (argument-1 [, ... argument-n]);
The CALL statement invokes the named library subroutine. The values that are determined for each argument expression are passed to the subroutine when the subroutine is invoked. The subroutine can update the values of PROC OPTMODEL parameters and variables when an argument is an identifier-expression (see the section "Identifier Expressions" on page 40). For example, the following statements set the parameter array a to a random permutation of 1 to 4 :

```
proc optmodel;
    number a{i in 1..4} init i;
    number seed init -1;
    call ranperm(seed, a[1], a[2], a[3], a[4]);
```

See SAS Functions and CALL Routines: Reference for a list of CALL routines.

CLOSEFILE Statement

CLOSEFILE file-specifications;

The CLOSEFILE statement closes files that were opened by the FILE statement. Each file is specified by a logical name, a physical filename in quotation marks, or an expression enclosed in parentheses that evaluates to a physical filename. See the section "FILE Statement" on page 70 for more information about file specifications.

The following example shows how the CLOSEFILE statement is used with a logical filename:

```
filename greet 'hello.txt';
proc optmodel;
    file greet;
    put 'Hi!';
    closefile greet;
```

Generally you must close a file with a CLOSEFILE statement before external programs can access the file. However, any open files are automatically closed when PROC OPTMODEL terminates.

CONTINUE Statement CONTINUE ;

The CONTINUE statement terminates the current iteration of the loop statement (iterative DO, DO UNTIL, DO WHILE, or FOR) that immediately contains the CONTINUE statement. Execution resumes at the start of the loop after checking WHILE or UNTIL tests. The FOR or iterative DO loops apply new iteration values.

CREATE DATA Statement

CREATE DATA SAS-data-set FROM [[key-columns] [= key-set]] columns;
The CREATE DATA statement creates a new SAS data set and copies data into it from PROC OPTMODEL parameters and variables. The CREATE DATA statement can create a data set with a single observation or a data set with observations for every location in one or more arrays. The data set is closed after the execution of the CREATE DATA statement.

The arguments to the CREATE DATA statement are as follows:

SAS-data-set

specifies the output data set name and options.
key-columns
declares index values and their corresponding data set variables. The values are used to index array locations in columns.
key-set
columns
specifies a set of index values for the key-columns.
specifies data set variables as well as the PROC OPTMODEL source data for the variables.

Each column or key-column defines output data set variables and a data source for a column. For example, the following statement generates the output SAS data set resdata from the PROC OPTMODEL array opt, which is indexed by the set indset:

```
create data resdata from [solns]=indset opt;
```

The output data set variable solns contains the index elements in indset.

Columns

Columns can have the following forms:
identifier-expression [/ options]
transfers data from the PROC OPTMODEL parameter or variable specified by the identifier-expression. The output data set variable has the same name as the name part of the identifier-expression (see the section "Identifier Expressions" on page 40). If the identifier-expression refers to an array, then the index can be omitted when it matches the key-columns. The options enable formats and labels to be associated with the data set variable. See the section "Column Options" on page 61 for more information. The following example creates a data set with the variables m and n :

```
proc optmodel;
    number m = 7, n = 5;
    create data example from m n;
```

name $=$ expression [/ options]
transfers the value of a PROC OPTMODEL expression to the output data set variable name. The expression is reevaluated for each observation. If the expression contains any operators or function calls, then it must be enclosed in parentheses. If the expression is an identifier-expression that refers to an array, then the index can be omitted if it matches the key-columns. The options enable formats and labels to be associated with the data set variable. See the section "Column Options" on page 61 for more information. The following example creates a data set with the variable ratio:

```
proc optmodel;
    number m = 7, n = 5;
    create data example from ratio=(m/n);
```

COL(name-expression) $=$ expression [/ options]
transfers the value of a PROC OPTMODEL expression to the output data set variable named by the string expression name-expression. The PROC OPTMODEL expression is reevaluated for each observation. If this expression contains any operators or function calls, then it must be enclosed in parentheses. If the PROC OPTMODEL expression is an identifier-expression that refers to an array, then the index can be omitted if it matches the key-columns. The options enable formats and labels to be associated with the data set variable. See the section "Column Options" on page 61 for more information. The following example uses the COL expression to form the variable s5:

```
proc optmodel;
    number m = 7, n = 5;
    create data example from col("s"||n)=(m+n);
```

\{ index-set \} < columns >
performs the transfers by iterating each column specified by <columns > for each member of the index set. If there are n columns and m index set members, then $n \times m$ columns are generated. The dummy parameters from the index set can be used in the columns to generate distinct output data set variable names in the iterated columns, using COL expressions. The columns are expanded when the CREATE DATA statement is executed, before any output is performed. This form of columns cannot be nested. In other words, the following form of columns is NOT allowed:
\{ index-set \}< index-set \}<columns>>
The following example demonstrates the use of the iterated columns form:

```
proc optmodel;
    set<string> alph = {'a', 'b', 'c'};
    var x{1..3, alph} init 2;
    create data example from [i]=(1..3)
        {j in alph}<col("x"||j)=x[i,j]>;
```

The data set created by these statements is shown in Figure 4.10.

Figure 4.10 CREATE DATA with COL Expression

Obs	\mathbf{i}	$\mathbf{x a}$	$\mathbf{x b}$	$\mathbf{x c}$	
	1	1	2	2	2
2	2	2	2	2	
3	3	2	2	2	

NOTE: When no key-columns are specified, the output data set has a single observation.
The following statements incorporate several of the preceding examples to create and print a data set by using PROC OPTMODEL parameters:

```
proc optmodel;
    number m = 7, n = 5;
    create data example from m n ratio=(m/n) col("s"||n)=(m+n);
proc print;
run;
```

The output from the PRINT procedure is shown in Figure 4.11.
Figure 4.11 CREATE DATA for Single Observation

Obs	m	n	ratio	s 5
1	7	5	1.4	12

Column Options

Each column or key-column that defines a data set variable can be followed by zero or more of the following modifiers:

FORMAT=format
associates a format with the current column.
INFORMAT=informat.
associates an informat with the current column.
LABEL='label'
associates a label with the current column. The label can be specified by a quoted string or an expression in parentheses.

LENGTH=length

specifies a length for the current column. The length can be specified by a numeric constant or a parenthesized expression. The range for character variables is 1 to 32,767 bytes. The range for numeric variables depends on the operating environment and has a minimum of 2 or 3 .

TRANSCODE=YES | NO
specifies whether character variables can be transcoded. The default value is YES. See
the TRANSCODE=option of the ATTRIB statement in SAS Statements: Reference for more information.

The following statements demonstrate the use of column options, including the use of multiple options for a single column:

```
proc optmodel;
    num sq{i in 1..10} = i*i;
    create data squares from [i/format=hex2./length=3] sq/format=6.2;
proc print;
run;
```

The output from the PRINT procedure is shown in Figure 4.12.
Figure 4.12 CREATE DATA for Single Observation

| Obs | i | sq |
| ---: | ---: | ---: | ---: |
| | | |
| 1 | 01 | 1.00 |
| 2 | 02 | 4.00 |
| 3 | 03 | 9.00 |
| 4 | 04 | 16.00 |
| 5 | 05 | 25.00 |
| 6 | 06 | 36.00 |
| 7 | 07 | 49.00 |
| 8 | 08 | 64.00 |
| 9 | 09 | 81.00 |
| 10 | $0 A$ | 100.00 |

Key Columns

Key-columns declare index values that enable multiple observations to be written from array columns. An observation is created for each unique index value combination. The index values supply the index for array columns that do not have an explicit index.

Key-columns define the data set variables where the index value elements are written. They can also declare local dummy parameters for use in expressions in the columns. Key-columns are syntactically similar to columns, but are more restricted in form. The following forms of key-columns are allowed:
name [/ options]
transfers an index element value to the data set variable name. A local dummy parameter, name, is declared to hold the index element value. The options enable formats and labels to be associated with the data set variable. See the section "Column Options" on page 61 for more information.

COL(name-expression) [= index-name] [/ options]
transfers an index element value to the data set variable named by the string-valued name-expression. The argument index-name optionally declares a local dummy parameter to hold the index element value. The options enable formats and labels to be associated with the data set variable. See the section "Column Options" on page 61 for more information.

A key-set in the CREATE DATA statement explicitly specifies the set of index values. key-set can be specified as a set expression, although it must be enclosed in parentheses if it contains any function calls or operators. key-set can also be specified as an index set expression, in which case the index-set dummy parameters override any dummy parameters that are declared in the key-columns items. The following statements create a data set from the PROC OPTMODEL parameter m, a matrix whose only nonzero entries are located at $(1,1)$ and $(4,1)$:

```
proc optmodel;
    number m{1..5, 1..3} = [[1 1] 1 [4 1] 1];
    create data example
        from [i j] = {setof{i in 1..2}<i**2>, {1, 2}} m;
proc print data=example noobs;
run;
```

The dummy parameter i in the SETOF expression takes precedence over the dummy parameter i declared in the key-columns item. The output from these statements is shown in Figure 4.13.

Figure 4.13 CREATE: key-set with SETOF Aggregation Expression

| i | j | m |
| :--- | :--- | :--- | :--- |
| | | |
| 1 | 1 | 1 |
| 1 | 2 | 0 |
| 4 | 1 | 1 |
| 4 | 2 | 0 |

If no key-set is specified, then the set of index values is formed from the union of the index sets of the implicitly indexed columns. The number of index elements for each implicitly indexed array must match the number of key-columns. The type of each index element (string versus numeric) must match the element of the same position in other implicit indices.

The arrays for implicitly indexed columns in a CREATE DATA statement do not need to have identical index sets. A missing value is supplied for the value of an implicitly indexed array location when the implied index value is not in the array's index set.

In the following statements, the key-set is unspecified. The set of index values is $\{1,2,3\}$, which is the union of the index sets of x and y. These index sets are not identical, so missing values are supplied when necessary. The results of these statements are shown in Figure 4.14.

```
proc optmodel;
    number x{1..2} init 2;
    var y{2..3} init 3;
    create data exdata from [keycol] x y;
proc print;
run;
```

Figure 4.14 CREATE: Unspecified key-set

Obs	keycol	\mathbf{x}	\mathbf{y}
1	1	2	.
2	2	2	3
3	3	\cdot	3

The types of the output data set variables match the types of the source values. The output variable type for a key-columns matches the corresponding element type in the index value tuple. A numeric element matches a NUMERIC data set variable, while a string element matches a CHAR variable. For regular columns the source expression type determines the output data set variable type. A numeric expression produces a NUMERIC variable, while a string expression produces a CHAR variable.

Lengths of character variables in the output data set are determined automatically. The length is set to accommodate the longest string value output in that column.

You can use the iterated columns form to output selected rows of multiple arrays, assigning a different data set variable to each column. For example, the following statements output the last two rows of the two-dimensional array, a , along with corresponding elements of the one-dimensional array, b :

```
proc optmodel;
    num m = 3; /* number of rows/observations */
    num n = 4; /* number of columns in a */
    num a{i in 1..m, j in 1..n} = i*j; /* compute a */
    num b{i in 1..m} = i**2; /* compute b */
    set<num> subset = 2..m; /* used to omit first row */
    create data out
            from [i]=subset {j in 1..n}<col("a"||j)=a[i,j]> b;
```

The preceding statements create a data set out, which has $m-1$ observations and $n+2$ variables. The variables are named i , a1 through an, and b, as shown in Figure 4.15.

Figure 4.15 CREATE DATA Set: The Iterated Column Form

Obs	i	a1	a2	a3	a4	b
	1	2	2	4	6	8
2	3	3	6	9	12	9

See the section "Data Set Input/Output" on page 105 for more examples of using the CREATE DATA statement.

DO Statement

DO ; statements ; END ;
The DO statement groups a sequence of statements together as a single statement. Each statement within the list is executed sequentially. The DO statement can be used for grouping with the IF and FOR statements.

DO Statement, Iterative

DO name $=$ specification-1 $[, \ldots$ specification-n $]$; statements ; END ;
The iterative DO statement assigns the values from the sequence of specification items to a previously declared parameter or variable, name. The specified statement sequence is executed after each assignment. This statement corresponds to the iterative DO statement of the DATA step.

Each specification provides either a single number or a single string value, or a sequence of such values. Each specification takes the following form:

```
expression [ WHILE( logic-expression ) | UNTIL( logic-expression ) ];
```

The expression in the specification provides a single value or set of values to assign to the target name. Multiple values can be provided for the loop by giving multiple specification items that are separated by commas. For example, the following statements output the values 1,3 , and 5 :

```
proc optmodel;
    number i;
    do i=1,3,5;
        put i;
    end;
```

In this case, the same effect can be achieved with a single range expression in place of the explicit list of values, as in the following statements:

```
proc optmodel;
    number i;
    do i=1 to 5 by 2;
        put 'value of i assigned by the DO loop = ' i;
        i=i**2;
        put 'value of i assigned in the body of the loop = ' i;
    end;
```

The output of these statements is shown in Figure 4.16.
Figure 4.16 DO Loop: Name Parameter Unaffected

```
value of i assigned by the DO loop = 1
value of i assigned in the body of the loop = 1
value of i assigned by the DO loop = 3
value of i assigned in the body of the loop = 9
value of i assigned by the DO loop = 5
value of i assigned in the body of the loop = 25
```

Unlike the DATA step, a range expression requires the limit to be specified. Additionally the BY part, if any, must follow the limit expression. Moreover, although the name parameter can be reassigned in the body of the loop, the sequence of values that is assigned by the DO loop is unaffected.

The argument expression can also be an expression that returns a set of numbers or strings. For example, the following statements produce the same sequence of values for i as the previous statements but use a set parameter value:

```
proc optmodel;
    set s = {1, 3,5};
    number i;
    do i = s;
        put i;
    end;
```

Each specification can include a WHILE or UNTIL clause. A WHILE or UNTIL clause applies to the expression that immediately precedes the clause. The sequence that is specified by an expression can be terminated early by a WHILE or UNTIL clause. A WHILE logic-expression is evaluated for each sequence value before the nested statements. If the logic-expression returns a false (zero or missing) value, then the current sequence is terminated immediately. An UNTIL logic-expression is evaluated for each sequence value after the nested statements. The sequence from the current specification is terminated if the logicexpression returns a true value (nonzero and nonmissing). After early termination of a sequence due to a WHILE or UNTIL expression, the DO loop execution continues with the next specification, if any.

To demonstrate use of the WHILE clause, the following statements output the values 1, 2, and 3. In this case the sequence of values from the set s is stopped when the value of i reaches 4 .

```
proc optmodel;
    set s = {1,2,3,4,5};
    number i;
    do i = s while(i NE 4);
        put i;
    end;
```


DO UNTIL Statement

DO UNTIL (logic-expression) statements ; END ;

The DO UNTIL loop executes the specified sequence of statements repeatedly until the logic-expression, evaluated after the statements, returns true (a nonmissing nonzero value).

For example, the following statements output the values 1 and 2 :

```
proc optmodel;
    number i;
    i = 1;
    do until (i=3);
        put i;
        i=i+1;
    end;
```

Multiple criteria can be introduced using expression operators, as in the following example:

```
do until (i=3 and j=7);
```

For a list of expression operators, see Table 4.3.

DO WHILE Statement

DO WHILE (logic-expression) statements ; END ;
The DO WHILE loop executes the specified sequence of statements repeatedly as long as the logicexpression, evaluated before the statements, returns true (a nonmissing nonzero value).

For example, the following statements output the values 1 and 2 :

```
proc optmodel;
    number i;
    i = 1;
    do while (i<3);
        put i;
        i=i+1;
    end;
```

Multiple criteria can be introduced using expression operators, as in the following example:

```
do while (i<3 and j<7);
```

For a list of expression operators, see Table 4.3.

DROP Statement

DROP identifier-list ;

The DROP statement causes the solver to ignore a list of constraints, constraint arrays, or constraint array locations. The space-delimited identifier-list specifies the names of the dropped constraints. Each constraint, constraint array, or constraint array location is named by an identifier-expression. An entire constraint array is dropped if an identifier-expression omits the index for an array name.

The following example statements use the DROP statement:

```
proc optmodel;
    var x{1..10};
    con c1: x[1] + x[2] <= 3;
    con disp{i in 1..9}: x[i+1] >= x[i] + 0.1;
    drop c1; /* drops the c1 constraint */
    drop disp[5]; /* drops just disp[5] */
    drop disp; /* drops all disp constraints */
```

The constraint can be added back to the model with the RESTORE statement.
The following line drops both the c 1 and disp[5] constraints:

```
drop c1 disp[5];
```


EXPAND Statement

EXPAND [identifier-expression] [/ options];

The EXPAND statement prints the specified constraint, variable, implicit variable, or objective declaration expressions in the current problem after expanding aggregation operators, substituting the current value for parameters and indices, and resolving constant subexpressions. identifier-expression is the name of a variable, objective, or constraint. If the name is omitted and no options are specified, then all variables, objectives, implicit variables, and undropped constraints in the current problem are printed. The following statements show an example EXPAND statement:

```
proc optmodel;
    number n=2;
    var x{1..n};
    min z1=sum{i in 1..n}(x[i]-i)**2;
    max z2=sum{i in 1..n}(i-x[i])**3;
    con c{i in 1..n}: x[i]>=0;
    fix x[2]=3;
    expand;
```

These statements produce the output in Figure 4.17.
Figure 4.17 EXPAND Statement Output

```
Var x[1]
Fix x[2] = 3
Maximize z2=(-x[1] + 1)**3 + (-x[2] + 2)**3
Constraint c[1]: x[1] >= 0
Constraint c[2]: x[2] >= 0
```

Specifying an identifier-expression restricts output to the specified declaration. A non-array name prints only the specified item. If an array name is used with a specific index, then information for the specified array location is output. Using an array name without an index restricts output to all locations in the array.

You can use the following options to further control the EXPAND statement output:

SOLVE

causes the EXPAND statement to print the variables, objectives, and constraints in the same form that would be seen by the solver if a SOLVE statement were executed. This includes any transformations by the PROC OPTMODEL presolver (see the section "Presolver" on page 131). In this form any fixed variables are replaced by their values. Unless an identifier-expression specifies a particular non-array item or array location, the EXPAND output is restricted to only the variables, the constraints, and the current problem objective.

The following options restrict the types of declarations output when no specific non-array item or array location is requested. By default, all types of declarations are output. Only the requested declaration types are output when one or more of the following options are used.

CONSTRAINT I CON

requests the output of undropped constraints.
FIX
requests the output of fixed variables. These variables might have been fixed by the FIX statement (or by the presolver if the SOLVE option is specified). The FIX option can also be used in combination with the name of a variable array to display just the fixed elements of the array.

IIS
restricts the display to items found in the irreducible infeasible set (IIS) after the most recent SOLVE performed by the LP solver with the IIS=ON option. The IIS option for the EXPAND statement can also be used in combination with the name of a variable or constraint array to display only the elements of the array in the IIS. For more information about IIS, see the section "Irreducible Infeasible Set" on page 189.

IMPVAR

requests the output of implicit variables referenced in the current problem.

OBJECTIVE IOBJ

requests the output of objectives used in the current problem. This includes the current problem objective and any objectives referenced as implicit variables.

OMITTED requests the output of variables that are referenced by problem equations but were not included in the current USE PROBLEM instance. The OPTMODEL procedure omits these variables from the generated problem.

VAR

requests the output of unfixed variables. The VAR option can also be used in combination with the name of a variable array to display just the unfixed elements of the array.

For example, you can see the effect of a FIX statement on the problem that is presented to the solver by using the SOLVE option. You can modify the previous example as follows:

```
proc optmodel;
    number n=2;
    var x{1..n};
    min z1=sum{i in 1..n}(x[i]-i)**2;
    max z2=sum{i in 1..n}(i-x[i])**3;
    con c{i in 1..n}: x[i]>=0;
    fix x[2]=3
    expand / solve;
```

These statements produce the output in Figure 4.18.
Figure 4.18 Expansion with Fixed Variable

```
Var x[1] >= 0
Fix x[2] = 3
Maximize z2=(-x[1] + 1)**3 - 1
```

Compare the results in Figure 4.18 to those in Figure 4.17. The constraint c[1] has been converted to a variable bound. The subexpression that uses the fixed variable has been resolved to a constant.

FILE Statement

FILE file-specification [LRECL=value] ;
The FILE statement selects the current output file for the PUT statement. By default PUT output is sent to the SAS log. Use the FILE statement to manage a group of output files. The specified file is opened for output if it is not already open. The output file remains open until it is closed with the CLOSEFILE statement.
file-specification names the output file. It can use any of the following forms:

```
'external-file'
```

specifies the physical name of an external file in quotation marks. The interpretation of the filename depends on the operating environment.

file-name

specifies the logical name associated with a file by the FILENAME statement or by the operating environment. The names PRINT and LOG are reserved to refer to the SAS listing and \log files, respectively.
Note: Details about the FILENAME statement can be found in SAS Statements: Reference.
(expression)
specifies an expression that evaluates to a string that contains the physical name of an external file.

The LRECL= option sets the line length of the output file. The LRECL= option is ignored if the file is already open or if the PRINT or LOG file is specified.

The LRECL= value can be specified in these forms:
integer
specifies the desired line length.
identifier-expression
specifies the name of a numeric parameter that contains the length.
(expression)
specifies a numeric expression in parentheses that returns the line length.
The $\operatorname{LRECL}=$ value cannot exceed the largest four-byte signed integer, which is $2^{31}-1$.
The following example shows how to use the FILE statement to handle multiple files:

```
proc optmodel;
    file 'file.txt' lrecl=80; /* opens file.txt */
    put 'This is line 1 of file.txt.';
    file print; /* selects the listing */
    put 'This goes to the listing.';
    file 'file.txt'; /* reselects file.txt */
    put 'This is line 2 of file.txt.';
    closefile 'file.txt'; /* closes file.txt */
    file log; /* selects the SAS log */
    put 'This goes to the log.';
```

```
/* using expression to open and write a collection of files */
str ofile;
num i;
num l = 40;
do i = 1 to 3;
    ofile = ('file' || i || '.txt');
    file (ofile) lrecl=(l*i);
    put ('This goes to ' || ofile);
    closefile (ofile);
end;
```

The following statements illustrate the usefulness of using a logical name associated with a file by FILENAME statement:

```
proc optmodel;
    /* assigns a logical name to file.txt */
    /* see FILENAME statement in */
    /* SAS Statements: Reference */
    filename myfile 'file.txt' mod;
    file myfile;
    put 'This is line 3 of file.txt.';
    closefile myfile;
    file myfile;
    put 'This is line 4 of file.txt.';
    closefile myfile;
```

Notice that the FILENAME statement opens the file referenced for append. Therefore, new data are appended to the end every time the logical name, myfile, is used in the FILE statement.

FIX Statement

FIX identifier-list [= (expression)] ;
The FIX statement causes the solver to treat a list of variables, variable arrays, or variable array locations as fixed in value. The identifier-list consists of one or more variable names separated by spaces. Each member of the identifier-list is fixed to the same expression. For example, the following statements fix the variables x and y to 3 :

```
proc optmodel;
    var x, y;
    num a = 2;
    fix x y=(a+1);
```

A variable is specified with an identifier-expression (see the section "Identifier Expressions" on page 40). An entire variable array is fixed if the identifier-expression names an array without providing an index. A new value can be specified with the expression. If the expression is a constant, then the parentheses can be omitted. For example, the following statements fix all locations in array x to 0 except $\mathrm{x}[10]$, which is fixed to 1 :

```
proc optmodel;
    var x{1..10};
    fix x = 0;
    fix x[10] = 1;
```

If expression is omitted, the variable is fixed at its current value. For example, you can fix some variables to be their optimal values after the SOLVE statement is invoked.

The effect of FIX can be reversed by using the UNFIX statement.

FOR Statement

FOR \{ index-set \} statement ;
The FOR statement executes its substatement for each member of the specified index-set. The index set can declare local dummy parameters. You can reference the value of these parameters in the substatement. For example, consider the following statements:

```
proc optmodel;
    for {i in 1..2, j in {'a', 'b'}} put i= j=;
```

These statements produce the output in Figure 4.19.
Figure 4.19 FOR Statement Output

```
i=1 j=a
i=1 j=b
i=2 j=a
i=2 j=b
```

As another example, the following statements set the current values for variable x to random values between 0 and 1:

```
proc optmodel;
    var x{1..10};
    for {i in 1..10}
        x[i] = ranuni(-1);
```

Multiple statements can be controlled by specifying a DO statement group for the substatement.
CAUTION: Avoid modifying the parameters that are used by the FOR statement index set from within the substatement. The set value that is used for the left-most index set item is not affected by such changes. However, the effect of parameter changes on later index set items cannot be predicted.

IF Statement

IF logic-expression THEN statement [ELSE statement] ;
The IF statement evaluates the logical expression and then conditionally executes the THEN or ELSE substatements. The substatement that follows the THEN keyword is executed when the logical expression result
is nonmissing and nonzero. The ELSE substatement, if any, is executed when the logical expression result is a missing value or zero. The ELSE part is optional and must immediately follow the THEN substatement. When IF statements are nested, an ELSE is always matched to the nearest incomplete unmatched IF-THEN. Multiple statements can be controlled by using DO statements with the THEN or ELSE substatements.

Note: When an IF-THEN statement is used without an ELSE substatement, substatements of the IF statement are executed when possible as they are entered. Under certain circumstances, such as when an IF statement is nested in a FOR loop, the statement is not executed during interactive input until the next statement is seen. By following the IF-THEN statement with an extra semicolon, you can cause it to be executed upon submission, since the extra semicolon is handled as a null statement.

LEAVE Statement

LEAVE ;

The LEAVE statement terminates the execution of the entire loop body (iterative DO, DO UNTIL, DO WHILE, or FOR) that immediately contains the LEAVE statement. Execution resumes at the statement that follows the loop. The following example demonstrates a simple use of the LEAVE statement:

```
proc optmodel;
    number i, j;
    do i = 1..5;
        do j = 1..4;
            if i >= 3 and j = 2 then leave;
        end;
    print i j;
    end;
```

The results from these statements are displayed in Figure 4.20.
Figure 4.20 LEAVE Statement Output

	i j
	15
	i j
	25
	i j
	32
	i j
	42
	i j
	52

For values of i equal to 1 or 2 , the inner loop continues uninterrupted, leaving j with a value of 5 . For values of i equal to 3,4 , or 5, the inner loop terminates early, leaving j with a value of 2 .

Null Statement

;
The null statement is treated as a statement in the PROC OPTMODEL syntax, but its execution has no effect. It can be used as a placeholder statement.

PERFORMANCE Statement

PERFORMANCE options;

The PERFORMANCE statement controls the multithreaded execution features of PROC OPTMODEL and the multithreaded and distributed execution features of PROC OPTMODEL solvers. The options that you specify in the PERFORMANCE statement are applied each time the statement is executed; they replace any previously specified options. For details about the options available for the PERFORMANCE statement, see the section "PERFORMANCE Statement" on page 17.

PRINT Statement

PRINT print-items;

The PRINT statement outputs string and numeric data in tabular form. The statement specifies a list of arrays or other data items to print. Multiple items can be output together as data columns in the same table.

If no format is specified, the PRINT statement handles the details of formatting automatically (see the section "Formatted Output" on page 109 for details). The default format for a numerical column is the fixed-point format ($w . d$ format), which is chosen based on the values of the PDIGITS $=$ and PWIDTH $=$ options (see the section "PROC OPTMODEL Statement" on page 46) and on the values in the column. The PRINT statement uses scientific notation (the Ew. format) when a value is too large or too small to display in fixed format. The default format for a character column is the $\$ w$. format, where the width is set to be the length of the longest string (ignoring trailing blanks) in the column.
print-item can be specified in the following forms:
identifier-expression [format]
specifies a data item to output. identifier-expression can name an array. In that case all defined array locations are output. format specifies a SAS format that overrides the default format.
(expression) [format]
specifies a data value to output. format specifies a SAS format that overrides the default format.
\{ index-set \} identifier-expression [format]
specifies a data item to output under the control of an index set. The item is printed as if it were an array with the specified set of indices. This form can be used to print a subset of the locations in an array, such as a single column. If the identifier-expression names an array, then the indices of the array must match the indices of the index-set. The format argument specifies a SAS format that overrides the default format.
\{ index-set \} (expression) [format]
specifies a data item to output under the control of an index set. The item is printed as if it were an array with the specified set of indices. In this form the expression is evaluated for each member of the index-set to create the array values for output. format specifies a SAS format that overrides the default format.
string
specifies a string value to print.
PAGE_
specifies a page break.

The following example demonstrates the use of several print-item forms:

```
num x = 4.3;
var y{j in 1..4} init j*3.68;
print y; /* identifier-expression */
print (x * .265) dollar6.2; /* (expression) [format] */
print {i in 2..4} y; /* {index-set} identifier-expression */
print {i in 1..3}(i + i*.2345692) best7.;
    /* {index-set} (expression) [format] */
print "Line 1"; /* string */
```

The output is displayed in Figure 4.21.
Figure 4.21 Print-item Forms

Adjacent print items that have similar indexing are grouped together and output in the same table. Items have similar indexing if they specify arrays that have the same number of indices and have matching index types (numeric versus string). Nonarray items are considered to have the same indexing as other nonarray items. The resulting table has a column for each array index followed by a column for each print item value. This format is called list form. For example, the following statements produce a list form table:

```
proc optmodel;
    num a{i in 1..3} = i*i;
    num b{i in 3..5} = 4*i;
    print a b;
```

These statements produce the listing output in Figure 4.22.
Figure 4.22 List Form PRINT Table

The array index columns show the set of valid index values for the print items in the table. The array index column for the i th index is labeled [i]. There is a row for each combination of index values that was used. The index values are displayed in sorted ascending order.

The data columns show the array values that correspond to the index values in each row. If a particular array index is invalid or the array location is undefined, then the corresponding table entry is displayed as blank for numeric arrays and as an empty string for string arrays. If the print items are scalar, then the table has a single row and no array index columns.

If a table contains a single array print item, the array is two-dimensional (has two indices), and the array is dense enough, then the array is shown in matrix form. In this format there is a single index column that contains the row index values. The label of this column is blank. This column is followed by a column for every unique column index value for the array. The latter columns are labeled by the column value. These columns contain the array values for that particular array column. Table entries that correspond to array locations that have invalid or undefined combinations of row and column indices are blank or (for strings) printed as an empty string.

The following statements generate a simple example of matrix output:

```
proc optmodel;
    print {i in 1..6, j in i..6} (i*10+j);
```

The PRINT statement produces the output in Figure 4.23.

Figure 4.23 Matrix Form PRINT Table

	1	2	3	4	5	6	
	1	11	12	13	14	15	16
2		22	23	24	25	26	
3			33	34	35	36	
4				44	45	46	
5					55	56	
6						66	

The PRINT statement prints single two-dimensional arrays in the form that uses fewer table cells (headings are ignored). Sparse arrays are normally printed in list form, and dense arrays are normally printed in matrix form. In a PROC OPTMODEL statement, the PMATRIX= option enables you to tune how the PRINT statement displays a two-dimensional array. The value of this option scales the total number of nonempty array elements, which is used to compute the tables cells needed for list form display. Specifying values for the PMATRIX= option less than 1 causes the list form to be used in more cases, while specifying values greater than 1 causes the matrix form to be used in more cases. If the value is 0 , then the list form is always used. The default value of the PMATRIX=option is 1 . Changing the default can be done with the RESET OPTIONS statement.

The following statements illustrate how the PMATRIX= option affects the display of the PRINT statement:

```
proc optmodel;
    num a{i in 1..6, i..i} = i;
    num b{i in 1..3, j in 1..3} = i*j;
    print a;
    print b;
    reset options pmatrix=3;
    print a;
    reset options pmatrix=0.5;
    print b;
```

The output is shown in Figure 4.24.
Figure 4.24 PRINT Statement: Effects of PMATRIX= Option

Figure 4.24 continued

From Figure 4.24, you can see that, by default, the PRINT statement tries to make the display compact. However, you can change the default by using the PMATRIX= option.

PUT Statement

```
PUT [ put-items][ @ | @@ ];
```

The PUT statement writes text data to the current output file. The syntax of the PUT statement in PROC OPTMODEL is similar to the syntax of the PROC IML and DATA step PUT statements. The PUT statement contains a list of items that specify data for output and provide instructions for formatting the data.

The current output file is initially the SAS log. This can be overridden with the FILE statement. An output file can be closed with the CLOSEFILE statement.

Normally the PUT statement outputs the current line after processing all items. Final @ or @ @ operators suppress this automatic line output and cause the current column position to be retained for use in the next PUT statement.
put-item can take any of the following forms.
identifier-expression [=] [format]
outputs the value of the parameter or variable that is specified by the identifierexpression. The equal sign (=) causes a name for the location to be printed before each location value.
Normally each item value is printed in a default format. Any leading and trailing blanks in the formatted value are removed, and the value is followed by a blank space. When an explicit format is specified, the value is printed within the width determined by the format.

```
name[*] [ .suffix ] [ = ] [ format ]
    outputs each defined location value for an array parameter. The array name is specified
    as in the identifier-expression form except that the index list is replaced by an asterisk
    (*). The equal sign (=) causes a name for the location to be printed before each location
    value along with the actual index values to be substituted for the asterisk.
    Each item value normally prints in a default format. Any leading and trailing blanks
    in the formatted value are removed, and the value is followed by a blank space. When
    an explicit format is specified, the value is printed within the width determined by the
    format.
( expression ) [ = [ format]
    outputs the value of the expression enclosed in parentheses. This produces similar results
    to the identifier-expression form except that the equal sign (=) uses the expression to form
    the name.
'quoted-string'
        copies the string to the output file.
@integer | identifier-expression I ( expression) sets the absolute column position within the current line. The literal or expression value determines the new column position.
+integer lidentifier-expressionl( expression ) sets the relative column position within the current line. The literal or expression value determines the amount to update the column position.
/ outputs the current line and moves to the first column of the next line.
_PAGE_ outputs any pending line data and moves to the top of the next page.
```


QUIT Statement

QUIT ;

The QUIT statement terminates the OPTMODEL execution. The statement is executed immediately, so it cannot be a nested statement. A QUIT statement is implied when a DATA or PROC statement is read.

READ DATA Statement

READ DATA SAS-data-set [NOMISS] INTO [[set-name =] [read-key-columns]] [read-columns];
The READ DATA statement reads data from a SAS data set into PROC OPTMODEL parameter and variable locations. The arguments to the READ DATA statement are as follows:

```
SAS-data-set
specifies the input data set name and options.
set-name
```

specifies a set parameter in which to save the set of observation key values read from the input data set.
read-key-columns
provide the index values for array destinations.
read-columns
specify the data values to read and the destination locations.
The following example uses the READ DATA statement to copy data set variables j and k from the SAS data set indata into parameters of the same name. The READ $=$ data set option specifies a password.

```
proc optmodel;
    number j, k;
    read data indata(read=secret) into j k;
```


Key Columns

If any read-key-columns are specified, then the READ DATA statement reads all observations from the input data set. If no read-key-columns are specified, then only the first observation of the data set is read. The data set is closed after reading the requested information.
Each read-key-column declares a local dummy parameter and specifies a data set variable that supplies the column value. The values of the specified data set variables from each observation are combined into a key tuple. This combination is known as the observation key. The observation key is used to index array locations specified by the read-columns items. The observation key is expected to be unique for each observation read from the data set.

The syntax for a read-key-column is as follows:

```
name [ = source-name ] [ / trim-option ];
```

A read-key-column creates a local dummy parameter named name that holds an element of the observation key tuple. The dummy parameter can be used in subsequent read-columns items to reference the element value. If a source-name is given, then it specifies the data set variable that supplies the value. Otherwise the source data set variable has the same name as the dummy parameter, name. Use the special data set variable name _N_ to refer to the number identification of the observations.

You can specify a set-name to save the set of observation keys into a set parameter. If the observation key consists of a single scalar value, then the set member type must match the scalar type. Otherwise the set member type must be a tuple with element types that match the corresponding observation key element types.

The READ DATA statement initially assigns an empty set to the target set-name parameter. As observations are read, a tuple for each observation key is added to the set. A set used to index an array destination in the read-columns can be read at the same time as the array values. Consider a data set, invdata, created by the following statements:

```
data invdata;
    input item $ invcount;
    datalines;
table 100
sofa 250
chair 80
;
```

The following statements read the data set invdata, which has two variables, item and invcount. The READ DATA statement constructs a set of inventory items, Items. At the same time, the parameter location invcount[item] is assigned the value of the data set variable invcount in the corresponding observation.

```
proc optmodel;
    set<string> Items;
    number invcount{Items};
    read data invdata into Items=[item] invcount;
    print invcount;
```

The output of these statements is shown in Figure 4.25.
Figure 4.25 READ DATA Statement: Key Column

[1]	invcount
chair	80
sofa	250
table	100

When observations are read, the values of data set variables are copied to parameter locations. Numeric values are copied unchanged. For character values, trim-option controls how leading and trailing blanks are processed. trim-option is ignored when the value type is numeric. Specify any of the following keywords for trim-option:

TRIM | TR
removes leading and trailing blanks from the data set value. This is the default behavior.

LTRIM | LT

removes only leading blanks from the data set value.
RTRIM | RT
removes only trailing blanks from the data set value.
NOTRIM | NT
copies the data set value with no changes.

Columns

read-columns specify data set variables to read and PROC OPTMODEL parameter locations to which to assign the values. The types of the input data set variables must match the types of the parameters. Array parameters can be implicitly or explicitly indexed by the observation key values.

Normally, missing values from the data set are assigned to the parameters that are specified in the readcolumns. The NOMISS keyword suppresses the assignment of missing values, leaving the corresponding parameter locations unchanged. Note that the parameter location does not need to have a valid index in this case. This permits a single statement to read data into multiple arrays that have different index sets.
read-columns have the following forms:
identifier-expression [= name | COL(name-expression)] [/ trim-option]
transfers an input data set variable to a target parameter or variable. identifier-expression specifies the target. If the identifier-expression specifies an array without an explicit index, then the observation key provides an implicit index. The name of the input data
set variable can be specified with a name or a COL expression. Otherwise the data set variable name is given by the name part of the identifier-expression. For COL expressions, the string-valued name-expression is evaluated to determine the data set variable name. trim-option controls removal of leading and trailing blanks in the incoming data. For example, the following statements read the data set variables column1 and column2 from the data set exdata into the PROC OPTMODEL parameters p and q, respectively. The observation numbers in exdata are read into the set indx, which indexes p and q.

```
data exdata;
    input column1 column2;
    datalines;
12
34
;
proc optmodel;
    number n init 2;
    set<num> indx;
    number p{indx}, q{indx};
    read data exdata into
        indx=[_N_] p=column1 q=col("column"||n);
    print p q;
```

The output is shown in Figure 4.26.

Figure 4.26 READ DATA Statement: Identifier Expressions

$[1]$	p	q	
	1	1	2
2	3	4	

\{index-set \} <read-columns >
performs the transfers by iterating each column specified by <read-columns> for each member of the index-set. If there are n columns and m index set members, then $n \times$ m columns are generated. The dummy parameters from the index set can be used in the columns to generate distinct input data set variable names in the iterated columns, using COL expressions. The columns are expanded when the READ DATA statement is executed, before any observations are read. This form of read-columns cannot be nested. In other words, the following form of read-columns is NOT allowed:
\{ index-set \} < index-set \} < read-columns >>
An example that demonstrates the use of the iterated column read-option follows.
You can use an iterated column read-option to read multiple data set variables into the same array. For example, a data set might store an entire row of array data in a group of data set variables. The following statements demonstrate how to read a data set that contains demand data divided by day:

```
data dmnd;
    input loc $ day1 day2 day3 day4 day5;
    datalines;
East 1.1 2.3 1.3 3.6 4.7
West 7.0 2.1 6.1 5.8 3.2
;
proc optmodel;
    set DOW = 1..5; /* days of week, 1=Monday, 5=Friday */
    set<string> LOCS; /* locations */
    number demand{LOCS, DOW};
    read data dmnd
        into LOCS=[loc]
        {d in DOW} < demand[loc, d]=col("day"||d) >;
    print demand;
```

These statements read a set of demand variables named DAY1-DAY5 from each observation, filling in the two-dimensional array demand. The output is shown in Figure 4.27.

Figure 4.27 Demand Data

	demand					
	1	2	3	4	5	
East	1.1	2.3	1.3	3.6	4.7	
West	7.0	2.1	6.1	5.8	3.2	

RESET OPTIONS Statement

RESET OPTIONS options;
RESET OPTION options ;
The RESET OPTIONS statement sets PROC OPTMODEL option values or restores them to their defaults. Options can be specified by using the same syntax as in the PROC OPTMODEL statement. The RESET OPTIONS statement provides two extensions to the option syntax. If an option normally requires a value (specified with an equal sign (=) operator), then specifying the option name alone resets it to its default value. You can also specify an expression enclosed in parentheses in place of a literal value. See the section "OPTMODEL Options" on page 138 for an example.

The RESET OPTIONS statement can be placed inside loops or conditional statements. The statement is applied each time it is executed.

RESTORE Statement

RESTORE identifier-list ;
The RESTORE statement adds a list of constraints, constraint arrays, or constraint array locations that were dropped by the DROP statement back into the solver model, or includes constraints in a problem where they were not previously present. The space-delimited identifier-list specifies the names of the constraints. Each constraint, constraint array, or constraint array location is named by an identifier-expression. An entire
constraint array is restored if an identifier-expression omits the index from an array name. For example, the following statements declare a constraint array and then drop it:

```
con c{i in 1..4}: x[i] + y[i] <=1;
drop c;
```

The following statement restores the first constraint:

```
restore c[1];
```

The following statement restores the second and third constraints:

```
restore c[2] c[3];
```

If you want to restore all of the constraints, you can submit the following statement:

```
restore c;
```


SAVE MPS Statement

SAVE MPS SAS-data-set [(OBJECTIVE | OBJ) name] ;
The SAVE MPS statement saves the structure and coefficients for a linear programming model into a SAS data set. This data set can be used as input data for the OPTLP or OPTMILP procedure.

Note: The OPTMODEL presolver (see the section "Presolver" on page 131) is automatically bypassed so that the statement saves the original model without eliminating fixed variables, tightening bounds, and so on.

The SAS-data-set argument specifies the output data set name and options. The output data set uses the MPS format described in Chapter 14. The generated data set contains observations that define different parts of the linear program.

Variables, constraints, and objectives are referenced in the data set by using label text from the corresponding .label suffix value. The default text is based on the name in the model. See the section "Suffixes" on page 121 for more details. Labels are limited by default to 32 characters and are abbreviated to fit. You can change the maximum length for labels by using the MAXLABLEN= option. When needed, a programmatically generated number is added to labels to avoid duplication.

The current problem objective is included in the data set. If the OBJECTIVE keyword is used, then the problem objective becomes the specified objective.

When an integer variable has been assigned a nondefault branching priority or direction, the MPS data set includes a BRANCH section. See Chapter 14, "The MPS-Format SAS Data Set" for more details.

The following statements show an example of the SAVE MPS statement. The model is specified using the OPTMODEL procedure. Then it is saved as the MPS data set MPSData, as shown in Figure 4.28. Next, PROC OPTLP is used to solve the resulting linear program.

```
proc optmodel;
    var x >= 0, y >= 0;
    con c: x >= y;
    con bx: x <= 2;
    con by: y <= 1;
    min obj=0.5*x-y;
    save mps MPSData;
quit;
proc optlp data=MPSData pout=PrimalOut dout=DualOut;
run;
```

Figure 4.28 The MPS Data Set Generated by SAVE MPS Statement

Obs	FIELD1	FIELD2	FIELD3	FIELD4	FIELD	FIELD6
1	NAME		MPSData	.		.
2	ROWS			.		.
3	N	obj		.		.
4	G	c		.		.
5	L	bx		.		.
6	L	by		.		.
7	COLUMNS			.		.
8		x	obj	0.5	c	1
9		x	bx	1.0		.
10		Y	obj	-1.0	c	-1
11		y	by	1.0		.
12	RHS			.		.
13		. RHS .	bx	2.0		.
14		. RHS .	by	1.0		.
15	ENDATA			.		.

SAVE QPS Statement

SAVE QPS SAS-data-set [(OBJECTIVE | OBJ) name];

The SAVE QPS statement saves the structure and coefficients for a quadratic programming model into a SAS data set. This data set can be used as input data for the OPTQP procedure.

Note: The OPTMODEL presolver (see the section "Presolver" on page 131) is automatically bypassed so that the statement saves the original model without eliminating fixed variables, tightening bounds, and so on.

The SAS-data-set argument specifies the output data set name and options. The output data set uses the QPS format described in Chapter 14. The generated data set contains observations that define different parts of the quadratic program.

Variables, constraints, and objectives are referenced in the data set by using label text from the corresponding .label suffix value. The default text is based on the name in the model. See the section "Suffixes" on page 121 for more details. Labels are limited by default to 32 characters and are abbreviated to fit. You can change the maximum length for labels by using the MAXLABLEN= option. When needed, a programmatically generated number is added to labels to avoid duplication.

The current problem objective is included in the data set. If the OBJECTIVE keyword is used, then the problem objective becomes the specified objective. The coefficients of the objective function appear in the QSECTION section of the output data set.

The following statements show an example of the SAVE QPS statement. The model is specified using the OPTMODEL procedure. Then it is saved as the QPS data set QPSData, as shown in Figure 4.29. Next, PROC OPTQP is used to solve the resulting quadratic program.

```
proc optmodel;
    var x{1..2} >= 0;
        min z = 2*x[1] + 3*x[2] + x[1]**2 + 10*x[2]**2
            + 2.5*x[1]*x[2];
        con c1: x[1] - x[2] <= 1;
        con c2: x[1] + 2*x[2] >= 100;
        save qps QPSData;
quit;
proc optqP data=QPSData pout=PrimalOut dout=DualOut;
run;
```

Figure 4.29 QPS Data Set Generated by the SAVE QPS Statement

Obs	FIELD1	FIELD2	FIELD3	FIELD4	FIELD5	FIELD6
1	NAME		QPSData	-		-
2	ROWS			.		.
3	N	z		-		-
4	L	c1		.		-
5	G	c2		.		-
6	COLUMNS			.		-
7		\mathbf{x} [1]	z	2.0	c1	1
8		\mathbf{x} [1]	c2	1.0		-
9		x [2]	z	3.0	c1	-1
10		x [2]	c2	2.0		.
11	RHS			.		-
12		. RHS .	c1	1.0		-
13		. RHS .	c2	100.0		.
14	QSECTION			.		-
15		\mathbf{x} [1]	\mathbf{x} [1]	2.0		-
16		\mathbf{x} [1]	x [2]	2.5		.
17		x [2]	x [2]	20.0		.
18	ENDATA			.		-

SOLVE Statement

```
SOLVE [ WITH solver] [ ( OBJECTIVE | OBJ ) name ] [ RELAXINT ] [ / options ] ;
```

The SOLVE statement invokes a PROC OPTMODEL solver. The current model is first resolved to the numeric form that is required by the solver. The resolved model and possibly the current values of any optimization variables are passed to the solver. After the solver finishes executing, the SOLVE statement prints a short table that shows a summary of results from the solver (see the section "ODS Table and Variable Names" on page 112) and updates the _OROPTMODEL_ macro variable.

Here are the arguments to the SOLVE statement:
solver
selects the named solver: LP, MILP, QP, or NLP (see corresponding chapters in this book for details). If no WITH clause is specified, then a solver is chosen automatically, depending on the problem type. Table 4.9 lists the default solver for each problem type. ${ }^{1}$

Table 4.9 Default Solvers and Algorithms in PROC OPTMODEL

Problem	Solver	Algorithm
Linear programming	LP	Dual simplex
Mixed integer linear programming	MILP	Branch-and-cut
Quadratic programming	QP	Interior point QP
General nonlinear programming	NLP	Interior point NLP

name
specifies the objective to use. This sets the current objective for the problem. You can abbreviate the OBJECTIVE keyword as OBJ. If this argument is not specified, then the problem objective is unchanged.
RELAXINT requests that any integral variables be relaxed to be continuous. RELAXINT can be used with linear and nonlinear problems in addition to any solver.
options specifies solver options. You can specify solver options directly only when you use the WITH clause. A list of the options available with the solver is provided in the individual chapters that describe each solver.

The SOLVE statement uses the value of the predeclared string parameters _SOLVER_OPTIONS_ and _solver_OPTIONS_ to provide default solver options. Any options that are specified by these parameters are prepended to options specified in the SOLVE statement, with options from _SOLVER_OPTIONS_ appearing first. These options are included even when the SOLVE statement does not specify a solver with the WITH clause. In this case solver is the name of the default solver from Table 4.9.

Initially the predeclared string parameters _SOLVER_OPTIONS_ and _solver_OPTIONS_ (for each solver) are empty strings, but they can be assigned by the user. Option values in these strings must be specified with keywords or literal values. Redundant white space is allowed. For example, the following statements set up some simple defaults:

```
_SOLVER_OPTIONS_ = "MAXTIME = 600"; /* options for all solvers */
_LP_OPTIONS_ = "PRESOLVER=AGGRESSIVE"; /* options for LP solver */
```

Optimization techniques that use initial values obtain them from the current values of the optimization variables unless the NOINITVAR option is specified. When the solver finishes executing, the current value of each optimization variable is replaced by the optimal value found by the solver. These values can then be

[^0]used as the initial values for subsequent solver invocations. The .init suffix location for each variable saves the initial value used for the most recent SOLVE statement.

NOTE: If a solver fails, any currently pending statement is stopped and processing continues with the next complete statement read from the input. For example, if a SOLVE statement that is enclosed in a DO group (see the section "DO Statement" on page 64) fails, then the subsequent statements in the group are not executed and processing resumes at the point immediately following the DO group. Neither an infeasible result, an unbounded result, nor reaching an iteration limit is considered to be a solver failure.

NOTE: The information that appears in the macro variable _OROPTMODEL_ (see the section "Macro Variable _OROPTMODEL_" on page 143) varies by solver.

Note: The RELAXINT keyword is applied immediately before the problem is passed to the solver, after any processing by the PROC OPTMODEL presolver. So the problem presented to the solver might not be equivalent to the one produced by setting the .RELAX suffix of all variables to a nonzero value. In particular, the bounds of integer variables are still adjusted to be integral, and PROC OPTMODEL's presolver might use integrality to tighten bounds further.

STOP Statement

STOP ;

The STOP statement halts the execution of all statements that contain it, including DO statements and other control or looping statements. Execution continues with the next top-level source statement. The following statements demonstrate a simple use of the STOP statement:

```
proc optmodel;
    number i, j;
    do i = 1..5;
        do j = 1..4;
            if i = 3 and j = 2 then stop;
        end;
    end;
    print i j;
```

The output is shown in Figure 4.30.
Figure 4.30 STOP Statement: Output
\square

When the counters i and j reach 3 and 2, respectively, the STOP statement terminates both loops. Execution continues with the PRINT statement.

SUBMIT Statement

SUBMIT arguments [/ options] ;
SAS statements ;
ENDSUBMIT ;

The SUBMIT statement allows SAS code to be executed before PROC OPTMODEL processing continues. For example, you can use the SUBMIT statement to invoke other SAS procedures to perform analysis or to display results. The following statements use PROC SORT to order a list of nodes by decreasing priority; the nodes can be used for further processing:

```
set<str> NODES;
num priority{NODES};
/* set up priority data... */
/* sort nodes by descending priority */
create data temppri from [id] priority;
submit;
    proc sort;
        by descending priority;
    run;
endsubmit;
/* load nodes by priority */
str nodesByPri{i in 1..card(NODES)};
read data temppri into [_n_] nodesByPri=id;
/* use the sorted list... */
```

The SUBMIT statement must appear as the last or only statement on a line. It is followed by lines of SAS statements, terminated by the ENDSUBMIT statement on a line of its own. The SAS statements between the SUBMIT and ENDSUBMIT statements are referred to as a SUBMIT block. The SUBMIT block is sent to the SAS language processor each time the SUBMIT statement is executed.

The SUBMIT block can include SAS global statements and procedure and invocations. Macros are not expanded until the SUBMIT block is executed. So you can change macro variables to modify the behavior of the SUBMIT block each time it is processed.

The arguments list specifies macro variables to initialize in the SUBMIT block environment before the SUBMIT block is executed. List items are separated by spaces. Each of the arguments takes one of the following forms:

```
name
```

copies the value of the PROC OPTMODEL parameter name to the macro variable that has the same name.
name $=$ identifier-expression
copies the value of the PROC OPTMODEL parameter specified by identifier-expression to the macro variable name.
name $=$ number \mid "string" | 'string'
copies the value of the specified number or string constant to the macro variable name.
name $=($ expression $)$
copies the result of evaluating expression to the macro variable name.
The following statements use a SUBMIT argument to modify the output each time the SUBMIT block is invoked:

```
for {i in 1..5}
    submit a=i;
    %put Value of a is &a..;
    endsubmit;
```

The options in the SUBMIT statement are used to retrieve status information after a SUBMIT block is executed. Each item in the space-delimited options list has one of the following forms:

OK = identifier-expression
specifies a PROC OPTMODEL numeric parameter location, identifier-expression, that is updated to indicate the success of the SUBMIT block execution. The location is set to 1 if execution is successful or 0 if errors are detected. PROC OPTMODEL continues execution when the SUBMIT block encounters errors only if the OK= option is specified.

OUT [=] output-argument

specifies a single output-argument for retrieving macro variable values from the SUBMIT block environment after each execution of the block.

OUT [=] (output-argument)
specifies a list of space-delimited output-arguments for retrieving macro variable values from the SUBMIT block environment after the block is executed.

Each output-argument item specifies a macro variable to copy out of the SUBMIT block environment after the block is executed. Each item takes one of the following two forms:

identifier-expression

copies the macro variable specified by the name portion of the identifier-expression into the PROC OPTMODEL parameter location specified by identifier-expression.
identifier-expression $=$ name
copies the macro variable specified by name into the PROC OPTMODEL parameter location specified by identifier-expression.

The following statements show how to use the options in the SUBMIT statement to retrieve the result of a SUBMIT block execution:

```
proc optmodel;
    num success, syscc;
    submit / OK = success out syscc;
        data example;
            set notfound;
            j = i*i;
            run;
    endsubmit;
    print success syscc;
```

The DATA step fails, so the success parameter is set to 0 and syscc is set to the error code in the \&SYSCC macro variable. The output is shown in Figure 4.31.

Figure 4.31 SUBMIT Statement Error Handling

success	syscc
0	1012

Note: The SUBMIT block runs in an environment that is nested in the environment that the OPTMODEL procedure is running in. Resources from the PROC OPTMODEL environment are initially visible in the nested environment. However, the nested environment can have its own local values for options, LIBNAME librefs, FILENAME filerefs, titles, footnotes, and macros. For example, the nested environment has its own global macro scope, which can hide macros visible in the outer environment. The output-arguments of the SUBMIT statement options can retrieve the values of macros defined in this scope.

NOTE: A SUBMIT statement can appear only in open code. An error message is displayed if the SUBMIT statement is read from a macro. You can avoid this limitation by placing the SUBMIT statement, SUBMIT block, and ENDSUBMIT in a separate file and by using the \%INCLUDE statement to include the file in the macro.

UNFIX Statement

UNFIX identifier-list [= (expression)] ;
The UNFIX statement reverses the effect of FIX statements. The solver can vary the specified variables, variable arrays, or variable array locations specified by identifier-list. The identifier-list consists of one or more variable names separated by spaces.

Each variable name in the identifier-list is an identifier expression (see the section "Identifier Expressions" on page 40). The UNFIX statement affects an entire variable array if the identifier expression omits the index from an array name. The expression specifies a new initial value that is stored in each element of the identifier-list.

The following example demonstrates the UNFIX command:

```
proc optmodel;
    var x{1..3};
    fix x; /* fixes entire array to 0 */
    unfix x[1]; /* x[1] can now be varied again */
    unfix x[2] = 2; /* x[2] is given an initial value 2 */
            /* and can be varied now */
    unfix x; /* all x indices can now be varied */
```

After the following statements are executed, the variables $\mathrm{x}[1]$ and $\mathrm{x}[2]$ are not fixed. They each hold the value 4 . The variable $x[3]$ is fixed at a value of 2 .

```
proc optmodel;
    var x{1..3} init 2;
    num a = 1;
    fix x;
    unfix x[1] x[2]=(a+3);
```


USE PROBLEM Statement

USE PROBLEM identifier-expression ;
The USE PROBLEM programming statement makes the problem specified by the identifier-expression be the current problem. If the problem has not been previously used, the problem is created using the PROBLEM declaration corresponding to the name. The problem must have been previously declared.

OPTMODEL Expression Extensions

PROC OPTMODEL defines several new types of expressions for the manipulation of sets. Aggregation operators combine values of an expression that is evaluated over the members of an index set. Other operators create new sets by combining existing sets, or they test relationships between sets. PROC OPTMODEL also supports an IF expression operator that can conditionally evaluate expressions. These and other such expressions are described in this section.

AND Aggregation Expression

AND \{ index-set \} logic-expression
The AND aggregation operator evaluates the logical expression logic-expression jointly for each member of the index set index-set. The index set enumeration finishes early if the logic-expression evaluation produces a false value (zero or missing). The expression returns 0 if a false value is found or returns 1 otherwise. The following statements demonstrate both a true and a false result:

```
proc optmodel;
    put (and{i in 1..5} i < 10); /* returns 1 */
    put (and{i in 1..5} i NE 3); /* returns 0 */
```


CARD Function

CARD (set-expression)
The CARD function returns the number of members of its set operand. For example, the following statements produce the output 3 since the set has 3 members:

```
proc optmodel;
    put (card(1..3));
```


CROSS Expression

set-expression-1 CROSS set-expression-2
The CROSS expression returns the crossproduct of its set operands. The result is the set of tuples formed by concatenating the tuple value of each member of the left operand with the tuple value of each member of the
right operand. Scalar set members are treated as tuples of length 1. The following statements demonstrate the CROSS operator:

```
proc optmodel;
    set s1 = 1..2;
    set<string> s2 = {'a', 'b'};
    set<number, string> s3=s1 cross s2;
    put 's3 is ' s3;
    set<number, string, number> s4 = s3 cross 4..5;
    put 's4 is 's4;
```

This code produces the output in Figure 4.32.
Figure 4.32 CROSS Expression Output

```
s3 is {<1,'a'>,<1,'b'>,<2,'a'>,<2,'b'>}
s4 is {<1,'a',4>,<1,'a',5>,<1,'b',4>,<1,'b',5>,<2,'a',4>,<2,'a',5>,<2,'b',4>,<2,
'b',5>}
```


DIFF Expression

```
set-expression-1 DIFF set-expression-2
```

The DIFF operator returns a set that contains the set difference of the left and right operands. The result set contains values that are members of the left operand but not members of the right operand. The operands must have compatible set types. The following statements evaluate and print a set difference:

```
proc optmodel;
    put ({1,3} diff {2,3}); /* outputs {1} */
```


IF-THEN/ELSE Expression

IF logic-expression THEN expression-2 [ELSE expression-3]

The IF-THEN/ELSE expression evaluates the logical expression logic-expression and returns the result of evaluating the second or third operand expression according to the logical test result. If the logicexpression is true (nonzero and nonmissing), then the result of evaluating expression-2 is returned. If the logic-expression is false (zero or missing), then the result of evaluating expression-3 is returned. The other subexpression that is not selected is not evaluated.

An ELSE clause is matched during parsing with the nearest IF-THEN clause that does not have a matching ELSE. The ELSE clause can be omitted for numeric expressions; the resulting IF-THEN is handled as if a default ELSE 0 clause were supplied.

Use the IF-THEN/ELSE expression to handle special cases in models. For example, an inventory model based on discrete time periods might require special handling for the first or last period. In the following example the initial inventory for the first period is assumed to be fixed:

```
proc optmodel;
    number T;
    var inv{1..T}, order{1..T};
    number sell{1..T};
    number inv0;
    /* balance inventory flow */
    con iflow{i in 1..T}:
        inv[i] = order[i] - sell[i] +
        if i=1 then inv0 else inv[i-1];
```

The IF-THEN/ELSE expression in the example models the initial inventory for a time period i. Usually the inventory value is the inventory at the end of the previous period, but for the first time period the inventory value is given by the inv0 parameter. The iflow constraints are linear because the IF-THEN/ELSE test subexpression does not depend on variables and the other subexpressions are linear.

IF-THEN/ELSE can be used as either a set expression or a scalar expression. The type of expression depends on the subexpression between the THEN and ELSE keywords. The type used affects the parsing of the subexpression that follows the ELSE keyword because the set form has a lower operator precedence. For example, the following two expressions are equivalent because the numeric IF-THEN/ELSE has a higher precedence than the range operator (..):

```
IF logic THEN 1 ELSE 2 .. 3
(IF logic THEN 1 ELSE 2) .. 3
```

But the set form of IF-THEN/ELSE has lower precedence than the range expression operator. So the following two expressions are equivalent:

```
IF logic THEN 1 .. 2 ELSE 3 .. 4
IF logic THEN (1 .. 2) ELSE (3 .. 4)
```

The IF-THEN and IF-THEN/ELSE operators always have higher precedence than the logic operators. So, for example, the following two expressions are equivalent:

```
IF logic THEN numeric1 < numeric2
(IF logic THEN numeric1) < numeric2
```

It is best to use parentheses when in doubt about precedence.

IN Expression

expression IN set-expression
expression NOT IN set-expression

The IN expression returns 1 if the value of the left operand is a member of the right operand set. Otherwise, the IN expression returns 0 . The NOT IN operator logically negates the returned value. Unlike the DATA step, the right operand is an arbitrary set expression. The left operand can be a tuple expression. The following example demonstrates the IN and NOT IN operators:

```
proc optmodel;
    set s = 1..10;
    put (5 in s); /* outputs 1 */
    put (-1 not in s); /* outputs 1 */
    set<num, str> t = {<1,'a'>, <2,'b'>, <2,'c'>};
    put (<2, 'b'> in t); /* outputs 1 */
    put (<1, 'b'> in t); /* outputs 0 */
```


Index Set Expression

\{ index-set \}

The index set expression returns the set of members of an index set. This expression is distinguished from a set constructor (see the section "Set Constructor Expression" on page 98) because it contains a list of set expressions.

The following statements use an index set with a selection expression that excludes the value 3 :

```
proc optmodel;
    put ({i in 1..5 : i NE 3}); /* outputs {1,2,4,5} */
```


INTER Expression

set-expression-1 INTER set-expression-2
The INTER operator returns a set that contains the intersection of the left and right operands. This is the set that contains values that are members of both operand sets. The operands must have compatible set types.

The following statements evaluate and print a set intersection:

```
proc optmodel;
    put ({1,3} inter {2,3}); /* outputs {3} */
```


INTER Aggregation Expression

INTER \{ index-set \} set-expression
The INTER aggregation operator evaluates the set-expression for each member of the index set index-set. The result is the set that contains the intersection of the set of values that were returned by the set-expression for each member of the index set. An empty index set causes an expression evaluation error.

The following statements use the INTER aggregation operator to compute the value of $\{1,2,3,4\} \cap\{2,3,4,5\}$ $\cap\{3,4,5,6\}:$

```
proc optmodel;
    put (inter{i in 1..3} i..i+3); /* outputs {3,4} */
```


MAX Aggregation Expression

MAX \{ index-set \} expression

The MAX aggregation operator evaluates the numeric expression expression for each member of the index set index-set. The result is the maximum of the values that are returned by the expression. Missing values are handled with the SAS numeric sort order; a missing value is treated as smaller than any nonmissing value. If the index set is empty, then the result is the negative number that has the largest absolute value representable on the machine.

The following example produces the output 0.5 :

```
proc optmodel;
    put (max{i in 2..5} 1/i);
```


MIN Aggregation Expression

MIN \{ index-set \} expression

The MIN aggregation operator evaluates the numeric expression expression for each member of the index set index-set. The result is the minimum of the values that are returned by the expression. Missing values are handled with the SAS numeric sort order; a missing value is treated as smaller than any nonmissing value. If the index set is empty, then the result is the largest positive number representable on the machine.

The following example produces the output 0.2 :

```
proc optmodel;
    put (min{i in 2..5} 1/i);
```


OR Aggregation Expression

OR \{ index-set \} logic-expression
The OR aggregation operator evaluates the logical expression logic-expression for each member of the index set index-set. The index set enumeration finishes early if the logic-expression evaluation produces a true value (nonzero and nonmissing). The result is 1 if a true value is found, or 0 otherwise. The following statements demonstrate both a true and a false result:

```
proc optmodel;
    put (or{i in 1..5} i = 2); /* returns 1 */
    put (or{i in 1..5} i = 7); /* returns 0 */
```


PROD Aggregation Expression

PROD \{ index-set \} expression

The PROD aggregation operator evaluates the numeric expression expression for each member of the index set index-set. The result is the product of the values that are returned by the expression. This operator is analogous to the Π operator used in mathematical notation. If the index set is empty, then the result is 1 .

The following example uses the PROD operator to evaluate a factorial:

```
proc optmodel;
    number n = 5;
    put (prod{i in 1..n} i); /* outputs 120 */
```


Range Expression

```
expression-1 .. expression-n [ BY expression ]
```

The range expression returns the set of numbers from the specified arithmetic progression. The sequence proceeds from the left operand value up to the right operand limit. The increment between numbers is 1 unless a different value is specified with a BY clause. If the increment is negative, then the progression is from the left operand down to the right operand limit. The result can be an empty set.

For compatibility with the DATA step iterative DO loop construct, the keyword TO can substitute for the range (..) operator.

The limit value is not included in the resulting set unless it belongs in the arithmetic progression. For example, the following range expression does not include 30 :

```
proc optmodel;
    put (10..30 by 7); /* outputs {10,17,24} */
```

The actual numbers that the range expression " $\mathrm{f} . \mathrm{I}$ by i " produces are in the arithmetic sequence

$$
f, f+i, f+2 i, \ldots, f+n i
$$

where

$$
n=\left\lfloor\frac{l-f}{i}+\sqrt{\epsilon}\right\rfloor
$$

and ϵ represents the relative machine precision. The limit is adjusted to avoid arithmetic roundoff errors.
PROC OPTMODEL represents the set specified by a range expression compactly when the value is stored in a parameter location, used as a set operand of an IN or NOT IN expression, used by an iterative DO loop, or used in an index set. For example, the following expression is evaluated efficiently:

Set Constructor Expression

```
\{[ expression-1 [, ... expression-n]]\}
```

The set constructor expression returns the set of the expressions in the member list. Duplicated values are added to the set only once. A warning message is produced when duplicates are detected. The constructor expression consists of zero or more subexpressions of the same scalar type or of tuple expressions that match in length and in element types.

The following statements output a three-member set and warn about the duplicated value 2 :

```
proc optmodel;
    put ({1,2,3,2}); /* outputs {1,2,3} */
```

The following example produces a three-member set of tuples, using PROC OPTMODEL parameters and variables. The output is displayed in Figure 4.33.

```
proc optmodel;
    number m = 3, n = 4;
    var x{1..4} init 1;
    string y = 'c';
    put ({<'a', x[3]>, <'b', m>, <y, m/n>});
```

Figure 4.33 Set Constructor Expression Output

```
{<'a',1>,<'b',3>,<'c',0.75>}
```


Set Literal Expression

/ members /

The set literal expression provides compact specification of simple set values. It is equivalent in function to the set constructor expression but minimizes typing for sets that contain numeric and string constant values. The set members are specified by members, which are literal values. As with the set constructor expression, each member must have the same type.

The following statement specifies a simple numeric set:

/1 $2.54 /$

The set contains the members $1,2.5$, and 4 . A string set could be specified as follows:

```
/Miami 'San Francisco' Seattle 'Washington, D.C.'/
```

This set contains the strings 'Miami','San Francisco','Seattle', and 'Washington, D.C.'. You can specify string values in set literals without quotation marks when the text follows the rules for a SAS
name. Strings that begin with a digit or contain blanks or other special characters must be specified with quotation marks.

Specify tuple members of a set by enclosing the tuple elements within angle brackets (<elements>). The tuple elements can be specified with numeric and string literals. The following example includes the tuple elements <'New York', 4.5> and <'Chicago', -5.7>:

```
/<'New York' 4.5> <Chicago -5.7>/
```


SETOF Aggregation Expression

SETOF \{ index-set \} expression

The SETOF aggregation operator evaluates the expression expression for each member of the index set index-set. The result is the set that is formed by collecting the values returned by the operand expression. The operand can be a tuple expression. For example, the following statements produce a set of tuples of numbers with their squared and cubed values:

```
proc optmodel;
    put (setof{i in 1..3}<i, i*i, i**3>);
```

Figure 4.34 shows the displayed output.
Figure 4.34 SETOF Aggregation Expression Output

```
{<1,1,1>,<2,4,8>,<3,9,27>}
```


SLICE Expression

```
SLICE ( < element-1, . . element-n > , set-expression )
```

The SLICE expression produces a new set by selecting members in the operand set that match a pattern tuple. The pattern tuple is specified by the element list in angle brackets. Each element in the pattern tuple must specify a numeric or string expression. The expressions are used to match the values of the corresponding elements in the operand set member tuples. You can also specify an element by using an asterisk $(*)$. The sequence of element values that correspond to asterisk positions in each matching tuple is combined into a tuple of the result set. At least one asterisk element must be specified.

The following statements demonstrate the SLICE expression:

```
proc optmodel;
    put (slice(<1,*>, {<1,3>, <1,0>, <3,1>}));
    put (slice(<*,2,*>, {<1,2,3>, <2,4,3>, <2,2,5>}));
```

These statements produce the output in Figure 4.35.

Figure 4.35 SLICE Expression Output

```
{3,0}
{<1,3>,<2,5>}
```

For the first PUT statement, $\left\langle 1,{ }^{*}\right\rangle$ matches set members $\langle 1,3\rangle$ and $\langle 1,0\rangle$ but not $\left.<3,1\right\rangle$. The second element of each matching set tuple, corresponding to the asterisk element, becomes the value of the resulting set member. In the second PUT statement, the values of the first and third elements of the operand set member tuple are combined into a two-position tuple in the result set.

The following statements use the SLICE expression to help compute the transitive closure of a set of tuples representing a relation by using Warshall's algorithm. In these statements the set parameter dep represents a direct dependency relation.

```
proc optmodel;
    set<str,str> dep = {<'B','A'>, <'C','B'>, <'D','C'>};
    set<str,str> cl;
    set<str> cn;
    cl = dep;
    cn = (setof{<i,j> in dep} i) inter (setof{<i,j> in dep} j);
    for {node in cn}
        cl = cl union (slice(<*,node>,cl) cross slice(<node,*>,cl));
    put cl;
```

The local dummy parameter node in the FOR statement iterates over the set cn of possible intermediate nodes that can connect relations transitively. At the end of each FOR iteration, the set parameter cl contains all tuples from the original set in addition to all transitive tuples found in the current or previous iterations.
The output in Figure 4.36 includes the indirect and direct transitive dependencies from the set dep.
Figure 4.36 Warshall's Algorithm Output

```
{<'B','A'>,<'C','B'>,<'D','C'>,<'C','A'>,<'D','B'>,<'D','A'>}
```

A special form of index-set-item uses the SLICE expression implicitly. See the section "More on Index Sets" on page 141 for details.

SUM Aggregation Expression

SUM \{ index-set \} expression

The SUM aggregation operator evaluates the numeric expression expression for each member in the index set index-set. The result is the sum of the values that are returned by the expression. If the index set is empty, then the result is 0 . This operator is analogous to the \sum operator that is used in mathematical notation. The following statements demonstrate the use of the SUM aggregation operator:

```
proc optmodel;
    put (sum {i in 1..10} i); /* outputs 55 */
```


SYMDIFF Expression

```
set-expression-1 SYMDIFF set-expression-2
```

The SYMDIFF expression returns the symmetric set difference of the left and right operands. The result set contains values that are members of either the left or right operand but are not members of both operands. The operands must have compatible set types.

The following example demonstrates a symmetric difference:

```
proc optmodel;
    put ({1,3} symdiff {2,3}); /* outputs {1,2} */
```


Tuple Expression

< expression-1, \ldots expression-n >
A tuple expression represents the value of a member in a set of tuples. Each scalar subexpression inside the angle brackets represents the value of a tuple element. This form is used only with IN, SETOF, and set constructor expressions.

The following statements demonstrate the tuple expression:

```
proc optmodel;
    put (<1,2,3> in setof{i in 1..2}<i,i+1,i+2>);
    put ({<1,'a'>, <2,'b'>} cross {<3,'c'>, <4,'d'>});
```

The first PUT statement checks whether the tuple $<1,2,3>$ is a member of a set of tuples. The second PUT statement outputs the cross product of two sets of tuples that are constructed by the set constructor.

These statements produce the output in Figure 4.37.
Figure 4.37 Tuple Expression Output

1
\{<1,'a',3,'c'>,<1,'a',4,'d'>,<2,'b',3,'c'>,<2,'b',4,'d'>\}

UNION Expression

set-expression-1 UNION set-expression-2
The UNION expression returns the set union of the left and right operands. The result set contains values that are members of either the left or right operand. The operands must have compatible set types. The following example performs a set union:

```
proc optmodel;
    put ({1,3} union {2,3}); /* outputs {1,3,2} */
```


UNION Aggregation Expression

UNION \{ index-set \} set-expression
The UNION aggregation expression evaluates the set-expression for each member of the index set indexset. The result is the set union of the values that are returned by the set-expression. If the index set is empty, then the result is an empty set.

The following statements demonstrate a UNION aggregation. The output is the value of $\{1,2,3,4\} \cup$ $\{2,3,4,5\} \cup\{3,4,5,6\}$.

```
proc optmodel;
    put (union{i in 1..3} i..i+3); /* outputs {1,2,3,4,5,6} */
```


WITHIN Expression

set-expression-1 WITHIN set-expression-2
set-expression NOT WITHIN set-expression
The WITHIN expression returns 1 if the left operand set is a subset of the right operand set and returns 0 otherwise. (That is, the operator returns true if every member of the left operand set is a member of the right operand set.) The NOT WITHIN form logically negates the result value. The following statements demonstrate the WITHIN and NOT WITHIN operators:

```
proc optmodel;
    put ({1,3} within {2,3}); /* outputs 0 */
    put ({1,3} not within {2,3}); /* outputs 1 */
    put ({1,3} within {1,2,3}); /* outputs 1 */
```


Details: OPTMODEL Procedure

Conditions of Optimality

Linear Programming

A standard linear program has the following formulation:

$$
\begin{array}{ll}
\operatorname{minimize} & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & \mathbf{A x} \geq \mathbf{b} \\
& \mathbf{x} \geq 0
\end{array}
$$

where

\mathbf{x}	\in	\mathbb{R}^{n}	is the vector of decision variables
\mathbf{A}	\in	$\mathbb{R}^{m \times n}$	is the matrix of constraints
\mathbf{c}	\in	\mathbb{R}^{n}	is the vector of objective function coefficients
\mathbf{b}	\in	\mathbb{R}^{m}	is the vector of constraints right-hand sides (RHS)

This formulation is called the primal problem. The corresponding dual problem (see the section "Dual Values" on page 124) is

$$
\begin{array}{cl}
\operatorname{maximize} & \mathbf{b}^{T} \mathbf{y} \\
\text { subject to } & \mathbf{A}^{T} \mathbf{y} \leq \mathbf{c} \\
& \mathbf{y} \geq 0
\end{array}
$$

where $\mathbf{y} \in \mathbb{R}^{m}$ is the vector of dual variables.
The vectors \mathbf{x} and \mathbf{y} are optimal to the primal and dual problems, respectively, only if there exist primal slack variables $\mathbf{s}=\mathbf{A x}-\mathbf{b}$ and dual slack variables $\mathbf{w}=\mathbf{A}^{T} \mathbf{y}-\mathbf{c}$ such that the following Karush-Kuhn-Tucker (KKT) conditions are satisfied:

$$
\begin{aligned}
\mathbf{A x}+\mathbf{s} & =\mathbf{b}, \quad \mathbf{x} \geq 0, \quad \mathbf{s} \geq 0 \\
\mathbf{A}^{T} \mathbf{y}+\mathbf{w} & =\mathbf{c}, \quad \mathbf{y} \geq 0, \quad \mathbf{w} \geq 0 \\
\mathbf{s}^{T} \mathbf{y} & =0 \\
\mathbf{w}^{T} \mathbf{x} & =0
\end{aligned}
$$

The first line of equations defines primal feasibility, the second line of equations defines dual feasibility, and the last two equations are called the complementary slackness conditions.

Nonlinear Programming

To facilitate discussion of optimality conditions in nonlinear programming, you write the general form of nonlinear optimization problems by grouping the equality constraints and inequality constraints. You also write all the general nonlinear inequality constraints and bound constraints in one form as " \geq " inequality constraints. Thus, you have the following formulation:

$$
\begin{array}{ll}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} & f(x) \\
\text { subject to } & c_{i}(x)=0, \quad i \in \mathcal{E} \\
& c_{i}(x) \geq 0, \quad i \in \mathcal{I}
\end{array}
$$

where \mathcal{E} is the set of indices of the equality constraints, \mathcal{I} is the set of indices of the inequality constraints, and $m=|\mathcal{E}|+|\mathcal{I}|$.

A point x is feasible if it satisfies all the constraints $c_{i}(x)=0, i \in \mathcal{E}$ and $c_{i}(x) \geq 0, i \in \mathcal{I}$. The feasible region \mathcal{F} consists of all the feasible points. In unconstrained cases, the feasible region \mathcal{F} is the entire \mathbb{R}^{n} space.

A feasible point x^{*} is a local solution of the problem if there exists a neighborhood \mathcal{N} of x^{*} such that

$$
f(x) \geq f\left(x^{*}\right) \text { for all } x \in \mathcal{N} \cap \mathcal{F}
$$

Further, a feasible point x^{*} is a strict local solution if strict inequality holds in the preceding case; that is,

$$
f(x)>f\left(x^{*}\right) \text { for all } x \in \mathcal{N} \cap \mathcal{F}
$$

A feasible point x^{*} is a global solution of the problem if no point in \mathcal{F} has a smaller function value than $f\left(x^{*}\right)$; that is,

$$
f(x) \geq f\left(x^{*}\right) \text { for all } x \in \mathcal{F}
$$

Unconstrained Optimization

The following conditions hold true for unconstrained optimization problems:

- First-order necessary conditions: If x^{*} is a local solution and $f(x)$ is continuously differentiable in some neighborhood of x^{*}, then

$$
\nabla f\left(x^{*}\right)=0
$$

- Second-order necessary conditions: If x^{*} is a local solution and $f(x)$ is twice continuously differentiable in some neighborhood of x^{*}, then $\nabla^{2} f\left(x^{*}\right)$ is positive semidefinite.
- Second-order sufficient conditions: If $f(x)$ is twice continuously differentiable in some neighborhood of $x^{*}, \nabla f\left(x^{*}\right)=0$, and $\nabla^{2} f\left(x^{*}\right)$ is positive definite, then x^{*} is a strict local solution.

Constrained Optimization

For constrained optimization problems, the Lagrangian function is defined as follows:

$$
L(x, \lambda)=f(x)-\sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_{i} c_{i}(x)
$$

where $\lambda_{i}, i \in \mathcal{E} \cup \mathcal{I}$, are called Lagrange multipliers. $\nabla_{x} L(x, \lambda)$ is used to denote the gradient of the Lagrangian function with respect to x, and $\nabla_{x}^{2} L(x, \lambda)$ is used to denote the Hessian of the Lagrangian function with respect to x. The active set at a feasible point x is defined as

$$
\mathcal{A}(x)=\mathcal{E} \cup\left\{i \in \mathcal{I}: c_{i}(x)=0\right\}
$$

You also need the following definition before you can state the first-order and second-order necessary conditions:

- Linear independence constraint qualification and regular point: A point x is said to satisfy the linear independence constraint qualification if the gradients of active constraints

$$
\nabla c_{i}(x), \quad i \in \mathcal{A}(x)
$$

are linearly independent. Such a point x is called a regular point.

You now state the theorems that are essential in the analysis and design of algorithms for constrained optimization:

- First-order necessary conditions: Suppose that x^{*} is a local minimum and also a regular point. If $f(x)$ and $c_{i}(x), i \in \mathcal{E} \cup \mathcal{I}$, are continuously differentiable, there exist Lagrange multipliers $\lambda^{*} \in \mathbb{R}^{m}$ such that the following conditions hold:

$$
\begin{aligned}
\nabla_{x} L\left(x^{*}, \lambda^{*}\right) & =\nabla f\left(x^{*}\right)-\sum_{i \in \mathcal{E} \cup \mathcal{I}} \lambda_{i}^{*} \nabla c_{i}\left(x^{*}\right)=0 \\
c_{i}\left(x^{*}\right) & =0, \quad i \in \mathcal{E} \\
c_{i}\left(x^{*}\right) & \geq 0, \quad i \in \mathcal{I} \\
\lambda_{i}^{*} & \geq 0, \quad i \in \mathcal{I} \\
\lambda_{i}^{*} c_{i}\left(x^{*}\right) & =0, \quad i \in \mathcal{I}
\end{aligned}
$$

The preceding conditions are often known as the Karush-Kuhn-Tucker conditions, or KKT conditions for short.

- Second-order necessary conditions: Suppose that x^{*} is a local minimum and also a regular point. Let λ^{*} be the Lagrange multipliers that satisfy the KKT conditions. If $f(x)$ and $c_{i}(x), i \in \mathcal{E} \cup \mathcal{I}$, are twice continuously differentiable, the following conditions hold:

$$
z^{T} \nabla_{x}^{2} L\left(x^{*}, \lambda^{*}\right) z \geq 0
$$

for all $z \in \mathbb{R}^{n}$ that satisfy

$$
\nabla c_{i}\left(x^{*}\right)^{T} z=0, \quad i \in \mathcal{A}\left(x^{*}\right)
$$

- Second-order sufficient conditions: Suppose there exist a point x^{*} and some Lagrange multipliers λ^{*} such that the KKT conditions are satisfied. If

$$
z^{T} \nabla_{x}^{2} L\left(x^{*}, \lambda^{*}\right) z>0
$$

for all $z \in \mathbb{R}^{n}$ that satisfy

$$
\nabla c_{i}\left(x^{*}\right)^{T} z=0, \quad i \in \mathcal{A}\left(x^{*}\right)
$$

then x^{*} is a strict local solution.
Note that the set of all such z 's forms the null space of the matrix $\left[\nabla c_{i}\left(x^{*}\right)^{T}\right]_{i \in \mathcal{A}\left(x^{*}\right)}$. Thus, you can search for strict local solutions by numerically checking the Hessian of the Lagrangian function projected onto the null space. For a rigorous treatment of the optimality conditions, see Fletcher (1987) and Nocedal and Wright (1999).

Data Set Input/Output

You can use the CREATE DATA and READ DATA statements to exchange PROC OPTMODEL data with SAS data sets. The statements can move data into and out of PROC OPTMODEL parameters and variables. For example, the following statements use a CREATE DATA statement to save the results from an optimization into a data set:

```
proc optmodel;
    var x;
    min z = (x-5)**2;
    solve;
    create data optdata from xopt=x z;
```

These statements write a single observation into the data set OPTDATA. The data set contains two variables, xopt and z, and the values contain the optimized values of the PROC OPTMODEL variable x and objective z, respectively. The statement "xopt=x" renames the variable x to xopt.

The group of values held by a data set variable in different observations of a data set is referred to as a column. The READ DATA and CREATE DATA statements specify a set of columns for a data set and define how data are to be transferred between the columns and PROC OPTMODEL parameters.

Columns in square brackets ([]) are handled specially. Such columns are called key columns. Key columns specify element values that provide an implicit index for subsequent array columns. The following example uses key columns with the CREATE DATA statement to write out variable values from an array:

```
proc optmodel;
    set LOCS = {'New York', 'Washington', 'Boston'}; /* locations */
    set DOW = 1..7; /* day of week */
    var s{LOCS, DOW} init 1;
    create data soldata from [location day_of_week]={LOCS, DOW} sale=s;
```

In this case the optimization variable s is initialized to a value of 1 and is indexed by values from the set parameters LOCS and DOW. The output data set contains an observation for each combination of values in these sets. The output data set contains three variables, location, day_of_week, and sale. The data set variables location and day_of_week save the index element values for the optimization variable s that is written in each observation. The data set created is shown in Figure 4.38.

Figure 4.38 Data Sets Created

Note that the key columns in the preceding example do not name existing PROC OPTMODEL variables. They create new local dummy parameters, location and day_of_week, in the same manner as dummy parameters in index sets. These local parameters can be used in subsequent columns. For example, the following statements demonstrate how to use a key column value in an expression for a later column value:

```
proc optmodel;
    create data tab
            from [i]=(1..10)
            Square=(i*i) Cube=(i*i*i);
```

These statements create a data set that has 10 observations that hold squares and cubes of the numbers from 1 to 10 . The key column variable here is named i and is explicitly assigned the values from 1 to 10 , while the data set variables Square and Cube hold the square and cube, respectively, of the corresponding value of i.

In the preceding example the key column values are simply the numbers from 1 to 10 . The value is the same as the observation number, so the variable i is redundant. You can remove the data set variable for a key column via the DROP data set option, as follows:

```
proc optmodel;
    create data tab2 (drop=i)
        from [i] =(1..10)
        Square=(i*i) Cube=(i*i*i);
```

The local parameters declared by key columns receive their values in various ways. For a READ DATA statement, the key column values come from the data set variables for the column. In a CREATE DATA statement, the values can be defined explicitly, as shown in the previous example. Otherwise, the CREATE DATA statement generates a set of values that combines the index sets of array columns that need implicit indexing. The statements that produce the output in Figure 4.38 demonstrate implicit indexing.

Use a suffix ("Suffixes" on page 121) to read or write auxiliary values, such as variable bounds or constraint duals. For example, consider the following statements:

```
data pdat;
    input p $ maxprod cost;
    datalines;
ABQ 12 0.7
MIA 9 0.6
CHI 14 0.5
run;
proc optmodel;
    set<string> plants;
    var prod{plants} >= 0;
    number cost{plants};
    read data pdat into plants=[p] prod.ub=maxprod cost;
```

The statement "plants=[p]" in the READ DATA statement declares p as a key column and instructs PROC OPTMODEL to store the set of plant names from the data set variable p into the set parameter plants. The
statement assigns the upper bound for the variable prod indexed by p to be the value of the data set variable maxprod. The cost parameter location indexed by p is also assigned to be the value of the data set variable cost.

The target variables prod and cost in the preceding example use implicit indexing. Indexing can also be performed explicitly. The following version of the READ DATA statement makes the indices explicit:

```
read data pdat into plants=[p] prod[p].ub=maxprod cost[p];
```

Explicit indexing is useful when array indices need to be transformed from the key column values in the data set. For example, the following statements reverse the order in which elements from the data set are stored in an array:

```
data abcd;
    input letter $ @@;
    datalines;
a b c d
;
proc optmodel;
    set<num> subscripts=1..4;
    string letter{subscripts};
    read data abcd into [_N_] letter[5-_N_];
    print letter;
```

The output from this example appears in Figure 4.39.
Figure 4.39 READ DATA Statement: Explicit Indexing

| $[1]$ | letter |
| :--- | :--- | :--- |
| | |
| 1 | d |
| 2 | c |
| 3 | b |
| 4 | a |

The following example demonstrates the use of explicit indexing to save sequential subsets of an array in individual data sets:

```
data revdata;
    input month rev @@;
    datalines;
1 200 2 345 3 362 4 958
5 659 6 804 7 487 8 146
9683 10 732 11 652 12 469
;
proc optmodel;
    set m = 1..3;
    var revenue{1..12};
    read data revdata into [_N_] revenue=rev;
```

```
create data qtr1 from [month]=m revenue[month];
create data qtr2 from [month]=m revenue[month+3];
create data qtr3 from [month]=m revenue[month+6];
create data qtr4 from [month]=m revenue[month+9];
```

Each CREATE DATA statement generates a data set that represents one quarter of the year. Each data set contains the variables month and revenue. The data set qtr2 is shown in Figure 4.40.

Figure 4.40 CREATE DATA Statement: Explicit Indexing

Obs	month	revenue
1	1	958
2	2	659
3	3	804

Control Flow

Most of the control flow statements in PROC OPTMODEL are familiar to users of the DATA step or the IML procedure. PROC OPTMODEL supports the IF statement, DO blocks, the iterative DO statement, the DO WHILE statement, and the DO UNTIL statement. You can also use the CONTINUE, LEAVE, and STOP statements to modify control flow.

PROC OPTMODEL adds the FOR statement. This statement is similar in operation to an iterative DO loop. However, the iteration is performed over the members of an index set. This form is convenient for iteration over all the locations in an array, since the valid array indices are also defined using an index set. For example, the following statements initialize the array parameter A, indexed by i and j, to random values sampled from a normal distribution with mean 0 and variance 1:

```
proc optmodel;
    set R=1..10;
    set C=1..5;
    number A{R, C};
    for {i in R, j in C}
            A[i, j]=rannor(-1);
```

The FOR statement provides a convenient way to perform a statement such as the preceding assignment statement for each member of a set.

Formatted Output

PROC OPTMODEL provides two primary means of producing formatted output. The PUT statement provides output of data values with detailed format control. The PRINT statement handles arrays and produces formatted output in tabular form.

The PUT statement is similar in syntax to the PUT statement in the DATA step and in PROC IML. The PUT statement can output data to the SAS log, the SAS listing, or an external file. Arguments to the PUT
statement specify the data to output and provide instructions for formatting. The PUT statement provides enough control to create reports within PROC OPTMODEL. However, typically the PUT statement is used to produce output for debugging or to quickly check data values.

The following example demonstrates some features of the PUT statement:

```
proc optmodel;
    number a=1.7, b=2.8;
    set s={a,b};
    put a b; /* list output */
    put a= b=; /* named output */
    put 'Value A: ' a 8.1 @30 'Value B: ' b 8.; /* formatted */
    string str='Ratio (A/B) is:';
    put str (a/b); /* strings and expressions */
    put s=; /* named set output */
```

These statements produce the output in Figure 4.41.
Figure 4.41 PUT Statement Output

```
1.7 2.8
a=1.7 b=2.8
Value A: 1.7 Value B: 3
Ratio (A/B) is: 0.6071428571
s={1.7,2.8}
```

The first PUT statement demonstrates list output. The numeric data values are output in a default format, BEST12., with leading and trailing blanks removed. A blank space is inserted after each data value is output. The second PUT statement uses the equal sign (=) to request that the variable name be output along with the regular list output.

The third PUT statement demonstrates formatted output. It uses the @ operator to position the output in a specific column. This style of output can be used in report generation. The format specification " 8 ." causes the displayed value of parameter b to be rounded.

The fourth PUT statement shows the output of a string value, str. It also outputs the value of an expression enclosed in parentheses. The final PUT statement outputs a set along with its name.

The default destination for PUT statement output is the SAS log. The FILE and CLOSEFILE statements can be used to send output to the SAS listing or to an external data file. Multiple files can be open at the same time. The FILE statement selects the current destination for PUT statement output, and the CLOSEFILE statement closes the corresponding file. See the section "FILE Statement" on page 70 for more details.

The PRINT statement is designed to output numeric and string data in the form of tables. The PRINT statement handles the details of formatting automatically. However, the output format can be overridden by PROC OPTMODEL options and through Output Delivery System (ODS) facilities.

The PRINT statement can output array data in a table form that contains a row for each combination of array index values. This form uses columns to display the array index values for each row and uses other columns to display the value of each requested data item. The following statements demonstrate the table form:

```
proc optmodel;
    number square{i in 0..5} = i*i;
    number recip{i in 1..5} = 1/i;
    print square recip;
```

The PRINT statement produces the output in Figure 4.42.
Figure 4.42 PRINT Statement Output (List Form)

| $[1]$ | square | recip |
| :--- | :--- | :--- | :--- |
| | | |
| 0 | 0 | |
| 1 | 1 | 1.00000 |
| 2 | 4 | 0.50000 |
| 3 | 9 | 0.33333 |
| 4 | 16 | 0.25000 |
| 5 | 25 | 0.20000 |

The first table column, labeled "[1]," contains the index values for the parameters square and recip. The columns that are labeled "square" and "recip" contain the parameter values for each array index. For example, the last row corresponds to the index 5 and the value in the last column is 0.2 , which is the value of recip[5].

Note that the first row of the table contains no value in the recip column. Parameter location recip[0] does not have a valid index, so no value is printed. The PRINT statement does not display variables that are undefined or have invalid indices. This permits arrays that have similar indexing to be printed together. The sets of defined indices in the arrays are combined to generate the set of indices shown in the table.

Also note that the PRINT statement has assigned formats and widths that differ between the square and recip columns. The PRINT statement assigns a default fixed-point format to produce the best overall output for each data column. The format that is selected depends on the PDIGITS= and PWIDTH= options.

The PDIGITS $=$ and PWIDTH $=$ options specify the desired significant digits and formatted width, respectively. If the range of magnitudes is large enough that no suitable format can be found, then the data item is displayed in scientific format. The table in the preceding example displays the last column with five decimal places in order to display the five significant digits that were requested by the default PDIGITS= value. The square column, on the other hand, does not need any decimal places.

The PRINT statement can also display two-dimensional arrays in matrix form. If the list following the PRINT statement contains only a single array that has two index elements, then the array is displayed in matrix form when it is sufficiently dense (otherwise the display is in table form). In this form the left-most column contains the values of the first index element. The remaining columns correspond to and are labeled by the values of the second index element. The following statements print an example of matrix form:

```
proc optmodel;
    set R=1..6;
    set C=1..4;
    number a{i in R, j in C} = 10*i+j;
    print a;
```

The PRINT statement produces the output in Figure 4.43.

Figure 4.43 PRINT Statement Output (Matrix Form)

a				
	1	2	3	4
1	11	12	13	14
2	21	22	23	24
3	31	32	33	34
4	41	42	43	44
5	51	52	53	54
6	61	62	63	64

In the example the first index element ranges from 1 to 6 and corresponds to the table rows. The second index element ranges from 1 to 4 and corresponds to the table columns. Array values can be found based on the row and column values. For example, the value of parameter a[3,2] is 32 . This location is found in the table in the row labeled " 3 " and the column labeled " 2 ."

ODS Table and Variable Names

PROC OPTMODEL assigns a name to each table it creates. You can use these names to reference the table when you use the Output Delivery System (ODS) to select tables and create output data sets. The names of tables common to all solvers are listed in Table 4.10. Some solvers can generate additional tables; see the individual solver chapters for more information. For more information about ODS, see SAS Output Delivery System: User's Guide.

Table 4.10 ODS Tables Produced in PROC OPTMODEL

ODS Table Name	Description	Statement/Option
DerivMethods	List of derivatives used by the solver, including the method of computation	SOLVE
OptStatistics	Solver-dependent description of the resources required for solution, including function evaluations and solver time	SOLVE
PrintTable	Specified parameter or variable values	PRINT
ProblemSummary	Description of objective, variables, and constraints	SOLVE
SolutionSummary	Overview of solution, including solver-dependent solution quality values	SOLVE
SolverOptions	List of solver options and their values	SOLVE
PerformanceInfo	List of performance options and their values	SOLVE
Timing	Detailed solution timing	PERFORMANCE / DETAILS

To guarantee that ODS output data sets contain information from all executed statements, use the PERSIST= option in the ODS OUTPUT statement. For details, see SAS Output Delivery System: User's Guide. Note: The SUBMIT statement resets ODS SELECT and EXCLUDE lists.

Table 4.11 lists the variable names of the preceding tables used in the ODS template of the OPTMODEL procedure.

Table 4.11 Variable Names for the ODS Tables Produced in PROC OPTMODEL

ODS Table Name	Variables
DerivMethods	Label1, cValue1, and nValue1
OptStatistics	Label1, cValue1, and nValue1
PrintTable (matrix form)	ROW, COL1-COLn
PrintTable (table form)	COL1-COLn, identifier-expression(_suffix)
ProblemSummary	Label1, cValue1, and nValue1
SolutionSummary	Label1, cValue1, and nValue1
SolverOptions	Label1, cValue1, nValue1, cValue2, and nValue2
PerformanceInfo	Label1, cValue1, and nValue1
Timing	Label1, cValue1, nValue1, cValue2, and nValue2

The PRINT statement produces an ODS table named PrintTable. The variable names that are used depend on the display format used. See the section "Formatted Output" on page 109 for details about choosing the display format.

For the PRINT statement with table format, the columns that display array indices are named COL1-COLn, where n is the number of index elements. Columns that display values from identifier expressions are named using the expression's name and suffix. The identifier name becomes the output variable name if no suffix is used. Otherwise the variable name is formed by appending an underscore ($_$) and the suffix to the identifier name. Columns that display the value of expressions are named COL n, where n is the column number in the table.

For the PRINT statement with matrix format, the first column has the variable name ROW. The remaining columns are named COL1-COL n, where n is the number of distinct column indices. When an ODS table displays values from identifier expressions, a label is generated based on the expression's name and suffix, as described for column names in the case of table format.

The PRINTLEVEL= option controls the ODS tables produced by the SOLVE statement. When PRINTLEVEL=0, the SOLVE statement produces no ODS tables. When PRINTLEVEL=1, the SOLVE statement produces the ODS tables ProblemSummary, SolutionSummary, and PerformanceInfo. When PRINTLEVEL=2, the SOLVE statement produces the ODS tables ProblemSummary, SolverOptions, DerivMethods, SolutionSummary, OptStatistics, and PerformanceInfo.

The PERFORMANCE statement controls additional ODS tables that can be produced by the SOLVE statement. The PerformanceInfo table displays options that are controlled by the PERFORMANCE statement. If you specify the DETAILS option in the PERFORMANCE statement, then the SOLVE statement also produces the ODS table Timing.

The following statements generate several ODS tables and write each table to a SAS data set:

```
proc optmodel printlevel=2;
    ods output PrintTable=expt ProblemSummary=exps DerivMethods=exdm
                    SolverOptions=exso SolutionSummary=exss OptStatistics=exos;
    var x{1..2} >= 0;
    min z = 2*x[1] + 3 * x[2] + x[1]**2 + 10*x[2]**2
        + 2.5*x[1]*x[2] + x[1]**3;
    con c1: x[1] - x[2] <= 1;
    con c2: x[1] + 2*x[2] >= 100;
    solve;
    print x;
```

The data set expt contains the PrintTable table and is shown in Figure 4.44. The variable names are COL1 and x .

Figure 4.44 ODS Table PrintTable

The data set exps contains the ProblemSummary table and is shown in Figure 4.45. The variable names are Label1, cValue11, and nValue1. The rows describe the objective function, variables, and constraints. The rows depend on the form of the problem.

Figure 4.45 ODS Table ProblemSummary

ProblemSummary			
Obs	Label1	cValue1	nValue1
1	Objective Sense	Minimization	-
2	Objective Function	z	-
3	Objective Type	Nonlinear	-
4			.
5	Number of Variables	2	2.000000
6	Bounded Above	0	0
7	Bounded Below	2	2.000000
8	Bounded Below and Above	0	0
9	Free	0	0
10	Fixed	0	0
11			.
12	Number of Constraints	2	2.000000
13	Linear LE (<=)	1	1.000000
14	Linear EQ (=)	0	0
15	Linear GE (>=)	1	1.000000
16	Linear Range	0	0

The data set exso contains the SolverOptions table and is shown in Figure 4.46. The variable names are Label1, cValue1, nValue1, cValue2, and nValue2. The rows, which depend on the solver called by PROC OPTMODEL, list the values taken by each of the solver options. The presence of an asterisk (*) next to an option indicates that a value has been specified for that option.

Figure 4.46 ODS Table SolverOptions

The data set exdm contains the DerivMethods table, which displays the methods of derivative computation, and is shown in Figure 4.47. The variable names are Label1, cValue11, and nValue1. The rows, which depend on the derivatives used by the solver, specify the method used to calculate each derivative.

Figure 4.47 ODS Table DerivMethods

The data set exss contains the SolutionSummary table and is shown in Figure 4.48. The variable names are Label1, cValue11, and nValue1. The rows give an overview of the solution, including the solver chosen, the objective value, and the solution status. Depending on the values returned by the solver, the SolutionSummary table might also include some solution quality values such as optimality error and infeasibility. The values in the SolutionSummary table appear in the _OROPTMODEL_ macro variable; each solver chapter has a section that describes the solver's contribution to this macro variable.

Figure 4.48 ODS Table SolutionSummary

SolutionSummary			
Obs	Label1	cValue1	nValue1
1	Solver	NLP	-
2	Algorithm	Interior Point	-
3	Objective Function	z	.
4	Solution Status	Optimal	.
5	Objective Value	22623.347101	22623
6	Iterations	5	5.000000
7			.
8	Optimality Error	5E-7	0.000000500
9	Infeasibility	0	0

The data set exos contains the OptStatistics table, which displays the optimization statistics, and is shown in Figure 4.49. The variable names are Label1, cValue11, and nValue1. The rows, which depend on the solver called by PROC OPTMODEL, describe the amount of time and function evaluations used by the solver.

Figure 4.49 ODS Table OptStatistics

OptStatistics				
Obs	Label1	cV	e1	nValue1
1	Function Evaluations	28		28.000000
2	Gradient Evaluations	28		28.000000
3	Hessian Evaluations	6		6.000000
4	Problem Generation Time		0.02	0.015000
5	Code Generation Time		0.02	0.016000
6	Presolve Time		0.00	0
7	Solution Time		0.08	0.078000
8	Total Time		0.86	0.858000

Constraints

You can add constraints to a PROC OPTMODEL model. The solver tries to satisfy the specified constraints while minimizing or maximizing the objective.

Constraints in PROC OPTMODEL have names. By using the name, you can examine various attributes of the constraint, such as the dual value that is returned by the solver (see the section "Suffixes" on page 121 for details). A constraint is not allowed to have the same name as any other model component.

PROC OPTMODEL provides a default name if none is supplied by the constraint declaration. The predefined array _ACON_ provides names for otherwise anonymous constraints. The predefined numeric parameter _NACON_contains the number of such constraints. The constraints are assigned integer indices in sequence, so _ACON_[1] refers to the first unnamed constraint declared, while _ACON_[NACON] refers to the newest.

Consider the following example of a simple model that has a constraint:

```
proc optmodel;
    var x, y;
    min r = x**2 + y**2;
    con c: x+y >= 1;
    solve;
    print x y;
```

Without the constraint named c , the solver would find the point $x=y=0$ that has an objective value of 0 . However, the constraint makes this point infeasible. The resulting output is shown in Figure 4.50.

Figure 4.50 Constrained Model Solution

Figure 4.50 continued

The solver has found the point where the objective function is minimized in the region $x+y \geq 1$. This is actually on the border of the region: the constraint c is active (see the section "Dual Values" on page 124 for details).

In the preceding example the constraint c had only a lower bound. You can specify constraints that have both upper and lower bounds. For example, replacing the constraint c in the previous example would further restrict the feasible region:

```
con c: 3 >= x+y >= 1;
```

PROC OPTMODEL standardizes constraints to collect the expression terms that depend on variables and to separate the expression terms that are constant. When there is a single equality or inequality operator, the separable constant terms are moved to the right operand while the variable terms are moved to the left operand. For range constraints, the separable constant terms from the middle expression are subtracted from the lower and upper bounds. You can see the standardized constraints with the use of the EXPAND statement in the following example. Consider the following PROC OPTMODEL statements:

```
proc optmodel;
    var x{1..3};
    con b: sum{i in 1..3}(x[i] - i) = 0;
    expand b;
```

These statements produce an optimization problem with the following constraint:

```
(x[1] - 1) +(x[2] - 2) + (x[3] - 3) = 0
```

The EXPAND statement produces the output in Figure 4.51.

Figure 4.51 Expansion of a Standardized Constraint

```
Constraint b: x[1] + x[2] + x[3] = 6
```

Here the i separable constant terms in the operand of the SUM operation were moved to the right-hand side of the constraint. The sum of these i values is 6 .

After standardization the constraint expression that contains all the variables is called the body of the constraint. You can reference the current value of the body expression by attaching the .body suffix to the constraint name. Similarly, the upper and lower bound expressions can be referenced by using the .ub and .lb suffixes, respectively. (See the section "Suffixes" on page 121 for more information.)

As a result of standardization, the value of a body expression depends on how the corresponding constraint is entered. The following example demonstrates how using equivalent relational syntax can result in different .body values:

```
proc optmodel;
    var x init 1;
    con c1: x**2 <= 5;
    con c2: 5 >= x**2;
    con c3: -x**2 >= -5;
    con c4: -5 <= -x**2;
    expand;
    print c1.body c2.body c3.body c4.body;
```

The EXPAND and PRINT statements produce the output in Figure 4.52.
Figure 4.52 Expansion and Body Values of Standardized Constraints

```
Var x
Constraint c1: x**2 <= 5
Constraint c2: -x**2 >= -5
Constraint c3: -x**2 >= -5
Constraint c4: --x**2 <= 5
    C1.BODY c2.BODY c3.BODY c4.BODY
    1 -1 1
```

CaUtion: Each constraint has an associated dual value (see "Dual Values" on page 124). As a result of standardization, the sign of a dual value depends in some instances on the way in which the corresponding constraint is entered into PROC OPTMODEL. In the case of a minimization objective with one-sided constraint $g(x) \geq L$, avoid entering the constraint as $L \leq g(x)$. For example, the following statements produce a value of 2:

```
proc optmodel;
    var x;
    min o1 = x**2;
    con c1: x >= 1;
```

solve;
print (c1.dual);

Replacing the constraint as follows results in a value of -2 :

```
con c1: 1 <= x;
```

In the case of a maximization objective with the one-sided constraint $g(x) \leq U$, avoid entering the constraint as $U \geq g(x)$.

When a constraint has variables on both sides, the sign of the dual value depends on the direction of the inequality. For example, you can enter the following constraint:

```
con c1: x**5 - y + 8<= 5*x + y**2;
```

This is a \leq constraint, so c1.dual is nonpositive. If you enter the same constraint as follows, then $\mathrm{c} 1 . \mathrm{dual}$ is nonnegative:

```
con c1: 5*x + y**2 >= x**5 - y + 8;
```

It is also important to note that the signs of the dual values are negated in the case of maximization. The following statements output a value of 2 :

```
proc optmodel;
    var x;
    min o1 = x**2;
    con c1: 1 <= x <= 2;
    solve;
    print (c1.dual);
```

Changing the objective function as follows yields the same value of x , but c 1 . dual now holds the value -2 :
$\max 01=-x * * 2$;

NOTE: A simple bound constraint on a decision variable x can be entered either by using a CONSTRAINT declaration or by assigning values to $x . l b$ and $x . u b$. If you require dual values for simple bound constraints, use the CONSTRAINT declaration.

Constraints can be linear or nonlinear. PROC OPTMODEL determines the type of constraint automatically by examining the form of the body expression. Subexpressions that do not involve variables are treated as constants. Constant subexpressions that are multiplied by or added to linear subexpressions produce new linear subexpressions. For example, constraint A in the following statements is linear:

```
proc optmodel;
    var x{1..3};
    con A: 0.5*(x[1]-x[2]) + x[3] >= 0;
```


Suffixes

Use suffixes with identifier-expressions to retrieve and modify various auxiliary values maintained by the solver. The values of the suffixes can come from expressions in the declaration of the name that is suffixed. For example, the following declaration of variable v provides the values of several suffixes of v at the same time:

```
var v >= 0 <= 2 init 1;
```

The values of the suffixes also come from the solver or from values assigned by assignment or READ DATA statements (see an example in the section "Data Set Input/Output" on page 105).

You must use suffixes with names of the appropriate type. For example, the .init suffix cannot be used with the name of an objective. In particular, local dummy parameter names cannot have suffixes.

Table 4.12 shows the names of the available suffixes.
Table 4.12 Suffix Names

Name Kind	Suffix	Modifiable	Description
Variable	.init	No	Initial value for the solver
Variable	.lb	Yes	Lower bound
Variable	.ub	Yes	Upper bound
Variable	.sol	No	Current solution value Variable
	.rc	No	Reduced cost (LP) or gradient of Lagrangian function
Variable	.dual	No	Reduced cost (LP) or gradient of Lagrangian function
			Yes
Variable	.relax	Yes	Relaxation of integrality restriction
Variable	.priority	Yes	Branching priority
Variable	.direction	Yes	Branching direction
Variable	.msinit	No	Numeric value at the best starting point re- Variable
.status		Yes	ported by solver
Variable	.label	Yes	Label text for the folver solver
Objective	.sol	No	Current objective value
Objective	.label	Yes	Label text for the solver
Constraint	.body	No	Current constraint body value
Constraint	.dual	No	Dual value from the solver
Constraint	.lb	Yes	Current lower bound
Constraint	.ub	Yes	Current upper bound
Constraint	.status	Yes	Status information from solver
Constraint	.label	Yes	Label text for the solver
Constraint	.block	Yes	Block ID for decomposition
Implicit Variable	.sol	No	Current solution value
Problem	.label	Yes	Label text for the solver
any	.name	No	Name text for any non-dummy symbol

NOTE: The .init value of a variable represents the value it had before the most recent SOLVE statement that used the variable. The value is zero before a successful completion of a SOLVE statement that uses the variable.

The .sol suffix for a variable, implicit variable, or objective can be used within a declaration to reference the current value of the symbol. It is treated as a constant in such cases. When processing a SOLVE statement, the value is fixed at the start of the SOLVE. Outside of declarations, a variable, implicit variable, or objective name with the .sol suffix is equivalent to the unsuffixed name.

The .status suffix reports status information from the solver. Currently, only the LP solver provides status information. The .status suffix takes on the same character values that are found in the _STATUS_ variable of the PRIMALOUT and DUALOUT data sets for the OPTLP procedure, including values set by the IIS= option. See the section "Variable and Constraint Status" on page 188 and the section "Irreducible Infeasible Set" on page 189, both in Chapter 5, "The Linear Programming Solver," for more information. For other solvers, the .status values default to a single blank character.

If you choose to modify the .status suffix for a variable or constraint, the assigned suffix value can be a single character or an empty string. The LP solver rejects invalid status characters. Blank or empty strings are treated as new row or column entries for the purpose of "warm starting" the solver.

The .msinit suffix reports the numeric value of a variable at the best starting point, as reported by the NLP solver when the MULTISTART option is specified. If the solver does not report a best starting point, then the value is missing. The value is tracked independently for each problem to support multiple subproblems. See the section "Multistart" on page 307 in Chapter 7, "The Nonlinear Programming Solver," for more information.

The .block suffix identifies the subproblem for constraints when used with the METHOD=USER option of the decomposition algorithm. The value must be numeric and is initially assigned a missing value. A constraint with a missing value for the .block suffix is part of the master problem. Otherwise constraints belong to the same subproblem if and only if they have the same .block suffix values. See Chapter 12, "The Decomposition Algorithm," for more information.

The .label suffix represents the text passed to the solver to identify a variable, constraint, or objective. Some solvers can display this label in their output. The maximum text length passed to the solver is controlled by the MAXLABLEN= option. The default text is based on the name in the model, abbreviated to fit within MAXLABLEN. For example, a model variable $x[1]$ would be labeled " $x[1]$ ". This label text can be reassigned. The label suffix value is also used to create MPS labels stored in the output data set for the SAVE MPS and SAVE QPS statements.

The .name suffix represents the name of a symbol as a text string. The .name suffix can be used with any declared name except for local dummy parameters. This suffix is primarily useful when applied to problem symbols (see the section "Problem Symbols" on page 137), since the .name suffix returns the name of the referenced symbol, not the problem symbol name. The name text is based on the name in the model, abbreviated to fit in 256 characters.

Suffixed names can be used wherever a parameter name is accepted, provided only the value is required. However, you are not allowed to change the value of certain suffixes. Table 4.12 marks these suffixes as not modifiable. Suffixed names that are used as a target in an assignment or READ DATA statement must be modifiable.

The following statements formulate a trivial linear programming problem. The objective value is unbounded, which is reported after the execution of the SOLVE statement. The PRINT statements illustrate the corresponding default auxiliary values. This is shown in Figure 4.53.

```
proc optmodel;
    var x, y;
    min z = x + y;
    con c: x + 2*y <= 3;
    solve;
    print x.lb x.ub x.init x.sol;
    print y.lb y.ub y.init y.sol;
    print c.lb c.ub c.body c.dual;
```

Figure 4.53 Using a Suffix: Retrieving Auxiliary Values

Next, continue to submit the following statements to change the default bounds and solve again. The output is shown in Figure 4.54.

```
x.lb=0;
y.lb=0;
c.lb=1;
solve;
print x.lb x.ub x.init x.sol;
print y.lb y.ub y.init y.sol;
print c.lb c.ub c.body c.dual;
```

Figure 4.54 Using a Suffix: Modifying Auxiliary Values

x.LB	x.UB	x.INIT	x. SOL
0	1.7977E+308	0	0
y.LB	y.UB	y.INIT	y. SOL
0	$1.7977 \mathrm{E}+308$	0	0.5
c. LB	c.UB	c. BODY	c. DUAL
1	3	1	0.5

Note: Spaces are significant. The form NAME._TAG is treated as a SAS format name followed by the tag name, not as a suffixed identifier. The forms NAME.TAG, NAME ${ }_{\bullet}$. TAG, and NAME ${ }_{\bullet}$.TAG (note the location of spaces) are interpreted as suffixed references.

Integer Variable Suffixes

The suffixes .relax, .priority, and .direction are applicable to integer variables.
For an integer variable x, setting x.relax to a nonzero, nonmissing value relaxes the integrality restriction. The value of x.relax is read as either 1 or 0 , depending on whether or not integrality is relaxed. This suffix is ignored for noninteger variables.

The value contained in x.priority sets the branching priority of an integer variable x for use with the MILP solver. This value can be any nonnegative, nonmissing number. The default value is 0 , which indicates default branching priority. Variables with positive .priority values are assigned greater priority than the default. Variables with the highest .priority values are assigned the highest priority. Variables with the same .priority value are assigned the same branching priority.

The value of x.direction assigns a branching direction to an integer variable x. This value should be an integer in the range -1 to 3 . A noninteger value in this range is rounded on assignment. The default value is 0 . The significance of each integer is found in Table 4.13.

Table 4.13 Branching Directions

Value	Direction
-1	Round down to nearest integer
0	Default
1	Round up to nearest integer
2	Round to nearest integer
3	Round to closest presolved bound

Suppose the solver branches next on an integer variable x whose last LP relaxation solution is 3.3. Suppose also that after passing through the presolver, the lower bound of x is 0 and the upper bound of x is 10 . If the value in x.direction is -1 or 2 , then the solver sets x to 3 for the next iteration. If the value in $x . d i r e c t i o n ~ i s ~ 1, ~$ then the solver sets x to 4 . If the value in x.direction is 3 , then the solver sets x to 0 .

The MPS data set created by the SAVE MPS statement ("SAVE MPS Statement" on page 84) includes a BRANCH section if any nondefault .priority or .direction values have been specified for integer variables.

Dual Values

A dual value is associated with each constraint. To access the dual value of a constraint, use the constraint name followed by the suffix .dual.

For linear programming problems, the dual value associated with a constraint is also known as the dual price (also called the shadow price). The shadow price is usually interpreted economically as the rate at which the
optimal value changes with respect to a change in some right-hand side that represents a resource supply or demand requirement.

For nonlinear programming problems, the dual values correspond to the values of the optimal Lagrange multipliers. For more details about duality in nonlinear programming, see Bazaraa, Sherali, and Shetty (1993).

From the dual value associated with the constraint, you can also tell whether the constraint is active or not. A constraint is said to be active (tight at a point) if it holds with equality at that point. It can be informative to identify active constraints at the optimal point and check their corresponding dual values. Relaxing the active constraints might improve the objective value.

Background on Duality in Mathematical Programming

For a minimization problem, there exists an associated problem with the following property: any feasible solution to the associated problem provides a lower bound for the original problem, and conversely any feasible solution to the original problem provides an upper bound for the associated problem. The original and the associated problems are referred to as the primal and the dual problem, respectively. More specifically, consider the primal problem,

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & f(x) \\
\text { subject to } & c_{i}(x)=0, \quad i \in \mathcal{E} \\
& c_{i}(x) \leq 0, \quad i \in \mathcal{L} \\
& c_{i}(x) \geq 0, \quad i \in \mathcal{G}
\end{array}
$$

where \mathcal{E}, \mathcal{L}, and \mathcal{G} denote the sets of equality, \leq inequality, and \geq inequality constraints, respectively. Variables $x \in \mathbb{R}^{n}$ are called the primal variables. The Lagrangian function of the primal problem is defined as

$$
L(x, \lambda, \mu, v)=f(x)-\sum_{i \in \mathcal{E}} \lambda_{i} c_{i}(x)-\sum_{i \in \mathcal{L}} \mu_{i} c_{i}(x)-\sum_{i \in \mathcal{G}} v_{i} c_{i}(x)
$$

where $\lambda_{i} \in \mathbb{R}, \mu_{i} \leq 0$, and $v_{i} \geq 0$. By convention, the Lagrange multipliers for inequality constraints have to be nonnegative. Hence $\lambda,-\mu$, and ν correspond to the Lagrange multipliers in the preceding Lagrangian function. It can be seen that the Lagrangian function is a linear combination of the objective function and constraints of the primal problem.

The Lagrangian function plays a fundamental role in nonlinear programming. It is used to define the optimality conditions that characterize a local minimum of the primal problem. It is also used to formulate the dual problem of the preceding primal problem. To this end, consider the following dual function:

$$
d(\lambda, \mu, v)=\inf _{x} L(x, \lambda, \mu, v)
$$

The dual problem is defined as

$$
\begin{array}{cl}
\underset{\lambda, \mu, \nu}{\operatorname{maximize}} & d(\lambda, \mu, v) \\
\text { subject to } & \mu \leq 0 \\
& v \geq 0
\end{array}
$$

The variables λ, μ, and v are called the dual variables. Note that the dual variables associated with the equality constraints (λ) are free, whereas those associated with \leq inequality constraints (μ) have to be nonpositive and those associated with \geq inequality constraints (v) have to be nonnegative.

The relation between the primal and the dual problems provides a nice connection between the optimal solutions of the problems. Suppose x^{*} is an optimal solution of the primal problem and $\left(\lambda^{*}, \mu^{*}, v^{*}\right)$ is an optimal solution of the dual problem. The difference between the objective values of the primal and dual problems, $\delta=f\left(x^{*}\right)-d\left(\lambda^{*}, \mu^{*}, \nu^{*}\right) \geq 0$, is called the duality gap. For some restricted class of convex nonlinear programming problems, both the primal and the dual problems have an optimal solution and the optimal objective values are equal-that is, the duality gap $\delta=0$. In such cases, the optimal values of the dual variables correspond to the optimal Lagrange multipliers of the primal problem with the correct signs.

A maximization problem is treated analogously to a minimization problem. For the maximization problem

$$
\begin{array}{cl}
\underset{x}{\operatorname{maximize}} & f(x) \\
\text { subject to } & c_{i}(x)=0, \quad i \in \mathcal{E} \\
& c_{i}(x) \leq 0, \quad i \in \mathcal{L} \\
& c_{i}(x) \geq 0, \quad i \in \mathcal{G},
\end{array}
$$

the dual problem is

$$
\begin{array}{cl}
\underset{\lambda, \mu, v}{\operatorname{minimize}} & d(\lambda, \mu, \nu) \\
\text { subject to } & \mu \geq 0 \\
& v \leq 0 .
\end{array}
$$

where the dual function is defined as $d(\lambda, \mu, \nu)=\sup _{x} L(x, \lambda, \mu, \nu)$ and the Lagrangian function $L(x, \lambda, \mu, \nu)$ is defined the same as earlier. In this case, λ, μ, and $-v$ correspond to the Lagrange multipliers in $L(x, \lambda, \mu, \nu)$.

Minimization Problems

For inequality constraints in minimization problems, a positive optimal dual value indicates that the associated \geq inequality constraint is active at the solution, and a negative optimal dual value indicates that the associated \leq inequality constraint is active at the solution. In PROC OPTMODEL, the optimal dual value for a range constraint (a constraint with both upper and lower bounds) is the sum of the dual values associated with the upper and lower inequalities. Since only one of the two inequalities can be active, the sign of the optimal dual value, if nonzero, identifies which one is active.
For equality constraints in minimization problems, the optimal dual values are unrestricted in sign. A positive optimal dual value for an equality constraint implies that, starting close enough to the primal solution, the same optimum could be found if the equality constraint were replaced with $\mathrm{a} \geq$ inequality constraint. A negative optimal dual value for an equality constraint implies that the same optimum could be found if the equality constraint were replaced with $\mathrm{a} \leq$ inequality constraint.

The following is an example where simple linear programming is considered:

```
proc optmodel;
    var x, y;
    min z = 6*x + 7*y;
    con
        4*x + y >= 5,
        -x - 3*y <= -4,
            x + y <= 4;
    solve;
    print x y;
    expand _ACON_ ;
    print _ACON_.dual _ACON_.body;
```

The PRINT statements generate the output shown in Figure 4.55.

Figure 4.55 Dual Values in Minimization Problem: Display

	Problem Summ	
	Objective Sense	Minimization
	Objective Function	z
	Objective Type	Linear
	Number of Variables	2
	Bounded Above	0
	Bounded Below	0
	Bounded Below and Above	0
	Free	2
	Fixed	0
	Number of Constraints	3
	Linear LE (<=)	2
	Linear EQ (=)	0
	Linear GE (>=)	1
	Linear Range	0
	Constraint Coefficients	6
	Performance Info	ation
	Execution Mode Number of Threads	On Client 1
	Solution Sum	$r y$
	Solver	LP
	Algorithm	Dual Simplex
	Objective Function	z
	Solution Status	Optimal
	Objective Value	13
	Iterations	5
	Primal Infeasibility	0
	Dual Infeasibility	0
	Bound Infeasibility	0
	$\mathbf{x} \quad \mathbf{y}$	
	11	
```Constraint _ACON_[1]: y + 4*x >= 5 Constraint _ACON_[2]: - 3*y - x <= -4 Constraint _ACON_[3]: y + x <= 4```		

Figure 4.55 continued

[1]	$\begin{array}{r} \text { _ACON_. } \\ \text { DUAL } \end{array}$	$\underset{\text { BODY }}{- \text { ACON_. }}$
1	1	5
2	-2	-4
3	0	2

It can be seen that the first and second constraints are active, with dual values 1 and -2 . Continue to submit the following statements. Notice how the objective value is changed in Figure 4.56.

```
ACON[1].lb = _ACON_[1].lb - 1;
solve;
ACON[2].ub = _ACON_[2].ub + 1;
solve;
```

Figure 4.56 Dual Values in Minimization Problem: Interpretation

Problem Summary	
Objective Sense	Minimization
Objective Function	$z$
Objective Type	Linear
Number of Variables	2
Bounded Above	0
Bounded Below	0
Bounded Below and Above	0
Free	2
Fixed	0
Number of Constraints	3
Linear LE (<=)	2
Linear EQ (=)	0
Linear GE (>=)	1
Linear Range	0
Constraint Coefficients	6
Performance Info	tion
Execution Mode	On Client
Number of Threads	1

Figure 4.56 continued

Solution Summary	
Solver	LP
Algorithm	Dual Simplex
Objective Function	
Solution Status	Optimal
Objective Value	12
Iterations	5
Primal Infeasibility	0
Dual Infeasibility	0
Bound Infeasibility	0
Problem Summary	
Objective Sense	Minimization
Objective Function	z
Objective Type	Linear
Number of Variables	2
Bounded Above	0
Bounded Below	0
Bounded Below and Above	0
Free	2
Fixed	0
Number of Constraints	3
Linear LE (<=)	2
Linear EQ (=)	0
Linear GE (>=)	1
Linear Range	0
Constraint Coefficients	6
Performance Information	
Execution Mode	On Client
Number of Threads	
Solution Summary	
Solver	LP
Algorithm	Dual Simplex
Objective Function	
Solution Status	Optimal
Objective Value	10
Iterations	5
Primal Infeasibility	0
Dual Infeasibility	0
Bound Infeasibility	0

The change is just as the dual values imply. After the first constraint is relaxed by one unit, the objective value is improved by one unit. For the second constraint, the relaxation and improvement are one unit and two units, respectively.

NOTE: The signs of dual values produced by PROC OPTMODEL depend, in some instances, on the way in which the corresponding constraints are entered. See the section "Constraints" on page 116 for details.

## Maximization Problems

For inequality constraints in maximization problems, a positive optimal dual value indicates that the associated $\leq$ inequality constraint is active at the solution, and a negative optimal dual value indicates that the associated $\geq$ inequality constraint is active at the solution. The optimal dual value for a range constraint is the sum of the dual values associated with the upper and lower inequalities. The sign of the optimal dual value identifies which inequality is active.

For equality constraints in maximization problems, the optimal dual values are unrestricted in sign. A positive optimal dual value for an equality constraint implies that, starting close enough to the primal solution, the same optimum could be found if the equality constraint were replaced with a $\leq$ inequality constraint. A negative optimal dual value for an equality constraint implies that the same optimum could be found if the equality constraint were replaced with $\mathrm{a} \geq$ inequality constraint.

CAUTION: The signs of dual values produced by PROC OPTMODEL depend, in some instances, on the way in which the corresponding constraints are entered. See the section "Constraints" on page 116 for details.

## Reduced Costs

In linear programming problems, each variable has a corresponding reduced cost. To access the reduced cost of a variable, add the suffix .rc or .dual to the variable name. These two suffixes are interchangeable.

The reduced cost of a variable is the rate at which the objective value changes when the value of that variable changes. At optimality, basic variables have a reduced cost of zero; a nonbasic variable with zero reduced cost indicates the existence of multiple optimal solutions.

In nonlinear programming problems, the reduced cost interpretation does not apply. The .dual and .rc variable suffixes represent the gradient of the Lagrangian function, computed using the values returned by the solver.

The following example illustrates the use of the .rc suffix:

```
proc optmodel;
 var x >= 0, y >= 0, z >= 0;
 max cost = 4*x + 3*y - 5*z;
 con
 -x + y + 5*z <= 15,
 3*x - 2*y - z<= 12,
 2*x + 4*y + 2*z <= 16;
 solve;
 print x y z;
 print x.rc y.rc z.rc;
```

The PRINT statements generate the output shown in Figure 4.57.

Figure 4.57 Reduced Cost in Maximization Problem: Display


In this example, $x$ and $y$ are basic variables, while $z$ is nonbasic. The reduced cost of $z$ is -6.5 , which implies that increasing $z$ from 0 to 1 decreases the optimal value from 24.5 to 18 .

## Presolver

PROC OPTMODEL includes a simple presolver that processes linear constraints to produce tighter bounds on variables. The presolver can reduce the number of variables and constraints that are presented to the solver. These changes can result in reduced solution times.

Linear constraints that involve only a single variable are converted into variable bounds. The presolver then eliminates redundant linear constraints for which variable bounds force the constraint to always be satisfied. Tightly bounded variables where upper and lower bounds are within the range specified by the VARFUZZ= option (see the section "PROC OPTMODEL Statement" on page 46) are automatically fixed to the average of the bounds. The presolver also eliminates variables that are fixed by the user or by the presolver.

The presolver can infer tighter variable bounds from linear constraints when all variables in the constraint or all but one variable have known bounds. For example, when given the following PROC OPTMODEL declarations, the presolver can determine the bound $y \leq 4$ :

```
proc optmodel;
 var x >= 3;
 var y;
 con c: x + y <= 7;
```

The presolver makes multiple passes and rechecks linear constraints after bounds are tightened for the referenced variables. The number of passes is controlled by the PRESOLVER= option. After the passes are finished, the presolver attempts to fix the value of all variables that are not used in the updated objective and constraints. The current value of such a variable is used if the value lies between the variable's upper and lower bounds. Otherwise, the value is adjusted to the nearer bound. The value of an integer variable is rounded before being checked against its bounds.

In some cases the solver might perform better without the presolve transformations, so almost all such transformations are unavailable when the option PRESOLVER=BASIC is specified. However, the presolver still eliminates variables that have values that have been fixed by the FIX statement. To disable the OPTMODEL presolver entirely, use PRESOLVER=NONE. The solver assigns values to any unused, unfixed variables when the option PRESOLVER=NONE is specified.

## Model Update

The PROC OPTMODEL modeling language provides several means of modifying a model after it is first specified. You can change the parameter values of the model. You can add new model components. The FIX and UNFIX statements can fix variables to specified values or rescind previously fixed values. The DROP and RESTORE statements can deactivate and reactivate constraints. See also the section "Multiple Subproblems" on page 136 for information on how to maintain multiple models.

To illustrate how these statements work, reconsider the following example from the section "Constraints" on page 116:

```
proc optmodel;
 var x, y;
 min r = x**2 + y**2;
 con c: x+y >= 1;
 solve;
 print x y;
```

As described previously, the solver finds the optimal point $x=y=0.5$ with $r=0.5$. You can see the effect of the constraint c on the solution by temporarily removing it. You can add the following statements:

```
drop c;
solve;
print x y;
```

This change produces the output in Figure 4.58.
Figure 4.58 Solution with Dropped Constraint

Problem Summary	
Objective Sense	Minimization
Objective Function	r
Objective Type	Quadratic
Number of Variables	2
Bounded Above	0
Bounded Below	0
Bounded Below and Above	0
Free	2
Fixed	0
Number of Constraints	0
Constraint Coefficients	0
Performance Information	
Execution Mode	On Client
Number of Threads	2

Figure 4.58 continued


The optimal point is $x=y=0$, as expected.
You can restore the constraint c with the RESTORE statement, and you can also investigate the effect of forcing the value of variable x to 0.3 . This requires the following statements:

```
restore c;
fix x=0.3;
solve;
print x y c.dual;
```

This produces the output in Figure 4.59.

Figure 4.59 Solution with Fixed Variable


The variable x still has the value that was defined in the FIX statement. The objective value has increased by 0.08 from its constrained optimum 0.5 (see Figure 4.50). The constraint c is active, as confirmed by the positive dual value.

You can return to the original optimization problem by allowing the solver to vary variable x with the UNFIX statement, as follows:

```
unfix x;
solve;
print x y c.dual;
```

This produces the output in Figure 4.60. The model was returned to its original conditions.
Figure 4.60 Solution with Original Model


## Multiple Subproblems

The OPTMODEL procedure enables multiple models to be manipulated easily by using named problems to switch the active model components. Problems keep track of an objective, a set of included variables and constraints, and some status information that is associated with the variables and constraints. Other data, such as parameter values, bounds, and the current value of variables, are shared by all problems.
Problems are declared with the PROBLEM declaration. You can easily switch between problems by using the USE PROBLEM statement. The USE PROBLEM statement makes the specified problem become the current problem. The various statements that generate problem data, such as SOLVE, EXPAND, and SAVE MPS, always operate using the model components included in the current problem.
A problem declaration can specify the problem's initial objective by copying it from the problem named in a FROM clause or by including the objective symbol. This objective can be overridden while the problem is current by declaring a new non-array objective or by executing programming statements that specify a new objective.

Variables can also be included when the problem is current by declaring them or by using the FIX or UNFIX statement. Similarly, constraints can be included when the problem is current by declaring them or by using the RESTORE or DROP statement. There is no way to exclude a variable or constraint item after it has been included in a problem, although the variable or constraint can be fixed or dropped.
Variables that are declared but not included in a problem are treated as fixed when a problem is generated, while constraints that are declared but not included are ignored. The solver does not update the values and status for these model components.

A problem also tracks certain other status information that is associated with its included symbols, and this information can be changed without affecting other problems. This information includes the fixed status for variables, and the dropped status for constraints. The following additional data that are tracked by the problem are available through variable and constraint suffixes:

- var.STATUS (including IIS status)
- var.INIT
- var.MSINIT
- var.RC
- var.DUAL (alias of var.RC)
- con.STATUS (including IIS status)
- con.DUAL

The initial problem when OPTMODEL starts is predeclared with the name_START_. This problem can be reinstated again (after other USE PROBLEM statements) with the statement

```
use problem _start_;
```

See "Example 4.5: Multiple Subproblems" on page 153 for example statements that use multiple subproblems.

## Problem Symbols

The OPTMODEL procedure declares a number of symbols that are aliases for model components in the current problem. These symbols allow the model components to be accessed uniformly. These symbols are described in Table 4.14.

Table 4.14 Problem Symbols

Symbol	Indexing	Description
_NVAR_		Number of variables
_VAR_	\{1.._NVAR_\}	Variable array
_NCON_		Number of constraints
_CON_	\{1.._NCON_\}	Constraint array
_S_NVAR_		Number of presolved variables
_S_VAR_	\{1.._S_VAR_\}	Presolved variable array
_S_NCON_		Number of presolved constraints
_S_CON_	\{1.._S_CON_\}	Presolved constraint array
_OBJ_		Current objective
_PROBLEM_		Current problem

If the table specifies indexing, then the corresponding symbol is accessed as an array. For example, if the problem includes two variables, $x$ and $y$, then the value of _NVAR_ is 2 and the current variable values can be accessed as _var_[1] and _var_[2]. The problem variables prefixed with _S are restricted to model components in the problem after processing by the OPTMODEL presolver.

The following statements define a simple linear programming model and then use the problem symbols to print out some of the problem results. The .name suffix is used in the PRINT statements to display the actual variable and constraint names. Any of the suffixes that apply to a model component can be applied to the corresponding generic symbol.

```
proc optmodel printlevel=0;
 var x1 >= 0, x2 >= 0, x3 >= 0, x4 >= 0, x5 >= 0;
 minimize z = x1 + x2 + x3 + x4;
 con a1: x1 + x2 + x3 <= 4;
 con a2: }\quad\textrm{x}4+\textrm{x}5<=6\mathrm{ ;
 con a3: x1 + >4 >= 5;
 con a4: x2 + x5 >= 2;
 con a5: x3 >= 3;
 solve with lp;
 print _var_.name _var_ _var_.rc _var_.status;
 print _con_.name _con_.lb _con_.body _con_.ub _con_.dual _con_.status;
```

The PRINT statement output is shown in Figure 4.61.

Figure 4.61 Problem Symbol Output

[1]12345		[1]	_VAR_. NAME	_VAR_	_VAR_.RC	_VAR_. STATUS	
		1	x1	1	0	B	
		2	x2	0	1	L	
		3	x3	3	0	B	
		4	x4	4	0	B	
		5	x5	2	0	B	
	CON			CON		CON	CON_.
	NAME		CON_. LB	BODY	_CON_. UB	DUAL	STATUS
	a1		1.7977E308	4	$4.0000 \mathrm{E}+00$	0	L
	a2		1.7977E308	6	$6.0000 \mathrm{E}+00$	0	B
	a3		5	5	1.7977E+308	1	U
	a4		2	2	1.7977E+308	0	U
	a5		3	3	1.7977E+308	1	U

## OPTMODEL Options

All PROC OPTMODEL options can be specified in the PROC statement (see the section "PROC OPTMODEL Statement" on page 46 for more information). However, it is sometimes necessary to change options after other PROC OPTMODEL statements have been executed. For example, if an optimization technique had trouble with convergence, then it might be useful to vary the PRESOLVER= option value. This can be done with the RESET OPTIONS statement.

The RESET OPTIONS statement accepts options in the same form used by the PROC OPTMODEL statement. The RESET OPTIONS statement is also able to reset option values and to change options programmatically. For example, the following statements print the value of parameter $n$ at various precisions:

```
proc optmodel;
 number n = 1/7;
 for {i in 1..9 by 4}
 do;
 reset options pdigits=(i);
 print n;
 end;
 reset options pdigits; /* reset to default */
```

The output generated is shown in Figure 4.62. The RESET OPTIONS statement in the DO loop sets the PDIGITS option to the value of $i$. The final RESET OPTIONS statement restores the default option value, because the value was omitted.

Figure 4.62 Changing the PDIGITS Option Value
$\square$

Figure 4.62 continued


## Automatic Differentiation

PROC OPTMODEL automatically generates statements to evaluate the derivatives for most objective expressions and nonlinear constraints. PROC OPTMODEL generates analytic derivatives for objective and constraint expressions written in terms of the procedure's mathematical operators and most standard SAS library functions.

Note: Some functions, such as ABS, FLOOR, and SIGN, and some operators, such as IF-THEN, <> (element minimum operator), and $><$ (element maximum operator), must be used carefully in modeling expressions because functions including such components are not continuously differentiable or even continuous.

Expressions that reference user-defined functions or some SAS library functions might require numerical approximation of derivatives. PROC OPTMODEL uses either forward-difference approximation or centraldifference approximation as specified by the FD= option (see the section "PROC OPTMODEL Statement" on page 46).

NOTE: The numerical gradient approximations are significantly slower than automatically generated derivatives when the number of optimization variables is large.

## Forward-Difference Approximations

The FD=FORWARD option requests the use of forward-difference derivative approximations. For a function $f$ of $n$ variables, the first-order derivatives are approximated by

$$
g_{i}=\frac{\partial f}{\partial x_{i}}=\frac{f\left(x+e_{i} h_{i}\right)-f(x)}{h_{i}}
$$

Notice that up to $n$ additional function calls are needed here. The step lengths $h_{i}, i=1, \ldots, n$, are based on the assumed function precision, DIGITS:

$$
h_{i}=10^{- \text {DIGITS/2 }}\left(1+\left|x_{i}\right|\right)
$$

You can use the FDIGITS= option to specify the function precision, DIGITS, for the objective function. For constraints, use the CDIGITS $=$ option.
The second-order derivatives are approximated by using up to $n(n+3) / 2$ extra function calls (Dennis and Schnabel 1983, pp. 80, 104):

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x_{i}^{2}} & =\frac{f\left(x+h_{i} e_{i}\right)-2 f(x)+f\left(x-h_{i} e_{i}\right)}{h_{i}^{2}} \\
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} & =\frac{f\left(x+h_{i} e_{i}+h_{j} e_{j}\right)-f\left(x+h_{i} e_{i}\right)-f\left(x+h_{j} e_{j}\right)+f(x)}{h_{i} h_{j}}
\end{aligned}
$$

Notice that the diagonal of the Hessian uses a central-difference approximation (Abramowitz and Stegun 1972, p. 884). The step lengths are

$$
h_{i}=10^{-D I G I T S / 3}\left(1+\left|x_{i}\right|\right)
$$

## Central-Difference Approximations

The FD=CENTRAL option requests the use of central-difference derivative approximations. Generally, central-difference approximations are more accurate than forward-difference approximations, but they require more function evaluations. For a function $f$ of $n$ variables, the first-order derivatives are approximated by

$$
g_{i}=\frac{\partial f}{\partial x_{i}}=\frac{f\left(x+e_{i} h_{i}\right)-f\left(x-e_{i} h_{i}\right)}{2 h_{i}}
$$

Notice that up to $2 n$ additional function calls are needed here. The step lengths $h_{i}, i=1, \ldots, n$, are based on the assumed function precision, DIGITS:

$$
h_{i}=10^{-D I G I T S / 3}\left(1+\left|x_{i}\right|\right)
$$

You can use the FDIGITS = option to specify the function precision, DIGITS, for the objective function. For constraints, use the CDIGITS $=$ option.
The second-order derivatives are approximated by using up to $2 n(n+1)$ extra function calls (Abramowitz and Stegun 1972, p. 884):

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial x_{i}^{2}} & =\frac{-f\left(x+2 h_{i} e_{i}\right)+16 f\left(x+h_{i} e_{i}\right)-30 f(x)+16 f\left(x-h_{i} e_{i}\right)-f\left(x-2 h_{i} e_{i}\right)}{12 h_{i}^{2}} \\
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} & =\frac{f\left(x+h_{i} e_{i}+h_{j} e_{j}\right)-f\left(x+h_{i} e_{i}-h_{j} e_{j}\right)-f\left(x-h_{i} e_{i}+h_{j} e_{j}\right)+f\left(x-h_{i} e_{i}-h_{j} e_{j}\right)}{4 h_{i} h_{j}}
\end{aligned}
$$

The step lengths are

$$
h_{i}=10^{- \text {DIGITSS/3 }}\left(1+\left|x_{i}\right|\right)
$$

## Conversions

Numeric values are implicitly converted to strings when needed for function arguments or operands to the string concatenation operator (II). A warning message is generated when the conversion is applied to a function argument. The conversion uses BEST12. format. Unlike the DATA step, the conversion trims blanks.

Implicit conversion of strings to numbers is not permitted. Use the INPUT function to explicitly perform such conversions.

## More on Index Sets

Dummy parameters behave like parameters but are assigned values only when an index set is evaluated. You can reference the declared dummy parameters from index set expressions that follow the index set item. You can also reference the dummy parameters in the expression or statement controlled by the index set. As the members of the set expression of an index set item are enumerated, the element values of the members are assigned to the local dummy parameters.

The number of names in a dummy parameter declaration must match the element length of the corresponding set expression in the index set item. A single name is allowed when the set member type is scalar (numeric or string). If the set members are tuples that have $n>1$ elements, then $n$ names are required between the angle brackets $(<\rangle)$ that precede the IN keyword.

Multiple index set items in an index set are nominally processed in a left-to-right order. That is, a set expression from an index set item is evaluated as though the index set items that precede it have already been evaluated. The left-hand index set items can assign values to local dummy parameters that are used by the set expressions that follow them. After each member from the set expression is enumerated, any index set items to the right are reevaluated as needed. The actual order in which index set items are evaluated can vary, if necessary, to allow more efficient enumeration. PROC OPTMODEL generates the same set of values in any case, although possibly in a different order than strict left-to-right evaluation.

You can view the element combinations that are generated from an index set as tuples. This is especially true for index set expressions (see the section "Index Set Expression" on page 95). However, in most cases no tuple set is actually formed, and the element values are assigned only to local dummy parameters.

You can specify a selection expression following a colon (:). The index set generates only those combinations of values for which the selection expression is true. For example, the following statements produce a set of upper triangular indices:

```
proc optmodel;
 put (setof {i in 1..3, j in 1..3 : j >= i} <i, j>);
```

These statements produce the output in Figure 4.63.
Figure 4.63 Upper Triangular Index Set

```
{<1, 1>, <1, 2>, <1, 3>, <2, 2>, <2, 3>, <3, 3>}
```

You can use the left-to-right evaluation of index set items to express the previous set more compactly. The following statements produce the same output as the previous statements:

```
proc optmodel;
 put ({i in 1..3, i..3});
```

In this example, the first time the second index set item is evaluated, the value of the dummy parameter i is 1 , so the item produces the set $\{1,2,3\}$. At the second evaluation the value of $i$ is 2 , so the second item produces the set $\{2,3\}$. At the final evaluation the value of $i$ is 3 , so the second item produces the set $\{3\}$.
In many cases it is useful to combine the SLICE operator with index sets. A special form of index set item uses the SLICE operator implicitly. Normally an index set item that is applied to a set of tuples of length greater than one must be of the form

```
< name-1 [, . . name-n] > IN set-expression
```

In the special form, one or more of the name elements are replaced by expressions. The expressions select tuple elements by using the SLICE operator. An expression that consists of a single name must be enclosed in parentheses to distinguish it from a dummy parameter. The remaining names are the dummy parameters for the index set item that is applied to the SLICE result. The following example demonstrates the use of implicit set slicing:

```
proc optmodel;
 number N = 3;
 set<num,str> S = {<1,'a'>,<2,'b'>,<3,'a'>,<4,'b'>};
 put ({i in 1..N, <(i),j> in S});
 put ({i in 1..N, j in slice(<i,*>, S)});
```

The two PUT statements in this example are equivalent.

## Threaded Processing

The OPTMODEL procedure can take advantage of the multiple CPUs that are available in many computers. PROC OPTMODEL automatically uses multithreaded execution to divide problem generation among the multiple CPUs of the computer that is running the procedure. Hessian and Jacobian matrix evaluation is automatically parallelized across threads of execution on multiple CPUs. Threading can decrease the amount of clock time required to perform a task, although the total CPU time required might increase.

If you use the PERFORMANCE statement and specify an NTHREADS option, and the statement does not request distributed computing, then threading in the OPTMODEL procedure is controlled by the NTHREADS option. Otherwise, threading in the OPTMODEL procedure is controlled by the following SAS system options:

## CPUCOUNT=number | ACTUAL

specifies the maximum number of CPUs that can be used.

## THREADS | NOTHREADS

enables or disables the use of threading.
Good performance is usually obtained with the default option settings (THREADS and CPUCOUNT=ACTUAL). See the option descriptions in SAS System Options: Reference for more details.

The PERFORMANCE statement and the SAS system options set the maximum number of threads. The number of threads that PROC OPTMODEL actually uses depends on the characteristics of the problem that is being solved. In particular, threading is not used when the problem is simple enough that threading offers no advantage.

## Macro Variable _OROPTMODEL_

The OPTMODEL procedure creates a macro variable named _OROPTMODEL_. You can inspect the execution of the most recently invoked solver from the value of the macro variable. The macro variable is defined at the start of the procedure and updated after each SOLVE statement is executed. The OPTMODEL procedure also updates the macro variable when an error is detected.

The _OROPTMODEL_ value is a string that consists of several "KEYWORD=value" items in sequence, separated by blanks; for example:

```
STATUS=OK SOLUTION_STATUS=OPTIMAL OBJECTIVE=9 ITERATIONS=1
PRESOLVE_TIME=0 SOLUTION_TIME=0
```

The information contained in _OROPTMODEL_ varies according to which solver was last called. For lists of keywords and possible values, see the individual solver chapters.

If a value has not been computed, then the corresponding element is not included in the value of the macro variable. When PROC OPTMODEL starts, for example, the macro variable value is set to "STATUS=OK" because no SOLVE statement has been executed. If the STATUS= indicates an error, then the other values from the solver might not be available, depending on when the error occurred.

## _STATUS_ and _SOLUTION_STATUS_Parameters

In addition to generating the macro variable _OROPTMODEL_, the OPTMODEL procedure generates the predeclared string parameters _STATUS_ and _SOLUTION_STATUS_.

The value of _STATUS_ is equal to the STATUS= component of the _OROPTMODEL_ macro variable. The value of _STATUS_ is initially "OK". The value is updated during the SOLVE statement and after statement execution errors.

The value of _SOLUTION_STATUS_ is equal to the SOLUTION_STATUS= component of the _OROPTMODEL_ macro variable. The value is initially an empty string. The value is updated during the SOLVE statement.

## Macro and Statement Evaluation Order

PROC OPTMODEL reads a complete statement, such as a DO statement, before executing any code in it. But macro language statements are processed as the code is read. So you must be careful when using the _OROPTMODEL_ macro variable in code that involves SOLVE statements nested in loops or DO statements. The following statements demonstrate one example of this behavior:

```
proc optmodel;
 var x, y;
 min z=x**2 + (x*y-1)**2;
```

```
 for {n in 1..3} do;
 fix x=n;
 solve;
 %put Line 1 &_OROPTMODEL_;
 put 'Line 2 ' (symget("_OROPTMODEL_"));
 end;
quit;
```

In the preceding statements the \%PUT statement is executed once, before any SOLVE statements are executed. It displays PROC OPTMODEL's initial setting of the macro variable. But the PUT statement is executed after each SOLVE statement and indicates the expected solution status.

## Examples: OPTMODEL Procedure

## Example 4.1: Matrix Square Root

This example demonstrates the use of PROC OPTMODEL array parameters and variables. The following statements create a randomized positive definite symmetric matrix and define an optimization model to find the matrix square root of the generated matrix:

```
proc optmodel;
 number n = 5; /* size of matrix */
 /* random original array */
 number A{1..n, 1..n} = 10-20*ranuni(-1);
 /* compute upper triangle of the
 * symmetric matrix A*transpose(A) */
 /* should be positive def unless A is singular */
 number P{i in 1..n, j in i..n};
 for {i in 1..n, j in i..n}
 P[i,j] = sum{k in 1..n} A[i,k]*A[j,k];
 /* coefficients of square root array
 * (upper triangle of symmetric matrix) */
 var q{i in 1..n, i..n};
 /* The default initial value q[i,j]=0 is
 * a local minimum of the objective,
 * so you must move it away from that point. */
 q[1,1] = 1;
 /* minimize difference of square of q from P */
 min r = sum{i in 1..n, j in i..n}
 (sum{k in 1..i} q[k,i]*q[k,j]
 + sum{k in i+1..j} q[i,k]*q[k,j]
 + sum{k in j+1..n} q[i,k]*q[j,k]
 - P[i,j])**2;
 solve;
 print q;
```

These statements define a random array $\mathbf{A}$ of size $n \times n$. The product $\mathbf{P}$ is defined as the matrix product $A A^{T}$. The product is symmetric, so the declaration of the parameter P gives it upper triangular indexing.

The matrix represented by $P$ should be positive definite unless $\mathbf{A}$ is singular. But singularity is unlikely because of the random generation of $\mathbf{A}$. If $\mathbf{P}$ is positive definite, then it has a well-defined square root, $\mathbf{Q}$, such that $P=Q Q^{T}$.

The objective $r$ simply minimizes the sum of squares of the coefficients as

$$
r=\sum_{1 \leq i \leq j \leq n} R_{i, j}^{2}
$$

where $R=Q Q^{T}-P$. (This technique for computing matrix square roots is intended only for the demonstration of PROC OPTMODEL capabilities. Better methods exist.)

Output 4.1.1 shows part of the output from running these statements. The values that are actually displayed depend on the random numbers generated.

Output 4.1.1 Matrix Square Root Results

	1	2	$q$ $3$	4	5
1	12.67867	-8.14753	-6.43848	-0.87666	1.46609
2		-2.45955	-8.23167	4.22369	-8.64930
3			9.20976	2.70390	2.31570
4				-2.41761	-2.44853
5					7.22670

## Example 4.2: Reading From and Creating a Data Set

This example demonstrates how to use the READ DATA statement to read parameters from a SAS data set. The objective is the Bard function, which is the following least squares problem with $I=\{1,2, \ldots, 15\}$ :

$$
\begin{aligned}
& f(x)=\frac{1}{2} \sum_{k \in I}\left[y_{k}-\left(x_{1}+\frac{k}{v_{k} x_{2}+w_{k} x_{3}}\right)\right]^{2} \\
& x=\left(x_{1}, x_{2}, x_{3}\right), \quad y=\left(y_{1}, y_{2}, \ldots, y_{15}\right)
\end{aligned}
$$

where $v_{k}=16-k, w_{k}=\min \left(k, v_{k}\right)(k \in I)$, and

$$
y=(0.14,0.18,0.22,0.25,0.29,0.32,0.35,0.39,0.37,0.58,0.73,0.96,1.34,2.10,4.39)
$$

The minimum function value $f\left(x^{*}\right)=4.107 \mathrm{E}-3$ is at the point $(0.08,1.13,2.34)$. The starting point $x^{0}=$ $(1,1,1)$ is used. This problem is identical to the example "Using the DATA= Option" in Chapter 8, "The NLP Procedure" (SAS/OR User's Guide: Mathematical Programming Legacy Procedures). The following statements use the READ DATA statement to input parameter values and the CREATE DATA statement to save the solution in a SAS data set:

```
data bard;
 input y @@;
 datalines;
. }14\mathrm{ . }18 . 22 . 25 . 29 . 32 . 35 . 39
. }37\mathrm{ . 58 . 73 . }96 1.34 2.10 4.39
;
```

```
proc optmodel;
 set I = 1..15;
 number y{I};
 read data bard into [_n_] y;
 number v{k in I} = 16-k;
 number w{k in I} = min(k, v[k]);
 var x{1..3} init 1;
 min f = 0.5*
 sum{k in I}
 (y[k] - (x[1] + k /
 (v[k]*x[2] + w[k]*x[3])))**2;
 solve;
 print x;
 create data xdata from [i] xd=x;
```

In these statements the values for parameter y are read from the BARD data set. The set I indexes the terms of the objective in addition to the $y$ array.

The preceding statements define two utility parameters that contain coefficients used in the objective function. These coefficients could have been defined in the expression for the objective, $f$, but it was convenient to give them names and simplify the objective expression.

The result is shown in Output 4.2.1.

## Output 4.2.1 Bard Function Solution

$[1]$	$\mathbf{x}$
	1
2	0.08241
1.13303	
3	2.34370

The final CREATE DATA statement saves the solution values determined by the solver into the data set XDATA. The data set contains an observation for each x index. Each observation contains two variables. The output variable $i$ contains the index, while $x d$ contains the value for the indexed entry in the array $x$. The resulting data can be seen by using the PRINT procedure as follows:

```
proc print data=xdata;
run;
```

The output from PROC PRINT is shown in Output 4.2.2.
Output 4.2.2 Output Data Set Contents

Obs	$\mathbf{i}$	$\mathbf{x d}$
1	1	0.08241
2	2	1.13303
3	3	2.34370

## Example 4.3: Model Construction

This example uses PROC OPTMODEL features to simplify the construction of a mathematically formulated model. The model is based on the example "An Assignment Problem" in Chapter 6, "The LP Procedure" (SAS/OR User's Guide: Mathematical Programming Legacy Procedures). A single invocation of PROC OPTMODEL replaces several steps in the PROC LP statements.

The model assigns production of various grades of cloth to a set of machines in order to maximize profit while meeting customer demand. Each machine has different capacities to produce the various grades of cloth. (See the PROC LP example "An Assignment Problem" for more details.) The mathematical formulation, where $x_{i j k}$ represents the amount of cloth of grade $j$ to produce on machine $k$ for customer $i$, follows:

$$
\begin{array}{lll}
\max & \sum_{i j k} r_{i j k} x_{i j k} & \\
\text { subject to } & \sum_{k} x_{i j k}=d_{i j} & \text { for all } i \text { and } j \\
& \sum_{i j} c_{j k} x_{i j k} \leq a_{k} & \text { for all } k \\
& x_{i j k} \geq 0 & \text { for all } i, j, \text { and } k
\end{array}
$$

The OBJECT, DEMAND, and RESOURCE data sets are the same as in the PROC LP example. A new data set, GRADE, is added to help separate the data from the model.

```
title 'An Assignment Problem';
data grade (drop=i);
 do i = 1 to 6;
 grade = 'grade'||put(i,1.);
 output;
 end;
run;
data object;
 input machine customer
 grade1 grade2 grade3 grade4 grade5 grade6;
 datalines;
1 1 1 102 140 105 105 125 148
1 2 115 133 118 118 143 166
1 3
1 4 4 79 117 87 87 107 105
1 5 7 77 115 90 90 105 148
2 1 123 150 125 124 154
2 2 130 157 132 131 166 .
2 3 103 130 115 114 129 .
2 4 101 128 108 107 137 .
2 5 118 145 130 129 154 .
3 1 83 . . 97 122 147
3 2 119 . . 133 163 180
3 3 67 . . 91 101 101
3 4 85 . . 104 129 129
5 90 . . 114 134 179
4 1 108 121 79 . 112 132
```

```
4 2 121 132 92 . 130 150
4 3 7r 78 91 59 . 77 72
44100 113 76 . 109 104
4 5 96 109 77 . 105 145
;
data demand;
 input customer
 grade1 grade2 grade3 grade4 grade5 grade6;
 datalines;
1 100 100 150}10150 175 25
2 300 125 300 275 310}30
3400}00400 500 340 0,
4 250 0 750 750 0 0
5 0 600 300 0 210 360
;
data resource;
 input machine
 grade1 grade2 grade3 grade4 grade5 grade6 avail;
 datalines;
1 . 250 . 275 . 300 . 350 . 310 . }295 74
2 . 300 . 300 . 305 . 315 . 320 . }24
3 . 350 . . . 320 . 315 . 300 790
4 . 280 . 275 . 260 . . 250 . 295 672
;
```

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve the model, and output the optimal solution to a SAS data set called SOLUTION:

```
proc optmodel;
 /* declare index sets */
 set CUSTOMERS;
 set <str> GRADES;
 set MACHINES;
 /* declare parameters */
 num return {CUSTOMERS, GRADES, MACHINES} init 0;
 num demand {CUSTOMERS, GRADES};
 num cost {GRADES, MACHINES} init 0;
 num avail {MACHINES};
 /* read the set of grades */
 read data grade into GRADES=[grade];
 /* read the set of customers and their demands */
 read data demand
 into CUSTOMERS=[customer]
 {j in GRADES} <demand[customer,j]=col(j)>;
```

```
 /* read the set of machines, costs, and availability */
 read data resource nomiss
 into MACHINES=[machine]
 {j in GRADES} <cost[j,machine]=col(j)>
 avail;
 /* read objective data */
 read data object nomiss
 into [machine customer]
 {j in GRADES} <return[customer,j,machine]=col(j)>;
 /* declare the model */
 var AmountProduced {CUSTOMERS, GRADES, MACHINES} >= 0;
 max TotalReturn = sum {i in CUSTOMERS, j in GRADES, k in MACHINES}
 return[i,j,k] * AmountProduced[i,j,k];
 con req_demand {i in CUSTOMERS, j in GRADES}:
 sum {k in MACHINES} AmountProduced[i,j,k] = demand[i,j];
con req_avail {k in MACHINES}:
 sum {i in CUSTOMERS, j in GRADES}
 cost[j,k] * AmountProduced[i,j,k] <= avail[k];
 /* call the solver and save the results */
 solve;
 create data solution
 from [customer grade machine] = {i in CUSTOMERS, j in GRADES,
 k in MACHINES: AmountProduced[i,j,k].sol ne 0}
 amount=AmountProduced;
 /* print optimal solution */
 print AmountProduced;
quit;
```

The statements use both numeric (NUM) and character (STR) index sets, which are populated from the corresponding data set variables in the READ DATA statements. The OPTMODEL parameters can be either single-dimensional (AVAIL) or multiple-dimensional (COST, DEMAND, RETURN). The RETURN and COST parameters are given initial values of 0 , and the NOMISS option in the READ DATA statement tells PROC OPTMODEL to read only the nonmissing values from the input data sets. The model declaration is nearly identical to the mathematical formulation. The logical condition AmountProduced [i,j,k].sol ne 0 in the CREATE DATA statement ensures that only the nonzero parts of the solution appear in the SOLUTION data set. In the PROC LP example, the creation of this data set required postprocessing of the PROC LP output data set.

The solver produces the following problem summary and solution summary:

Output 4.3.1 LP Solver Result


The SOLUTION data set can be processed by PROC TABULATE as follows to create a compact representation of the solution:

```
proc tabulate data=solution;
 class customer grade machine;
 var amount;
 table (machine*customer), (grade*amount=''*sum='');
run;
```

These statements produce the table shown in Output 4.3.2.

Output 4.3.2 An Assignment Problem


Output 4.3.2 continued


## Example 4.4: Set Manipulation

This example demonstrates PROC OPTMODEL set manipulation operators. These operators are used to compute the set of primes up to a given limit. This example does not solve an optimization problem, but similar set manipulation could be used to set up an optimization model. Here are the statements:

```
proc optmodel;
 number maxprime; /* largest number to consider */
 set composites =
 union {i in 3..sqrt(maxprime) by 2} i*i..maxprime by 2*i;
```

```
set primes = {2} union (3..maxprime by 2 diff composites);
maxprime = 500;
put primes;
```

The set composites contains the odd composite numbers up to the value of the parameter maxprime. The even numbers are excluded here to reduce execution time and memory requirements. The UNION aggregation operation is used in the definition to combine the sets of odd multiples of $i$ for $i=3,5, \ldots$. Any composite number less than the value of the parameter maxprime has a divisor $\leq \sqrt{\text { maxprime }}$, so the range of $i$ can be limited. The set of multiples of $i$ can also be started at $i \times i$ since smaller multiples are found in the set of multiples for a smaller index.

You can then define the set primes. The odd primes are determined by using the DIFF operator to remove the composites from the set of odd numbers no greater than the parameter maxprime. The UNION operator adds the single even prime, 2 , to the resulting set of primes.

The PUT statement produces the result in Output 4.4.1.
Output 4.4.1 Primes less than or equal to 500

```
{2,3,5,7,11,13,17,19,23,29,31, 37, 41, 43,47,53,59,61,67,71,73,79, 83, 89, 97, 101, 103,
107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173,179, 181, 191, 193, 197, 199, 211,
223,227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331,
337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397,401,409,419,421,431, 433,439,443,449,
457,461,463,467,479,487,491,499}
```

Note that you were able to delay the definition of the value of the parameter maxprime until just before the PUT statement. Since the defining expressions of the SET declarations are handled symbolically, the value of maxprime is not necessary until you need the value of the set primes. Because the sets composites and primes are defined symbolically, their values reflect any changes to the parameter maxprime. You can see this update by appending the following statements to the preceding statements:

```
maxprime = 50;
put primes;
```

The additional statements produce the results in Output 4.4.2. The value of the set primes has been recomputed to reflect the change to the parameter maxprime.

Output 4.4.2 Primes less than or equal to 50

```
{2,3,5,7,11,13,17,19,23,29,31,37,41,43,47}
```


## Example 4.5: Multiple Subproblems

Many important optimization problems cannot be solved directly using a standard solver, either because the problem has constraints that cannot be modeled directly or because the resulting model would be too large to be practical. For these types of problems, you can use PROC OPTMODEL to synthesize solution methods by using a combination of the existing solvers and the modeling language programming constructions. This example demonstrates the use of multiple subproblems to solve the cutting stock problem.

The cutting stock problem determines how to efficiently cut raw stock into finished widths based on the demands for the final product. Consider the example from page 195 of Chvátal (1983), where raw stock has a width of 100 inches and the demands are shown in Table 4.15.

Table 4.15 Cutting Stock Demand

Finished Width	Demand
45 inches	97
35 inches	610
31 inches	395
14 inches	211

A portion of the demand can be satisfied using a cutting pattern. For example, with the demands in Table 4.15 a possible pattern cuts one final of width 35 inches, one final of width 31 inches, and two finals of width 14 inches. This gives:

$$
100=0 * 45+1 * 35+1 * 31+2 * 14+\text { waste. }
$$

The cutting stock problem can be formulated as follows, where $x_{j}$ represents the number of times pattern $j$ appears, $a_{i j}$ represents the number of times demand item $i$ appears in pattern $j, d_{i}$ is the demand for item $i, w_{i}$ is the width of item $i, N$ represents the set of patterns, $M$ represents the set of items, and $W$ is the width of the raw stock:

$$
\begin{array}{lll}
\operatorname{minimize} & \sum_{j \in N} x_{j} & \\
\text { subject to } & \sum_{j \in N} a_{i j} x_{j} \geq d_{i} & \text { for all } i \in M \\
& x_{j} \text { integer, } \geq 0 & \text { for all } j \in N
\end{array}
$$

Also for each feasible pattern $j$ you must have:

$$
\sum_{i \in M} w_{i} a_{i j} \leq W
$$

The difficulty with this formulation is that the number of patterns can be very large, with too many columns $x_{j}$ to solve efficiently. But you can use column generation, as described on page 198 of Chvátal (1983), to generate a smaller set of useful patterns, starting from an initial feasible set.

The dual variables, $\pi_{i}$, of the demand constraints are used to price out the columns. From linear programming (LP) duality theory, a column that improves the primal solution must have a negative reduced cost. For this problem the reduced cost for column $x_{j}$ is

$$
1-\sum_{i \in M} \pi_{i} a_{i j}
$$

Using this observation produces a knapsack subproblem:

$$
\begin{array}{ll}
\operatorname{minimize} & 1-\sum_{i \in M} \pi_{i} a_{i} \\
\text { subject to } & \sum_{i \in M} w_{i} a_{i} \leq W \\
& a_{i} \text { integer }, \geq 0 \quad \text { for all } j \in N
\end{array}
$$

where the objective is equivalent to:

$$
\operatorname{maximize} \sum_{i \in M} \pi_{i} a_{i}
$$

The pattern is useful if the associated reduced cost is negative:

$$
1-\sum_{i \in M} \pi_{i} a_{i}^{*}<0
$$

So you can use the following steps to generate the patterns and solve the cutting stock problem:

1. Initialize a set of trivial (one item) patterns.
2. Solve the problem using the LP solver.
3. Minimize the reduced cost using a knapsack solver.
4. Include the new pattern if the reduced cost is negative.
5. Repeat steps 2 through 4 until there are no more negative reduced cost patterns.

These steps are implemented in the following statements. Since adding columns preserves primal feasibility, the statements use the primal simplex solver to take advantage of a warm start. The statements also solve the LP relaxation of the problem, but you want the integer solution. So the statements finish by using the MILP solver with the integer restriction applied. The result is not guaranteed to be optimal, but lower and upper bounds can be provided for the optimal objective.

```
/* cutting-stock problem */
/* uses delayed column generation from
 Chvatal's Linear Programming (1983), page 198 */
%macro csp(capacity);
proc optmodel printlevel=0;
 /* declare parameters and sets */
 num capacity = &capacity;
 set ITEMS;
 num demand {ITEMS};
 num width {ITEMS};
 num num_patterns init card(ITEMS);
 set PATTERNS = 1..num_patterns;
 num a {ITEMS, PATTERNS};
 num c {ITEMS} init 0;
 num epsilon = 1E-6;
 /* read input data */
 read data indata into ITEMS=[_N_] demand width;
 /* generate trivial initial columns */
 for {i in ITEMS, j in PATTERNS}
 a[i,j] = (if (i = j) then floor(capacity/width[i]) else 0);
```

```
/* define master problem */
var x {PATTERNS} >= O integer;
minimize NumberOfRaws = sum {j in PATTERNS} x[j];
con demand_con {i in ITEMS}:
 sum {j in PATTERNS} a[i,j] * x[j] >= demand[i];
problem Master include x NumberOfRaws demand_con;
/* define column generation subproblem */
var y {ITEMS} >= 0 integer;
maximize KnapsackObjective = sum {i in ITEMS} c[i] * y[i];
con knapsack_con:
 sum {i in ITEMS} width[i] * y[i] <= capacity;
problem Knapsack include y KnapsackObjective knapsack_con;
/* main loop */
do while (1);
 print _page_ a;
 /* master problem */
 /* minimize sum_j x[j]
 subj. to sum_j a[i,j] * x[j] >= demand[i]
 x[j] >= 0 and integer */
 use problem Master;
 put "solve master problem";
 solve with lp relaxint /
 presolver=none solver=ps basis=warmstart printfreq=1;
 print x;
 print demand_con.dual;
 for {i in ITEMS} c[i] = demand_con[i].dual;
 /* knapsack problem */
 /* maximize sum_i c[i] * y[i]
 subj. to sum_i width[i] * y[i] <= capacity
 y[i] >= O and integer */
 use problem Knapsack;
 put "solve column generation subproblem";
 solve with milp / printfreq=0;
 for {i in ITEMS} y[i] = round(y[i]);
 print y;
 print KnapsackObjective;
 if KnapsackObjective <= 1 + epsilon then leave;
 /* include new pattern */
 num_patterns = num_patterns + 1;
 for {i in ITEMS} a[i,num_patterns] = y[i];
end;
/* solve IP, using rounded-up LP solution as warm start */
use problem Master;
for {j in PATTERNS} x[j] = ceil(x[j].sol);
put "solve (restricted) master problem as IP";
solve with milp / primalin;
```

```
 /* cleanup solution and save to output data set */
 for {j in PATTERNS} x[j] = round(x[j].sol);
 create data solution from [pattern]={j in PATTERNS: x[j] > 0}
 raws=x {i in ITEMS} <col('i'||i)=a[i,j]>;
quit;
%mend csp;
/* Chvatal, p.199 */
data indata;
 input demand width;
 datalines;
78 25.5
40 22.5
30 20
30 15
;
run;
%csp (91)
/* LP solution is integer */
/* Chvatal, p. }195\mathrm{ */
data indata;
 input demand width;
 datalines;
 9745
610 36
395 31
211 14
;
run;
%csp (100)
/* LP solution is fractional */
```

The contents of the output data set for the second problem instance are shown in Output 4.5.1.
Output 4.5.1 Cutting Stock Solution

Obs	pattern	raws	i1	i2	i3	i4	
	1	1	49	2	0	0	0
2	2	100	0	2	0	0	
3	5	106	0	2	0	2	
4	6	198	0	1	2	0	

## Example 4.6: Traveling Salesman Problem

This example demonstrates the use of the SUBMIT statement to execute a block of SAS statements from within a PROC OPTMODEL session. In this case, the SUBMIT block calls the GPLOT procedure to display intermediate results during the solution of an instance of the traveling salesman problem (TSP). The problem is described in Example 6.4. See the "Examples" section in Chapter 2, "The OPTNET Procedure"
(SAS/OR User's Guide: Network Optimization Algorithms). for an example of how to use PROC OPTNET to solve the TSP.

The following DATA step converts a TSPLIB instance of type EUC_2D into a SAS data set that contains the coordinates of the vertices:

```
%let tsplib = \\ordsrv3\ormp\ormpdata\milp\TSP\st70.tsp;
/* convert the TSPLIB instance into a data set */
data tspData(drop=H);
 infile "&tsplib";
 input H $1. @;
 if H not in ('N','T','C','D','E');
 input @1 var1-var3;
run;
```

The following macro generates plots of the solution and objective value:

```
%macro plotTSP;
 /* create Annotate data set to draw subtours */
 data anno(drop=xi yi xj yj);
 %SYSTEM(2, 2, 2);
 set solData(keep=xi yi xj yj);
 %LINE(xi, yi, xj, yj, *, 1, 1);
 run;
 title1 h=2 "TSP: Iter = &i, Objective = &&obj&i";
 title2;
 proc gplot data=tspData anno=anno;
 axis1 label=none;
 symboll value=dot interpol=none
 pointlabel=("#var1" nodropcollisions height=1) cv=black;
 plot var3*var2 / haxis=axis1 vaxis=axis1;
 run;
 quit;
%mend plotTSP;
%annomac;
```

The following PROC OPTMODEL statements solve the TSP by using the subtour formulation and iteratively adding subtour constraints. The SUBMIT statement calls the \%plotTSP macro to plot the solution and objective value at each stage.

```
/* iterative solution using the subtour formulation */
proc optmodel;
 set VERTICES;
 set EDGES = {i in VERTICES, j in VERTICES: i > j};
 num xc {VERTICES};
 num yc {VERTICES};
 num numsubtour init 0;
 set SUBTOUR {1..numsubtour};
```

```
/* read in the instance and customer coordinates (xc, yc) */
read data tspData into VERTICES=[var1] xc=var2 yc=var3;
/* the cost is the euclidean distance rounded to the nearest integer */
num c {<i,j> in EDGES}
 init floor(sqrt(((xc[i]-xc[j])**2 + (yc[i]-yc[j])**2)) + 0.5);
var x {EDGES} binary;
/* minimize the total cost */
min obj =
 sum {<i,j> in EDGES} c[i,j] * x[i,j];
/* each vertex has exactly one in-edge and one out-edge */
con two_match {i in VERTICES}:
 sum {j in VERTICES: i > j} x[i,j]
 + sum {j in VERTICES: i < j} x[j,i] = 2;
/* no subtours (these constraints are generated dynamically) */
con subtour_elim {s in 1..numsubtour}:
 sum {<i,j> in EDGES: (i in SUBTOUR[s] and j not in SUBTOUR[s])
 or (i not in SUBTOUR[s] and j in SUBTOUR[s])} x[i,j] >= 2;
/* this starts the algorithm to find violated subtours */
set <num,num> EDGES1;
set INITVERTICES = setof{<i,j> in EDGES1} i;
set VERTICES1;
set NEIGHBORS;
set <num,num> CLOSURE;
num component {INITVERTICES};
num numcomp init 2;
num iter init 1;
call symput('i',trim(left(put(round(iter),best.))));
num numiters init 1;
/* initial solve with just matching constraints */
solve;
call symput(compress('obj'||put(iter,best.)),
 trim(left(put(round(obj),best.))));
/* create a data set for use by PROC GPLOT */
create data solData from
 [i j]={<i,j> in EDGES: x[i,j].sol > 0.5}
 xi=xc[i] yi=yc[i] xj=xc[j] yj=yc[j];
submit;
 %plotTSP;
endsubmit;
/* while the solution is disconnected, continue */
do while (numcomp > 1);
 iter = iter + 1;
 call symput('i',trim(left(put(round(iter),best.))));
```

```
 /* find connected components of support graph */
 EDGES1 = {<i,j> in EDGES: round(x[i,j].sol) = 1};
 EDGES1 = EDGES1 union {setof {<i,j> in EDGES1} <j,i>};
 VERTICES1 = INITVERTICES;
 CLOSURE = EDGES1;
 for {i in INITVERTICES} component[i] = 0;
 for {i in VERTICES1} do;
 NEIGHBORS = slice(<i,*>,CLOSURE);
 CLOSURE = CLOSURE union (NEIGHBORS cross NEIGHBORS);
end;
 numcomp = 0;
 do while (card(VERTICES1) > 0);
 numcomp = numcomp + 1;
 for {i in VERTICES1} do;
 NEIGHBORS = slice(<i,*>,CLOSURE);
 for {j in NEIGHBORS} component[j] = numcomp;
 VERTICES1 = VERTICES1 diff NEIGHBORS;
 leave;
 end;
 end;
 if numcomp = 1 then leave;
 numiters = iter;
 numsubtour = numsubtour + numcomp;
 for {comp in 1..numcomp} do;
 SUBTOUR[numsubtour-numcomp+comp]
 = {i in VERTICES: component[i] = comp};
 end;
 solve;
 call symput(compress('obj'||put(iter,best.)),
 trim(left(put(round(obj),best.))));
 /* create a data set for use by PROC GPLOT */
 create data solData from
 [i j]={<i,j> in EDGES: x[i,j].sol > 0.5}
 xi=xc[i] yi=yc[i] xj=xc[j] yj=yc[j];
 call symput('numiters',put(numiters,best.));
 submit;
 %plotTSP;
 endsubmit;
 end;
quit;
```

The plot in Output 4.6 .1 shows the solution and objective value at each stage. Each stage restricts some subset of subtours. When you reach the final stage, you have a valid tour.

Output 4.6.1 Iterative Solution of Traveling Salesman Problem


## Rewriting PROC NLP Models for PROC OPTMODEL

This section covers techniques for converting PROC NLP models to PROC OPTMODEL models.
To illustrate the basics, consider the following first version of the PROC NLP model for the example "Simple Pooling Problem" in Chapter 8, "The NLP Procedure" (SAS/OR User's Guide: Mathematical Programming Legacy Procedures):

```
proc nlp all;
 parms amountx amounty amounta amountb amountc
 pooltox pooltoy ctox ctoy pools = 1;
 bounds 0 <= amountx amounty amounta amountb amountc,
 amountx <= 100,
 amounty <= 200,
 0 <= pooltox pooltoy ctox ctoy,
 1 <= pools <= 3;
 lincon amounta + amountb = pooltox + pooltoy,
 pooltox + ctox = amountx,
```

```
 pooltoy + ctoy = amounty,
 ctox + ctoy = amountc;
 nlincon nlc1-nlc2 >= 0.,
 nlc3 = 0.;
max f;
costa = 6; costb = 16; costc = 10;
costx = 9; costy = 15;
f = costx * amountx + costy * amounty
- costa * amounta - costb * amountb - costc * amountc;
nlc1 = 2.5 * amountx - pools * pooltox - 2. * ctox;
nlc2 = 1.5 * amounty - pools * pooltoy - 2. * ctoy;
nlc3 = 3 * amounta + amountb - pools * (amounta + amountb);
run;
```

These statements define a model that has bounds, linear constraints, nonlinear constraints, and a simple objective function. The following statements are a straightforward conversion of the PROC NLP statements to PROC OPTMODEL form:

```
proc optmodel;
 var amountx init 1 >= 0 <= 100,
 amounty init 1 >= 0 <= 200;
 var amounta init 1 >= 0,
 amountb init 1 >= 0,
 amountc init 1 >= 0;
 var pooltox init 1 >= 0,
 pooltoy init 1 >= 0;
 var ctox init 1 >= 0,
 ctoy init 1 >= 0;
 var pools init 1 >=1 <= 3;
 con amounta + amountb = pooltox + pooltoy,
 pooltox + ctox = amountx,
 pooltoy + ctoy = amounty,
 ctox + ctoy = amountc;
 number costa, costb, costc, costx, costy;
 costa = 6; costb = 16; costc = 10;
 costx = 9; costy = 15;
 max f = costx * amountx + costy * amounty
 - costa * amounta - costb * amountb - costc * amountc;
 con nlc1: 2.5 * amountx - pools * pooltox - 2. * ctox >= 0,
 nlc2: 1.5 * amounty - pools * pooltoy - 2. * ctoy >= 0,
 nlc3: 3 * amounta + amountb - pools * (amounta + amountb)
 = 0;
 solve;
 print amountx amounty amounta amountb amountc
 pooltox pooltoy ctox ctoy pools;
```

The PROC OPTMODEL variable declarations were split into individual declarations because PROC OPTMODEL does not permit name lists in its declarations. In the OPTMODEL procedure, variable bounds are part of the variable declaration instead of a separate BOUNDS statement. The PROC NLP statements are as follows:

```
parms amountx amounty amounta amountb amountc
 pooltox pooltoy ctox ctoy pools = 1;
bounds 0 <= amountx amounty amounta amountb amountc,
```

```
 amountx <= 100,
 amounty <= 200,
0 <= pooltox pooltoy ctox ctoy,
1 <= pools <= 3;
```

The following PROC OPTMODEL statements are equivalent to the PROC NLP statements:

```
var amountx init 1 >= 0 <= 100,
 amounty init 1 >= 0 <= 200;
var amounta init 1 >= 0,
 amountb init 1 >= 0,
 amountc init 1 >= 0;
var pooltox init 1 >= 0,
 pooltoy init 1 >= 0;
var ctox init 1 >= 0,
 ctoy init 1 >= 0;
var pools init 1 >= 1 <= 3;
```

The linear constraints are declared in the PROC NLP model with the following statement:

```
lincon amounta + amountb = pooltox + pooltoy,
 pooltox + ctox = amountx,
 pooltoy + ctoy = amounty,
 ctox + ctoy = amountc;
```

The following linear constraint declarations in the PROC OPTMODEL model are quite similar to the PROC NLP LINCON declarations:

```
con amounta + amountb = pooltox + pooltoy,
 pooltox + ctox = amountx,
 pooltoy + ctoy = amounty,
 ctox + ctoy = amountc;
```

But PROC OPTMODEL provides much more flexibility in defining linear constraints. For example, a coefficient can be a named parameter or any other expression that evaluates to a constant.

The cost parameters are declared explicitly in the PROC OPTMODEL model. Unlike the DATA step or PROC NLP, PROC OPTMODEL requires names to be declared before they are used. There are multiple ways to set the values of these parameters. The preceding example used assignments. The values could have been made part of the declaration by using the INIT expression clause or the $=$ expression clause. The values could also have been read from a data set with the READ DATA statement.

In the original PROC NLP statements the assignment to a parameter such as costa occurs every time the objective function is evaluated. However, the assignment occurs just once in the PROC OPTMODEL statements, when the assignment statement is processed. This works because the values are constant. But the PROC OPTMODEL statements permit the parameters to be reassigned later to interactively modify the model.

The following statements define the objective $f$ in the PROC NLP model:

```
max f;
f = costx * amountx + costy * amounty
 - costa * amounta - costb * amountb - costc * amountc;
```

The PROC OPTMODEL version of the objective is defined with the same expression text, as follows:

```
max f = costx * amountx + costy * amounty
 - costa * amounta - costb * amountb - costc * amountc;
```

But in PROC OPTMODEL the MAX statement and the assignment to the name $f$ in the PROC NLP statements are combined. There are advantages and disadvantages to this approach. The PROC OPTMODEL formulation is much closer to the mathematical formulation of the model. However, if there are multiple intermediate variables being used to structure the objective, then multiple IMPVAR declarations are required.

In the PROC NLP model, the nonlinear constraints use the following syntax:

```
nlincon nlc1-nlc2 >= 0.,
 nlc3 = 0.;
nlc1 = 2.5 * amountx - pools * pooltox - 2. * ctox;
nlc2 = 1.5 * amounty - pools * pooltoy - 2. * ctoy;
nlc3 = 3 * amounta + amountb - pools * (amounta + amountb);
```

In the PROC OPTMODEL model, the equivalent statements are as follows:

```
con nlc1: 2.5 * amountx - pools * pooltox - 2. * ctox >= 0,
 nlc2: 1.5 * amounty - pools * pooltoy - 2. * ctoy >= 0,
 nlc3: 3 * amounta + amountb - pools * (amounta + amountb)
 = 0;
```

The nonlinear constraints in PROC OPTMODEL use the same syntax as linear constraints. In fact, if the variable pools were declared as a parameter, then all the preceding constraints would be linear. The nonlinear constraint in PROC OPTMODEL combines the NLINCON statement of PROC NLP with the assignment in the PROC NLP statements. As in objective expressions, objective names can be used in nonlinear constraint expressions to structure the formula.

The PROC OPTMODEL model does not use a RUN statement to invoke the solver. Instead the solver is invoked interactively by the SOLVE statement in PROC OPTMODEL. By default, the OPTMODEL procedure prints much less data about the optimization process. Generally this consists of messages from the solver (such as the termination reason) and a short status display. The PROC OPTMODEL statements add a PRINT statement in order to display the variable estimates from the solver.

The model for the example "Chemical Equilibrium" in Chapter 8, "The NLP Procedure" (SAS/OR User's Guide: Mathematical Programming Legacy Procedures), is used to illustrate how to convert PROC NLP code that handles arrays into PROC OPTMODEL form. The PROC NLP model is as follows:

```
proc nlp tech=tr pall;
 array c[10] -6.089 -17.164 -34.054 -5.914 -24.721
 -14.986 -24.100 -10.708 -26.662 -22.179;
 array x[10] x1-x10;
 min y;
 parms x1-x10 = .1;
 bounds 1.e-6 <= x1-x10;
 lincon 2. = x1 + 2. * x2 + 2. * x3 + x6 + x10,
 1. = x4 + 2. * x5 + x6 + x7,
 1. = x3 + x7 + x8 + 2. * x9 + x10;
 s = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10;
 y = 0.;
 do j = 1 to 10;
 y = y + x[j] * (c[j] + log(x[j] / s));
 end;
run;
```

The model finds an equilibrium state for a mixture of chemicals. The following statements show a corresponding PROC OPTMODEL model:

```
proc optmodel;
 set CMP = 1..10;
 number c{CMP} = [-6.089 -17.164 -34.054 -5.914 -24.721
 -14.986 -24.100 -10.708 -26.662 -22.179];
 var x{CMP} init 0.1 >= 1.e-6;
 con 2. = x[1] + 2. * x[2] + 2. * x[3] + x[6] + x[10],
 1. = x[4] + 2. * x[5] + x[6] + x[7],
 1. = x[3] + x[7] + x[8] + 2. * x[9] + x[10];
 /* replace the variable s in the PROC NLP model */
 impvar s = sum{i in CMP} x[i];
 min y = sum{j in CMP} x[j] * (c[j] + log(x[j] / s));
 solve;
 print x y;
```

The PROC OPTMODEL model uses the set CMP to represent the set of compounds, which are numbered 1 to 10 in the example. The array $c$ was initialized by using the equivalent PROC OPTMODEL syntax. The individual array locations could also have been initialized by assignment or READ DATA statements.

The VAR declaration for variable $x$ combines the VAR and BOUNDS statements of the PROC NLP model. The index set of the array is based on the set of compounds CMP, to simplify changes to the model.

The linear constraints are similar in form to the PROC NLP model. However, the PROC OPTMODEL version uses the array form of the variable names because the OPTMODEL procedure treats arrays as distinct variables, not as aliases of lists of scalar variables.

The implicit variable s replaces the intermediate variable of the same name in the PROC NLP model. This is an example of translating an intermediate variable from the other models to PROC OPTMODEL. An alternative way is to use an additional constraint for every intermediate variable. In the preceding statements, instead of declaring objective $s$, you can use the following statements:

```
var s;
con s = sum{i in CMP} x[i];
```

Note that this alternative formulation passes an extra variable and constraint to the solver. This formulation can sometimes be solved more efficiently, depending on the characteristics of the model.

The PROC OPTMODEL version uses a SUM operator over the set CMP, which enhances the flexibility of the model to accommodate possible changes in the set of compounds.

In the PROC NLP model, the objective function $y$ is determined by an explicit loop. With PROC OPTMODEL, the DO loop is replaced by a SUM aggregation operation. The accumulation in the PROC NLP model is now performed by PROC OPTMODEL with the SUM operator.

This PROC OPTMODEL model can be further generalized. Note that the array initialization and constraints assume a fixed set of compounds. You can rewrite the model to handle an arbitrary number of compounds and chemical elements. The new model loads the linear constraint coefficients from a data set along with the objective coefficients for the parameter c , as follows:

```
data comp;
 input c a_1 a_2 a_3;
 datalines;
-6.089 1 0 0
-17.164 2 0 0
-34.054 2 0 1
-5.914 0 1 0
-24.721 0 2 0
-14.986 1 1 0
-24.100 0 1 1
-10.708 0 0 1
-26.662 0 0 2
-22.179 1 0 1
;
data atom;
 input b @@;
 datalines;
2. 1. 1.
;
proc optmodel;
 set CMP;
 set ELT;
 number c{CMP};
 number a{ELT,CMP};
 number b{ELT};
 read data atom into ELT=[_n_] b;
 read data comp into CMP=[_n_]
 c {i in ELT} < a[i,_n_]=col("a_"||i) >;
 var x{CMP} init 0.1 >= 1.e-6;
 con bal{i in ELT}: b[i] = sum{j in CMP} a[i,j]*x[j];
 impvar s = sum{i in CMP} x[i];
 min y = sum{j in CMP} x[j] * (c[j] + log(x[j] / s));
```

```
print a b;
solve;
print x;
```

This version adds coefficients for the linear constraints to the COMP data set. The data set variable a $n$ represents the number of atoms in the compound for element $n$. The READ DATA statement for COMP uses the iterated column syntax to read each of the data set variables a $n$ into the appropriate location in the array $a$. In this example the expanded data set variable names are $a_{-} 1, a _2$, and $a _3$.
The preceding version also adds a new set, ELT, of chemical elements and a numeric parameter, b , that represents the left-hand side of the linear constraints. The data values for the parameters ELT and $b$ are read from the data set ATOM. The model can handle varying sets of chemical elements because of this extra data set and the new parameters.

The linear constraints have been converted to a single, indexed family of constraints. One constraint is applied for each chemical element in the set ELT. The constraint expression uses a simple form that applies generally to linear constraints. The following PRINT statement in the model shows the values read from the data sets to define the linear constraints:

```
print a b;
```

The PRINT statements in the model produce the results shown in Output 4.6.2.

## Output 4.6.2 PROC OPTMODEL Output



In the preceding model the chemical elements and compounds are designated by numbers. So in the PRINT output, for example, the row that is labeled " 3 " represents the amount of the compound $\mathrm{H}_{2} \mathrm{O}$. PROC OPTMODEL is capable of using more symbolic strings to designate array indices. The following version of the model uses strings to index arrays:

```
data comp;
 input name $ c a_h a_n a_o;
 datalines;
H -6.089 1 0 0
H2 -17.164 2 O O
H2O -34.054 2 0 1
N -5.914 0 1 0
N2 -24.721 0 2 0
NH -14.986 1 1 0
NO -24.100 0 1 1
0 -10.708 0 0 1
02 -26.662 0 0 2
OH -22.179 1 O 1
;
data atom;
 input name $ b;
 datalines;
H 2.
N 1.
O 1.
;
proc optmodel;
 set<string> CMP;
 set<string> ELT;
 number c{CMP};
 number a{ELT,CMP};
 number b{ELT};
 read data atom into ELT=[name] b;
 read data comp into CMP=[name]
 c {i in ELT} < a[i,name]=col("a_"||i) >;
 var x{CMP} init 0.1 >= 1.e-6;
 con bal{i in ELT}: b[i] = sum{j in CMP} a[i,j]*x[j];
 impvar s = sum{i in CMP} x[i];
 min y = sum{j in CMP} x[j] * (c[j] + log(x[j] / s));
 solve;
 print x;
```

In this model the sets CMP and ELT are now sets of strings. The data sets provide the names of the compounds and elements. The names of the data set variables for atom counts in the data set COMP now include the chemical element symbol as part of their spelling. For example, the atom count for element H (hydrogen) is named a_h. Note that these changes did not require any modification to the specifications of the linear constraints or the objective.

The PRINT statement in the preceding statements produces the results shown in Output 4.6.3. The indices of variable $x$ are now strings that represent the actual compounds.

Output 4.6.3 PROC OPTMODEL Output with Strings

	[1]
H	0.04066848
H2	0.14773067
H2O	0.78315260
N	0.00141459
N2	0.48524616
NH	0.00069358
NO	0.02739955
O	0.01794757
O2	0.03731444
OH	0.09687143

## References

Abramowitz, M. and Stegun, I. A. (1972), Handbook of Mathematical Functions, New York: Dover Publications.

Bazaraa, M. S., Sherali, H. D., and Shetty, C. M. (1993), Nonlinear Programming: Theory and Algorithms, New York: John Wiley \& Sons.

Chvátal, V. (1983), Linear Programming, New York: W. H. Freeman and Company.
Dennis, J. E. and Schnabel, R. B. (1983), Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Englewood, NJ: Prentice-Hall.

Fletcher, R. (1987), Practical Methods of Optimization, Second Edition, Chichester, UK: John Wiley \& Sons.

Nocedal, J. and Wright, S. J. (1999), Numerical Optimization, New York: Springer-Verlag.

## Chapter 5 The Linear Programming Solver

## Contents

Overview: LP Solver ..... 172
Getting Started: LP Solver ..... 172
Syntax: LP Solver ..... 174
Functional Summary ..... 174
LP Solver Options ..... 175
Details: LP Solver ..... 181
Presolve ..... 181
Pricing Strategies for the Primal and Dual Simplex Solvers ..... 181
The Network Simplex Algorithm ..... 181
The Interior Point Algorithm ..... 182
Iteration Log for the Primal and Dual Simplex Solvers ..... 184
Iteration Log for the Network Simplex Solver ..... 185
Iteration Log for the Interior Point Solver ..... 185
Iteration Log for the Crossover Algorithm ..... 186
Concurrent LP (Experimental) ..... 187
Problem Statistics ..... 187
Variable and Constraint Status ..... 188
Irreducible Infeasible Set ..... 189
Macro Variable _OROPTMODEL ..... 190
Examples: LP Solver ..... 192
Example 5.1: Diet Problem ..... 192
Example 5.2: Reoptimizing the Diet Problem Using BASIS=WARMSTART ..... 195
Example 5.3: Two-Person Zero-Sum Game ..... 202
Example 5.4: Finding an Irreducible Infeasible Set ..... 205
Example 5.5: Using the Network Simplex Solver ..... 208
Example 5.6: Migration to OPTMODEL: Generalized Networks ..... 216
Example 5.7: Migration to OPTMODEL: Maximum Flow ..... 220
Example 5.8: Migration to OPTMODEL: Production, Inventory, Distribution ..... 223
Example 5.9: Migration to OPTMODEL: Shortest Path ..... 232
References ..... 235

## Overview: LP Solver

The OPTMODEL procedure provides a framework for specifying and solving linear programs (LPs). A standard linear program has the following formulation:

$$
\begin{aligned}
\min & \mathbf{c}^{\mathrm{T}} \mathbf{x} \\
\text { subject to } & \mathbf{A x}\{\geq,=, \leq\} \mathbf{b} \\
& \mathbf{l} \leq \mathbf{x} \leq \mathbf{u}
\end{aligned}
$$

where

x	$\in$	$\mathbb{R}^{n}$	is the vector of decision variables
$\mathbf{A}$	$\in$	$\mathbb{R}^{m \times n}$	is the matrix of constraints
$\mathbf{c}$	$\in$	$\mathbb{R}^{n}$	is the vector of objective function coefficients
$\mathbf{b}$	$\in$	$\mathbb{R}^{m}$	is the vector of constraints right-hand sides (RHS)
$\mathbf{l}$	$\in$	$\mathbb{R}^{n}$	is the vector of lower bounds on variables
$\mathbf{u}$	$\in$	$\mathbb{R}^{n}$	is the vector of upper bounds on variables

The following LP solvers are available in the OPTMODEL procedure:

- primal simplex solver
- dual simplex solver
- network simplex solver
- interior point solver

The primal and dual simplex solvers implement the two-phase simplex method. In phase I, the solver tries to find a feasible solution. If no feasible solution is found, the LP is infeasible; otherwise, the solver enters phase II to solve the original LP. The network simplex solver extracts a network substructure, solves this using network simplex, and then constructs an advanced basis to feed to either primal or dual simplex. The interior point solver implements a primal-dual predictor-corrector interior point algorithm. If any of the decision variables are constrained to be integer-valued, then the relaxed version of the problem is solved.

## Getting Started: LP Solver

The following example illustrates how you can use the OPTMODEL procedure to solve linear programs. Suppose you want to solve the following problem:

$$
\begin{array}{rllllll}
\max & x_{1} & + & x_{2} & + & x_{3} \\
\text { subject to } & 3 x_{1} & + & 2 x_{2} & - & x_{3} & \leq \\
& -2 x_{1} & - & 3 x_{2} & + & 2 x_{3} & \leq \\
& & & x_{1}, & x_{2}, & x_{3} & \geq 0
\end{array}
$$

You can use the following statements to call the OPTMODEL procedure for solving linear programs:

```
proc optmodel;
 var x{i in 1..3} >= 0;
 max f = x[1] + x[2] + x[3];
 con c1: 3*x[1] + 2*x[2] - x[3] <= 1;
 con c2: -2*x[1] - 3*x[2] + 2*x[3] <= 1;
 solve with lp / algorithm = ps presolver = none logfreq = 1;
 print x;
quit;
```

The optimal solution and the optimal objective value are displayed in Figure 5.1.
Figure 5.1 Solution Summary


Figure 5.1 continued

$[1]$	$\mathbf{x}$
	1
2	0
3	5

The iteration log displaying problem statistics, progress of the solution, and the optimal objective value is shown in Figure 5.2.

Figure 5.2 Log

```
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 3 variables (0 free, O fixed).
NOTE: The problem has 2 linear constraints (2 LE, O EQ, O GE, O range).
NOTE: The problem has 6 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (O LE, O EQ, O GE, O range).
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Primal Simplex algorithm is used.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Phase & Iteration & \begin{tabular}{l}
Objective \\
Value
\end{tabular} & Time & Entering & \begin{tabular}{l}
Leaving \\
Variable
\end{tabular} \\
\hline P 1 & 1 & \(0.000000 \mathrm{e}+00\) & 0 & & \\
\hline P 2 & 2 & \(0.000000 \mathrm{e}+00\) & 0 & x[3] & c2 (S) \\
\hline P 2 & 3 & \(5.000000 \mathrm{e}-01\) & 0 & x[2] & c1 (S) \\
\hline P 2 & 4 & \(8.000000 \mathrm{e}+00\) & 0 & & \\
\hline P 2 & 5 & \(8.000000 \mathrm{e}+00\) & 0 & & \\
\hline
\end{tabular}
NOTE: Optimal.
NOTE: Objective = 8.
NOTE: The Primal Simplex solve time is 0.02 seconds.
```


## Syntax: LP Solver

The following statement is available in the OPTMODEL procedure:
SOLVE WITH LP </ options> ;

## Functional Summary

Table 5.1 summarizes the list of options available for the SOLVE WITH LP statement, classified by function.

Table 5.1 Options for the LP Solver

Description	Option
Solver Options	
Specifies the type of solver	ALGORITHM=
Specifies the type of solver called after network simplex	ALGORITHM2=
Enables or disables IIS detection	IIS=
Presolve Option	
Specifies the type of presolve	PRESOLVER $=$
Control Options	
Specifies the feasibility tolerance	FEASTOL=
Specifies the frequency of printing solution progress	LOGFREQ=
Specifies the detail of solution progress printed in $\log$	LOGLEVEL=
Specifies the maximum number of iterations	MAXITER=
Specifies the time limit for the optimization process	MAXTIME=
Specifies the optimality tolerance	OPTTOL=
Specifies units of CPU time or real time	TIMETYPE=
Simplex Algorithm Options	
Specifies the type of initial basis	BASIS $=$
Specifies the type of pricing strategy	PRICETYPE=
Specifies the queue size for determining entering variable	QUEUESIZE=
Enables or disables scaling of the problem	SCALE=
Interior Point Algorithm Options	
Enables or disables interior crossover	CROSSOVER=
Specifies the stopping criterion based on duality gap	STOP_DG=
Specifies the stopping criterion based on dual infeasibility	STOP_DI=
Specifies the stopping criterion based on primal infeasibility	STOP_PI=
Decomposition Algorithm Options	
Enables decomposition algorithm and specifies general control options	DECOMP $=()$
Specifies options for the master problem	DECOMP_MASTER=()
Specifies options for the subproblem	DECOMP_SUBPROB=()

## LP Solver Options

This section describes the options recognized by the LP solver. These options can be specified after a forward slash (/) in the SOLVE statement, provided that the LP solver is explicitly specified using a WITH clause.

If the LP solver terminates before reaching an optimal solution, an intermediate solution is available. You can access this solution by using the .sol variable suffix in the OPTMODEL procedure. See the section "Suffixes" on page 121 for details.

## Solver Options

## IIS=number | string

specifies whether the LP solver attempts to identify a set of constraints and variables that form an irreducible infeasible set (IIS). Table 5.2 describes the valid values of the IIS= option.

Table 5.2 Values for IIS= Option

number	string	Description
0	OFF	Disables IIS detection.
1	ON	Enables IIS detection.

If an IIS is found, information about the infeasibilities can be found in the .status values of the constraints and variables. The default value of this option is OFF. See the section "Irreducible Infeasible Set" on page 189 for details about the IIS= option. See "Suffixes" on page 121 for details about the .status suffix.

## ALGORITHM=option

## SOLVER=option

## SOL=option

specifies one of the following LP solvers:

Option	Description
PRIMAL (PS)	Uses primal simplex solver.
DUAL (DS)	Uses dual simplex solver.
NETWORK (NS)	Uses network simplex solver.
INTERIORPOINT (IP)	Uses interior point solver.
CONCURRENT (CON) (experimental)	Uses several different algorithms   in parallel.

The valid abbreviated value for each option is indicated in parentheses. By default, the dual simplex solver is used.

## ALGORITHM2=option

## SOLVER2=option

specifies one of the following LP solvers if ALGORITHM=NS:

Option	Description
PRIMAL (PS)	Uses primal simplex solver (after network simplex).
DUAL (DS)	Uses dual simplex solver (after network simplex).

The valid abbreviated value for each option is indicated in parentheses. By default, the LP solver decides which algorithm is best to use after calling the network simplex solver on the extracted network.

## Presolve Options

PRESOLVER=number | string
specifies one of the following presolve options:
\(\left.\left.$$
\begin{array}{cll}\hline \text { number } & \text { string } & \text { Description } \\
\hline 0 & \text { NONE } & \text { Disables presolver. } \\
-1 & \text { AUTOMATIC } & \begin{array}{l}\text { Applies presolver by using default setting. } \\
1\end{array} \text { BASIC }\end{array}
$$ $$
\begin{array}{l}\text { Performs basic presolve like removing empty rows, } \\
\text { columns, and fixed variables. }\end{array}
$$\right] \begin{array}{l}Performs basic presolve and apply other inexpensive <br>

presolve techniques.\end{array}\right]\)| Performs moderate presolve and apply other |
| :--- |
| aggressive (but expensive) presolve techniques. |

The default option is AUTOMATIC. See the section "Presolve" on page 181 for details.

## Control Options

## FEASTOL= $\epsilon$

specifies the feasibility tolerance, $\epsilon \in[1 \mathrm{E}-9,1 \mathrm{E}-4]$, for determining the feasibility of a variable. The default value is $1 \mathrm{E}-6$.

## LOGFREQ=k

## PRINTFREQ=k

specifies that the printing of the solution progress to the iteration $\log$ is to occur after every $k$ iterations. The print frequency, $k$, is an integer between zero and the largest four-byte signed integer, which is $2^{31}-1$.

The value $k=0$ disables the printing of the progress of the solution. If the primal or dual simplex algorithms are used, the default value of this option is determined dynamically according to the problem size. If the network simplex algorithm is used, the default value of this option is 10,000 . If the interior point algorithm is used, the default value of this option is 1 .

## LOGLEVEL=number | string

PRINTLEVEL2=number / string
controls the amount of information displayed in the SAS log by the LP solver, from a short description of presolve information and summary to details at each iteration. Table 5.6 describes the valid values for this option.

Table 5.6 Values for LOGLEVEL= Option

number	string	Description
0	NONE	Turns off all solver-related messages to SAS log.
1	BASIC	Displays a solver summary after stopping.
2	MODERATE	Prints a solver summary and an iteration log by   using the interval dictated by the LOGFREQ= op-   tion.

Table 5.6 (continued)

number	string	Description
3	AGGRESSIVE	Prints a detailed solver summary and an itera-   tion log by using the interval dictated by the  

The default value is MODERATE.

## MAXITER=k

specifies the maximum number of iterations. The value $k$ can be any integer between one and the largest four-byte signed integer, which is $2^{31}-1$. If you do not specify this option, the procedure does not stop based on the number of iterations performed. For network simplex, this iteration limit corresponds to the solver called after network simplex (either primal or dual simplex).

## MAXTIME $=t$

specifies an upper limit of $t$ units of time for the optimization process, including problem generation time and solution time. The value of the TIMETYPE= option determines the type of units used. If you do not specify the MAXTIME= option, the solver does not stop based on the amount of time elapsed. The value of $t$ can be any positive number; the default value is the positive number that has the largest absolute value that can be represented in your operating environment.

## OPTTOL= $\epsilon$

specifies the optimality tolerance, $\epsilon \in[1 \mathrm{E}-9,1 \mathrm{E}-4]$, for declaring optimality. The default value is 1E-6.

## TIMETYPE=number $\mid$ string

specifies the units of time used by the MAXTIME= option and reported by the PRESOLVE_TIME and SOLUTION_TIME terms in the _OROPTMODEL_ macro variable. Table 5.7 describes the valid values of the TIMETYPE= option.

Table 5.7 Values for TIMETYPE= Option

number	string	Description
0	CPU	Specifies units of CPU time.
1	REAL	Specifies units of real time.

The "Optimization Statistics" table, an output of the OPTMODEL procedure if you specify the PRINTLEVEL=2 option in the PROC OPTMODEL statement, also includes the same time units for "Presolver Time" and "Solver Time." The other times (such as "Problem Generation Time") in the "Optimization Statistics" table are always CPU times.

The default value of the TIMETYPE= option depends on the values of the NTHREADS= and NODES = options in the PERFORMANCE statement of the OPTMODEL procedure. See the section "PERFORMANCE Statement" on page 17 for more information about the NTHREADS= option. See Chapter 3, "Shared Concepts and Topics" (SAS High-Performance Analytics Server: User's Guide), for more information about the NODES= option. (The NODES= option requires SAS ${ }^{\circledR}$ HighPerformance Analytics software.)

If you specify a value greater than 1 for either the NTHREADS= or NODES= option, the default value of the TIMETYPE $=$ option is REAL. If you specify a value of 1 for both the NTHREADS $=$ and NODES = options, the default value of the TIMETYPE= option is CPU.

## Simplex Algorithm Options

## BASIS=number | string

specifies the following options for generating an initial basis:

number	string	Description
0	CRASH	Generate an initial basis by using crash   techniques (Maros 2003). The procedure creates a   triangular basic matrix consisting of both decision
1	SLACK	variables and slack variables.   2
WARMSTART	Generate an initial basis by using all slack variables.   Start the primal and dual simplex solvers with avail-   able basis.	

The default option for the primal simplex solver is CRASH (0). The default option for the dual simplex solver is SLACK(1). For network simplex, this option has no effect.

## PRICETYPE=number | string

specifies one of the following pricing strategies for the primal and dual simplex solvers:

number	string	Description
0	HYBRID	Use hybrid Devex and steepest-edge pricing   strategies. Available for primal simplex solver only.   1
PARTIAL	Use partial pricing strategy. Optionally, you can   specify QUEUESIZE=. Available for primal   simplex solver only.	
2	FULL	Use the most negative reduced cost pricing strategy.
3	DEVEX	Use Devex pricing strategy.
4	STEEPESTEDGE	Use steepest-edge pricing strategy.

The default pricing strategy for the primal simplex solver is HYBRID and that for the dual simplex solver is STEEPESTEDGE. For the network simplex solver, this option applies only to the solver specified by the ALGORITHM2= option. See the section "Pricing Strategies for the Primal and Dual Simplex Solvers" on page 181 for details.

## QUEUESIZE=k

specifies the queue size, $k \in[1, n]$, where $n$ is the number of decision variables. This queue is used for finding an entering variable in the simplex iteration. The default value is chosen adaptively based on the number of decision variables. This option is used only when PRICETYPE=PARTIAL.

## SCALE=number | string

specifies one of the following scaling options:

number	string	Description
0	NONE	Disable scaling.
-1	AUTOMATIC	Automatically apply scaling procedure if necessary.

The default option is AUTOMATIC.

## Interior Point Algorithm Options

CROSSOVER=number $\mid$ string
specifies whether to convert the interior point solution to a basic simplex solution. The values of this option are:

number	string	Description
0	OFF	Disable crossover.   1
Apply the crossover algorithm to the interior point so-		
lution.		

If the interior point algorithm terminates with a solution, the crossover algorithm uses the interior point solution to create an initial basic solution. After performing primal fixing and dual fixing, the crossover algorithm calls a simplex algorithm to locate an optimal basic solution. The default value of the CROSSOVER= option is OFF.

## STOP_DG= $\delta$

specifies the desired relative duality gap, $\delta \in[1 \mathrm{E}-9,1 \mathrm{E}-4]$. This is the relative difference between the primal and dual objective function values and is the primary solution quality parameter. The default value is $1 \mathrm{E}-6$. See the section "The Interior Point Algorithm" on page 182 for details.

## STOP_DI= $\beta$

specifies the maximum allowed relative dual constraints violation, $\beta \in[1 \mathrm{E}-9,1 \mathrm{E}-4]$. The default value is 1E-6. See the section "The Interior Point Algorithm" on page 182 for details.

## STOP_Pl= $\alpha$

specifies the maximum allowed relative bound and primal constraints violation, $\alpha \in[1 \mathrm{E}-9,1 \mathrm{E}-4]$. The default value is 1E-6. See the section "The Interior Point Algorithm" on page 182 for details.

## Decomposition Algorithm Options

The following options are available for the decomposition algorithm in the LP solver. For information about the decomposition algorithm, see Chapter 12, "The Decomposition Algorithm."

## DECOMP=(options)

enables the decomposition algorithm and specifies overall control options for the algorithm. For more information about this option, see Chapter 12, "The Decomposition Algorithm."

## DECOMP_MASTER=(options)

specifies options for the master problem. For more information about this option, see Chapter 12, "The Decomposition Algorithm."

DECOMP_SUBPROB=(options)
specifies option for the subproblem. For more information about this option, see Chapter 12, "The Decomposition Algorithm."

## Details: LP Solver

## Presolve

Presolve in the simplex LP solvers of PROC OPTMODEL uses a variety of techniques to reduce the problem size, improve numerical stability, and detect infeasibility or unboundedness (Andersen and Andersen 1995; Gondzio 1997). During presolve, redundant constraints and variables are identified and removed. Presolve can further reduce the problem size by substituting variables. Variable substitution is a very effective technique, but it might occasionally increase the number of nonzero entries in the constraint matrix.

In most cases, using presolve is very helpful in reducing solution times. You can enable presolve at different levels or disable it by specifying the PRESOLVER= option.

## Pricing Strategies for the Primal and Dual Simplex Solvers

Several pricing strategies for the primal and dual simplex solvers are available. Pricing strategies determine which variable enters the basis at each simplex pivot. These can be controlled by specifying the PRICETYPE= option.

The primal simplex solver has the following five pricing strategies:

PARTIAL
scans a queue of decision variables to find an entering variable. You can optionally specify the QUEUESIZE= option to control the length of this queue.
FULL uses Dantzig's most violated reduced cost rule (Dantzig 1963). It compares the reduced cost of all decision variables, and selects the variable with the most violated reduced cost as the entering variable.

DEVEX implements the Devex pricing strategy developed by Harris (1973).
STEEPESTEDGE uses the steepest-edge pricing strategy developed by Forrest and Goldfarb (1992).
HYBRID uses a hybrid of the Devex and steepest-edge pricing strategies.

The dual simplex solver has only three pricing strategies available: FULL, DEVEX, and STEEPESTEDGE.

## The Network Simplex Algorithm

The network simplex solver in PROC OPTMODEL attempts to leverage the speed of the network simplex algorithm to more efficiently solve linear programs by using the following process:

1. It heuristically extracts the largest possible network substructure from the original problem.
2. It uses the network simplex algorithm to solve for an optimal solution to this substructure.
3. It uses this solution to construct an advanced basis to warm-start either the primal or dual simplex solver on the original linear programming problem.

The network simplex algorithm is a specialized version of the simplex algorithm that uses spanning-tree bases to more efficiently solve linear programming problems that have a pure network form. Such LPs can be modeled using a formulation over a directed graph, as a minimum-cost flow problem. Let $G=(N, A)$ be a directed graph, where $N$ denotes the nodes and $A$ denotes the arcs of the graph. The decision variable $x_{i j}$ denotes the amount of flow sent between node $i$ and node $j$. The cost per unit of flow on the arcs is designated by $c_{i j}$, and the amount of flow sent across each arc is bounded to be within $\left[l_{i j}, u_{i j}\right]$. The demand (or supply) at each node is designated as $b_{i}$, where $b_{i}>0$ denotes a supply node and $b_{i}<0$ denotes a demand node. The corresponding linear programming problem is as follows:

$$
\begin{array}{rcl}
\text { min } & \sum_{(i, j) \in A} c_{i j} x_{i j} & \\
\text { subject to } & \sum_{(i, j) \in A} x_{i j}-\sum_{(j, i) \in A} x_{j i} & =b_{i} \quad \forall i \in N \\
& x_{i j} & \leq u_{i j} \quad \forall(i, j) \in A \\
x_{i j} & \geq l_{i j} \quad \forall(i, j) \in A
\end{array}
$$

The network simplex algorithm used in PROC OPTMODEL is the primal network simplex algorithm. This algorithm finds the optimal primal feasible solution and a dual solution that satisfies complementary slackness. Sometimes the directed graph $G$ is disconnected. In this case, the problem can be decomposed into its weakly connected components, and each minimum-cost flow problem can be solved separately. After solving each component, the optimal basis for the network substructure is augmented with the non-network variables and constraints from the original problem. This advanced basis is then used as a starting point for the primal or dual simplex method. The solver automatically selects the solver to use after network simplex. However, you can override this selection with the ALGORITHM2= option.

The network simplex algorithm can be more efficient than the other solvers on problems that have a large network substructure. The size of this network structure can be seen in the log.

## The Interior Point Algorithm

The interior point LP solver in PROC OPTMODEL implements an infeasible primal-dual predictorcorrector interior point algorithm. To illustrate the algorithm and the concepts of duality and dual infeasibility, consider the following LP formulation (the primal):

min	$\mathbf{c}^{\mathrm{T}} \mathbf{x}$
subject to	$\mathbf{A x} \geq \mathbf{b}$
	$\mathbf{x} \geq \mathbf{0}$

The corresponding dual is as follows:

$$
\begin{aligned}
& \max \mathbf{b}^{\mathrm{T}} \mathbf{y} \\
& \text { subject to } \mathbf{A}^{\mathrm{T}} \mathbf{y}+\mathbf{w}=\mathbf{c} \\
& \mathbf{y} \geq \mathbf{0} \\
& \mathbf{w} \geq \mathbf{0}
\end{aligned}
$$

where $\mathbf{y} \in \mathbb{R}^{m}$ refers to the vector of dual variables and $\mathbf{w} \in \mathbb{R}^{n}$ refers to the vector of dual slack variables.
The dual makes an important contribution to the certificate of optimality for the primal. The primal and dual constraints combined with complementarity conditions define the first-order optimality conditions, also known as KKT (Karush-Kuhn-Tucker) conditions, which can be stated as follows:

$$
\begin{array}{rlr}
\mathbf{A x}-\mathbf{s} & =\mathbf{b} & \text { (Primal Feasibility) } \\
\mathbf{A}^{\mathrm{T}} \mathbf{y}+\mathbf{w} & =\mathbf{c} \\
\mathbf{W X e} & =\mathbf{0} & \text { (Dual Feasibility) } \\
\mathbf{S Y e} & =\mathbf{0} \\
\mathbf{( C o m p l e m e n t a r i t y )} \\
\mathbf{x}, \mathbf{y}, \mathbf{w}, \mathbf{s} & \geq \mathbf{0}
\end{array}
$$

where $\mathbf{e} \equiv(1, \ldots, 1)^{\mathrm{T}}$ of appropriate dimension and $\mathrm{s} \in \mathbb{R}^{m}$ is the vector of primal slack variables.
NOTE: Slack variables (the $s$ vector) are automatically introduced by the solver when necessary; it is therefore recommended that you not introduce any slack variables explicitly. This enables the solver to handle slack variables much more efficiently.
The letters $\mathbf{X}, \mathbf{Y}, \mathbf{W}$, and $\mathbf{S}$ denote matrices with corresponding $x, y, w$, and $s$ on the main diagonal and zero elsewhere, as in the following example:

$$
\mathbf{X} \equiv\left[\begin{array}{cccc}
x_{1} & 0 & \cdots & 0 \\
0 & x_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & x_{n}
\end{array}\right]
$$

If $\left(\mathrm{x}^{*}, \mathrm{y}^{*}, \mathrm{w}^{*}, \mathrm{~s}^{*}\right)$ is a solution of the previously defined system of equations representing the KKT conditions, then $\mathrm{x}^{*}$ is also an optimal solution to the original LP model.

At each iteration the interior point algorithm solves a large, sparse system of linear equations as follows:

$$
\left[\begin{array}{cc}
\mathbf{Y}^{-1} \mathbf{S} & \mathbf{A} \\
\mathbf{A}^{\mathrm{T}} & -\mathbf{X}^{-1} \mathbf{W}
\end{array}\right]\left[\begin{array}{c}
\Delta \mathbf{y} \\
\Delta \mathbf{x}
\end{array}\right]=\left[\begin{array}{c}
\Xi \\
\Theta
\end{array}\right]
$$

where $\Delta \mathrm{x}$ and $\Delta \mathrm{y}$ denote the vector of search directions in the primal and dual spaces, respectively; $\Theta$ and $\Xi$ constitute the vector of the right-hand sides.

The preceding system is known as the reduced KKT system. The interior point solver uses a preconditioned quasi-minimum residual algorithm to solve this system of equations efficiently.

An important feature of the interior point solver is that it takes full advantage of the sparsity in the constraint matrix, thereby enabling it to efficiently solve large-scale linear programs.

The interior point algorithm works simultaneously in the primal and dual spaces. It attains optimality when both primal and dual feasibility are achieved and when complementarity conditions hold. Therefore it is of interest to observe the following four measures:

- Relative primal infeasibility measure $\alpha$ :

$$
\alpha=\frac{\|\mathbf{A x}-\mathbf{b}-\mathbf{s}\|_{2}}{\|\mathbf{b}\|_{2}+1}
$$

- Relative dual infeasibility measure $\beta$ :

$$
\beta=\frac{\left\|\mathbf{c}-\mathbf{A}^{\mathrm{T}} \mathbf{y}-\mathbf{w}\right\|_{2}}{\|\mathbf{c}\|_{2}+1}
$$

- Relative duality gap $\delta$ :

$$
\delta=\frac{\left|\mathbf{c}^{\mathrm{T}} \mathbf{x}-\mathbf{b}^{\mathrm{T}} \mathbf{y}\right|}{\left|\mathbf{c}^{\mathrm{T}} \mathbf{x}\right|+1}
$$

- Absolute complementarity $\gamma$ :

$$
\gamma=\sum_{i=1}^{n} x_{i} w_{i}+\sum_{i=1}^{m} y_{i} s_{i}
$$

where $\|v\|_{2}$ is the Euclidean norm of the vector $v$. These measures are displayed in the iteration log.

## Iteration Log for the Primal and Dual Simplex Solvers

The primal and dual simplex solvers implement a two-phase simplex algorithm. Phase I finds a feasible solution, which phase II improves to an optimal solution.

When the LOGFREQ= option has a value of 1 , the following information is printed in the iteration log:
Algorithm indicates which simplex method is running by printing the letter P (primal) or D (dual).
Phase indicates whether the solver is in phase I or phase II of the simplex method.
Iteration
indicates the iteration number.
Objective Value
indicates the current amount of infeasibility in phase I and the primal objective value of the current solution in phase II.

Time indicates the time elapsed (in seconds).
Entering Variable indicates the entering pivot variable. A slack variable that enters the basis is indicated by the corresponding row name followed by " $(\mathrm{S})$ ". If the entering nonbasic variable has distinct, finite lower and upper bounds, then a "bound swap" can take place in the primal simplex method.

Leaving Variable indicates the leaving pivot variable. A slack variable that leaves the basis is indicated by the corresponding row name followed by " $(\mathrm{S})$ ". The leaving variable is the same as the entering variable if a bound swap has taken place.

When you omit the LOGFREQ= option or specify a value larger than 1 , only the algorithm, phase, iteration, objective value, and time information is printed in the iteration log.

The behavior of objective values in the iteration log depends on both the current phase and the chosen solver. In phase I, both simplex methods have artificial objective values that decrease to 0 when a feasible solution is found. For the dual simplex method, phase II maintains a dual feasible solution, so a minimization problem has increasing objective values in the iteration log. For the primal simplex method, phase II maintains a primal feasible solution, so a minimization problem has decreasing objective values in the iteration log.
During the solution process, some elements of the LP model might be perturbed to improve performance. In this case the objective values that are printed correspond to the perturbed problem. After reaching optimality
for the perturbed problem, the LP solver solves the original problem by switching from the primal simplex method to the dual simplex method (or from the dual simplex method to the primal simplex method). Because the problem might be perturbed again, this process can result in several changes between the two algorithms.

## Iteration Log for the Network Simplex Solver

After finding the embedded network and formulating the appropriate relaxation, the network simplex solver uses a primal network simplex algorithm. In the case of a connected network, with one (weakly connected) component, the log will show the progress of the simplex algorithm. The following information is displayed in the iteration log:

Iteration indicates the iteration number.
PrimalObj indicates the primal objective value of the current solution.
Primal Infeas indicates the maximum primal infeasibility of the current solution.
Time indicates the time spent on the current component by network simplex.
The frequency of the simplex iteration $\log$ is controlled by the LOGFREQ= option. The default value of the LOGFREQ $=$ option is 10,000 .

If the network relaxation is disconnected, the information in the iteration log shows progress at the component level. The following information is displayed in the iteration log:

Component indicates the component number being processed.
Nodes indicates the number of nodes in this component.
Arcs indicates the number of arcs in this component.
Iterations indicates the number of simplex iterations needed to solve this component.
Time indicates the time spent so far in network simplex.
The frequency of the component iteration log is controlled by the LOGFREQ= option. In this case, the default value of the LOGFREQ= option is determined by the size of the network.

The LOGLEVEL= option adjusts the amount of detail shown. By default, LOGLEVEL=MODERATE and reports as in the preceding description. If LOGLEVEL=NONE, no information is shown. If LOGLEVEL=BASIC, the only information shown is a summary of the network relaxation and the time spent solving the relaxation. If LOGLEVEL=AGGRESSIVE, in the case of one component, the log displays as in the preceding description; in the case of multiple components, for each component, a separate simplex iteration $\log$ is displayed.

## Iteration Log for the Interior Point Solver

The interior point solver implements an infeasible primal-dual predictor-corrector interior point algorithm. The following information is displayed in the iteration log:

Iter indicates the iteration number
Complement indicates the (absolute) complementarity
Duality Gap indicates the (relative) duality gap
Primal Infeas indicates the (relative) primal infeasibility measure
Bound Infeas indicates the (relative) bound infeasibility measure
Dual Infeas indicates the (relative) dual infeasibility measure

If the sequence of solutions converges to an optimal solution of the problem, you should see all columns in the iteration log converge to zero or very close to zero. If they do not, it can be the result of insufficient iterations being performed to reach optimality. In this case, you might need to increase the value specified in the option MAXITER= or MAXTIME=. If the complementarity and/or the duality gap do not converge, the problem might be infeasible or unbounded. If the infeasibility columns do not converge, the problem might be infeasible.

## Iteration Log for the Crossover Algorithm

The crossover algorithm takes an optimal solution from the interior point solver and transforms it into an optimal basic solution. The iterations of the crossover algorithm are similar to simplex iterations; this similarity is reflected in the format of the iteration logs.

When LOGFREQ $=1$, the following information is printed in the iteration log:

Phase indicates whether the primal crossover (PC) or dual crossover (DC) technique is used.
Iteration indicates the iteration number.
Objective Value indicates the total amount by which the superbasic variables are off their bound. This value decreases to 0 as the crossover algorithm progresses.

Time indicates the time elapsed (in seconds) since the beginning of the crossover algorithm.
Entering Variable indicates the entering pivot variable. A slack variable that enters the basis is indicated by the corresponding row name followed by " $(S)$ ".

Leaving Variable indicates the leaving pivot variable. A slack variable that leaves the basis is indicated by the corresponding row name followed by " $(S)$ ".

When you omit the LOGFREQ= option or specify a value greater than 1 , only the phase, iteration, objective value, and time information are printed in the iteration log.

After all the superbasic variables have been eliminated, the crossover algorithm continues with regular primal or dual simplex iterations.

## Concurrent LP (Experimental)

The ALGORITHM=CON option starts several different linear optimization algorithms in parallel in a shared-memory environment. The LP solver automatically determines which algorithms to run and how many threads to assign to each algorithm. If sufficient resources are available, the solver runs all four standard algorithms. When the first algorithm finishes, the LP solver returns the results from that algorithm and terminates any other algorithms that are still running. If you specify a value of DETERMINISTIC for the PARALLELMODE= option in the PERFORMANCE statement in the OPTMODEL procedure, the algorithm for which the results are returned is not necessarily the one that finished first. The LP solver deterministically selects the algorithm for which the results are returned. For more information about the PERFORMANCE statement, see the section "PERFORMANCE Statement" on page 17. Regardless of which mode (deterministic or nondeterministic) is in effect, terminating algorithms that are still running might take a significant amount of time.

During concurrent optimization, the procedure displays the iteration log for the dual simplex algorithm. See the section "Iteration Log for the Primal and Dual Simplex Solvers" on page 184 for more information about this iteration log. Upon termination, the solver displays the iteration $\log$ for the algorithm that finishes first, unless the dual simplex algorithm finishes first. If you specify LOGLEVEL=AGGRESSIVE, the LP solver displays the iteration logs for all algorithms that were run concurrently.
If you specify PRINTLEVEL=2 in the PROC OPTMODEL statement and ALGORITHM=CON in the SOLVE WITH LP statement, the LP solver produces an ODS table called ConcurrentSummary. This table contains a summary of the solution statuses of all algorithms that are run concurrently.

## Problem Statistics

Optimizers can encounter difficulty when solving poorly formulated models. Information about data magnitude provides a simple gauge to determine how well a model is formulated. For example, a model whose constraint matrix contains one very large entry (on the order of $10^{9}$ ) can cause difficulty when the remaining entries are single-digit numbers. The PRINTLEVEL=2 option in the OPTMODEL procedure causes the ODS table "ProblemStatistics" to be generated when the LP solver is called. This table provides basic data magnitude information that enables you to improve the formulation of your models.

The example output in Figure 5.3 demonstrates the contents of the ODS table "ProblemStatistics."

Figure 5.3 ODS Table ProblemStatistics


## Variable and Constraint Status

Upon termination of the LP solver, the .status suffix of each decision variable and constraint stores information about the status of that variable or constraint. For more information about suffixes in the OPTMODEL procedure, see the section "Suffixes" on page 121.

## Variable Status

The .status suffix of a decision variable specifies the status of that decision variable. The suffix can take one of the following values:

B basic variable
L nonbasic variable at its lower bound
U nonbasic variable at its upper bound
F free variable
S superbasic variable (a nonbasic variable with a value strictly between its bounds)
I LP model infeasible (all decision variables have .status equal to I)
For the interior point solver with IIS= OFF, .status is blank.

The following values can appear only if IIS= ON. See the section "Irreducible Infeasible Set" on page 189 for details.

I_L the lower bound of the variable is violated
I_U the upper bound of the variable is violated
I_F the fixed bound of the variable is violated

## Constraint Status

The .status suffix of a constraint specifies the status of the slack variable for that constraint. The suffix can take one of the following values:

B basic variable
L nonbasic variable at its lower bound
U nonbasic variable at its upper bound
F free variable
S superbasic variable (a nonbasic variable with a value strictly between its bounds)
I LP model infeasible (all decision variables have .status equal to I)
The following values can appear only if option IIS= ON. See the section "Irreducible Infeasible Set" on page 189 for details.

I_L the "GE" $(\geq)$ condition of the constraint is violated
I_U the "LE" ( $\leq$ ) condition of the constraint is violated
I_F the "EQ" (=) condition of the constraint is violated

## Irreducible Infeasible Set

For a linear programming problem, an irreducible infeasible set (IIS) is an infeasible subset of constraints and variable bounds that will become feasible if any single constraint or variable bound is removed. It is possible to have more than one IIS in an infeasible LP. Identifying an IIS can help to isolate the structural infeasibility in an LP.

The IIS=ON option directs the LP solver to search for an IIS in a given LP. You should specify the OPTMODEL option PRESOLVER=NONE when you specify IIS=ON; otherwise the IIS results can be incomplete. The LP presolver is not applied to the problem during the IIS search. If the LP solver detects an IIS, it updates the .status suffix of the decision variables and constraints, and then it stops. The number of iterations that are reported in the macro variable and the ODS table is the total number of simplex iterations. This includes the initial LP solve and all subsequent iterations during the constraint deletion phase.

The IIS= option can add special values to the .status suffixes of variables and constraints. (See the section "Variable and Constraint Status" on page 188 for more information.) For constraints, a status of "I_L", "I_U", or "I_F" indicates, respectively, the "GE" $(\geq)$, "LE" ( $\leq$ ), or "EQ" (=) condition is violated. For range constraints, a status of "I_L" or "I_U" indicates, respectively, that the lower or upper bound of the
constraint is violated. For variables, a status of "I_L", "I_U", or "I_F" indicates, respectively, the lower, upper, or fixed bound of the variable is violated. From this information, you can identify names of the constraints (variables) in the IIS as well as the corresponding bound where infeasibility occurs.

Making any one of the constraints or variable bounds in the IIS nonbinding removes the infeasibility from the IIS. In some cases, changing a right-hand side or bound by a finite amount will removes the infeasibility; however, the only way to guarantee removal of the infeasibility is to set the appropriate right-hand side or bound to $\infty$ or $-\infty$. Because it is possible for an LP to have multiple irreducible infeasible sets, simply removing the infeasibility from one set might not make the entire problem feasible. To make the entire problem feasible, you can rerun the LP solver with IIS=ON after removing the infeasibility from an IIS. Repeat this process until the LP solver no longer detects an IIS. The resulting problem is feasible. This approach to infeasibility repair can produce different end problems depending on which right-hand sides and bounds you choose to relax.

The IIS= option in the LP solver uses two different methods to identify an IIS. Based on the result of the initial solve, the sensitivity filter removes several constraints and variable bounds at once while still maintaining infeasibility. This phase is quick and dramatically reduces the size of the IIS. After that, the deletion filter removes each remaining constraint and variable bound one by one to check which of them are needed to get an infeasible system. This second phase is more time consuming, but it ensures that the IIS set returned by the LP solver is indeed irreducible. The progress of the deletion filter is reported at regular intervals. Occasionally, the sensitivity filter might be called again during the deletion filter to improve performance.

See Example 5.4 for an example demonstrating the use of the IIS= option in locating and removing infeasibilities.

## Macro Variable _OROPTMODEL_

The OPTMODEL procedure always creates and initializes a SAS macro called _OROPTMODEL_. This variable contains a character string. After each PROC OROPTMODEL run, you can examine this macro by specifying \%put \&_OROPTMODEL_; and check the execution of the most recently invoked solver from the value of the macro variable. The various terms of the variable after the LP solver is called are interpreted as follows.

## STATUS

indicates the solver status at termination. It can take one of the following values:

OK The solver terminated normally.
SYNTAX_ERROR Incorrect syntax was used.
DATA_ERROR
OUT_OF_MEMORY
IO_ERROR
SEMANTIC_ERROR
ERROR

Insufficient memory was allocated to the procedure.
A problem occurred in reading or writing data.
An evaluation error, such as an invalid operand type, occurred.
The status cannot be classified into any of the preceding categories.

## ALGORITHM

indicates the algorithm that produces the solution data in the macro variable. This term appears only when STATUS=OK. It can take one of the following values:

PS The primal simplex algorithm produced the solution data.
DS The dual simplex algorithm produced the solution data.
NS The network simplex algorithm produced the solution data.
IP The interior point algorithm produced the solution data.
DECOMP The decomposition algorithm produced the solution data.
When you run algorithms concurrently (ALGORITHM=CON), this term indicates which algorithm is the first to terminate.

## SOLUTION_STATUS

indicates the solution status at termination. It can take one of the following values:

OPTIMAL
CONDITIONAL_OPTIMAL

FEASIBLE
INFEASIBLE
UNBOUNDED
INFEASIBLE_OR_UNBOUNDED
BAD_PROBLEM_TYPE
ITERATION_LIMIT_REACHED

TIME_LIMIT_REACHED
FUNCTION_CALL_LIMIT_REACHED
INTERRUPTED
FAILED

The solution is optimal.
The solution is optimal, but some infeasibilities (primal, dual or bound) exceed tolerances due to scaling or preprocessing.

The problem is feasible.
The problem is infeasible.
The problem is unbounded.
The problem is infeasible or unbounded.
The problem type is unsupported by the solver.
The maximum allowable number of iterations was reached.

The solver reached its execution time limit.
The solver reached its limit on function evaluations.
The solver was interrupted externally.
The solver failed to converge, possibly due to numerical issues.

When SOLUTION_STATUS has a value of OPTIMAL, CONDITIONAL_OPTIMAL, ITERATION_LIMIT_REACHED, or TIME_LIMIT_REACHED, all terms of the _OROPTMODEL_ macro variable are present; for other values of SOLUTION_STATUS, some terms do not appear.

## OBJECTIVE

indicates the objective value obtained by the solver at termination.

## PRIMAL INFEASIBILITY

indicates, for the primal simplex and dual simplex solvers, the maximum (absolute) violation of the primal constraints by the primal solution. For the interior point solver, this term indicates the relative violation of the primal constraints by the primal solution.

## DUAL_INFEASIBILITY

indicates, for the primal simplex and dual simplex solvers, the maximum (absolute) violation of the dual constraints by the dual solution. For the interior point solver, this term indicates the relative violation of the dual constraints by the dual solution.

## BOUND_INFEASIBILITY

indicates, for the primal simplex and dual simplex solvers, the maximum (absolute) violation of the lower or upper bounds by the primal solution. For the interior point solver, this term indicates the relative violation of the lower or upper bounds by the primal solution.

## DUALITY_GAP

indicates the (relative) duality gap. This term appears only if the option ALGORITHM=INTERIORPOINT is specified in the SOLVE statement.

## COMPLEMENTARITY

indicates the (absolute) complementarity. This term appears only if the option ALGORITHM=INTERIORPOINT is specified in the SOLVE statement.

## ITERATIONS

indicates the number of iterations taken to solve the problem. When the network simplex algorithm is used, this term indicates the number of network simplex iterations taken to solve the network relaxation. When crossover is enabled, this term indicates the number of interior point iterations taken to solve the problem.

## ITERATIONS2

indicates the number of simplex iterations performed by the secondary solver. The network simplex solver selects the secondary solver automatically unless a value has been specified for the ALGORITHM2 = option. When crossover is enabled, the secondary solver is selected automatically. This term appears only if the network simplex solver is used or if crossover is enabled.

## PRESOLVE_TIME

indicates the time (in seconds) used in preprocessing.

## SOLUTION_TIME

indicates the time (in seconds) taken to solve the problem, including preprocessing time.
Note: The time reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real time. The type is determined by the TIMETYPE= option.

When SOLUTION_STATUS has a value of OPTIMAL, CONDITIONAL_OPTIMAL, ITERATION_LIMIT_REACHED, or TIME_LIMIT_REACHED, all terms of the _OROPTMODEL_ macro variable are present; for other values of SOLUTION_STATUS, some terms do not appear.

## Examples: LP Solver

## Example 5.1: Diet Problem

Consider the problem of diet optimization. There are six different foods: bread, milk, cheese, potato, fish, and yogurt. The cost and nutrition values per unit are displayed in Table 5.12.

Table 5.12 Cost and Nutrition Values

	Bread	Milk	Cheese	Potato	Fish	Yogurt
Cost	2.0	3.5	8.0	1.5	11.0	1.0
Protein, $\mathbf{g}$	4.0	8.0	7.0	1.3	8.0	9.2
Fat, $\mathbf{g}$	1.0	5.0	9.0	0.1	7.0	1.0
Carbohydrates, $\mathbf{g}$	15.0	11.7	0.4	22.6	0.0	17.0
Calories	90	120	106	97	130	180

The following SAS code creates the data set fooddata of Table 5.12:

```
data fooddata;
 infile datalines;
 input name $ cost prot fat carb cal;
 datalines;
Bread 2 4 4 1 15 90
Milk 3.5 8 5 5 11.7 120
Cheese 8 7 7 9 0.4 106
Potato 1.5 1.3 0.1 22.6 97
Fish 11 8 7 7 0 130
Yogurt 1 1 9.2 1 17 180
;
```

The objective is to find a minimum-cost diet that contains at least 300 calories, not more than 10 grams of protein, not less than 10 grams of carbohydrates, and not less than 8 grams of fat. In addition, the diet should contain at least 0.5 unit of fish and no more than 1 unit of milk.

You can model the problem and solve it by using PROC OPTMODEL as follows:

```
proc optmodel;
 /* declare index set */
 set<str> FOOD;
 /* declare variables */
 var diet{FOOD} >= 0;
 /* objective function */
 num cost{FOOD};
 min f=sum{i in FOOD}cost[i]*diet[i];
 /* constraints */
 num prot{FOOD};
 num fat{FOOD};
 num carb{FOOD};
 num cal{FOOD};
 num min_cal, max_prot, min_carb, min_fat;
 con cal_con: sum{i in FOOD}cal[i]*diet[i] >= 300;
 con prot_con: sum{i in FOOD}prot[i]*diet[i] <= 10;
 con carb_con: sum{i in FOOD}carb[i]*diet[i] >= 10;
 con fat_con: sum{i in FOOD}fat[i]*diet[i] >= 8;
 /* read parameters */
 read data fooddata into FOOD=[name] cost prot fat carb cal;
```

```
/* bounds on variables */
diet['Fish'].lb = 0.5;
diet['Milk'].ub = 1.0;
/* solve and print the optimal solution */
solve with lp/logfreq=1; /* print each iteration to log */
print diet;
```

The optimal solution and the optimal objective value are displayed in Output 5.1.1.
Output 5.1.1 Optimal Solution to the Diet Problem

```
The OPTMODEL Procedure
Problem Summary
```

Objective Sense	Minimization
Objective Function	$\mathbf{f}$
Objective Type	Linear
Number of Variables	6
Bounded Above	0
Bounded Below	5
Bounded Below and Above	1
Free	0
Fixed	0
Number of Constraints	4
Linear LE (<=)	1
Linear EQ (=)	0
Linear GE (>=)	3
Linear Range	0
Constraint Coefficients	23


Performance Information	
Execution Mode	
Number of Threads	

Solution Summary

Solver	LP
Algorithm	Dual Simplex
Objective Function	f
Solution Status	Optimal
Objective Value	12.081337881
Iterations	7
Primal Infeasibility	$8.881784 \mathrm{E}-16$
Dual Infeasibility	0
Bound Infeasibility	0

Output 5.1.1 continued

	[1]
	diet
Bread	0.000000
Cheese	0.449499
Fish	0.500000
Milk	0.053599
Potato	1.865168
	Yogurt
	0.000000

## Example 5.2: Reoptimizing the Diet Problem Using BASIS=WARMSTART

After an LP is solved, you might want to change a set of the parameters of the LP and solve the problem again. This can be done efficiently in PROC OPTMODEL. The warm start technique uses the optimal solution of the solved LP as a starting point and solves the modified LP problem faster than it can be solved again from scratch. This example illustrates reoptimizing the diet problem described in Example 5.1.

Assume the optimal solution is found by the SOLVE statement. Instead of quitting the OPTMODEL procedure, you can continue to solve several variations of the original problem.

Suppose the cost of cheese increases from 8 to 10 per unit and the cost of fish decreases from 11 to 7 per serving unit. You can change the parameters and solve the modified problem by submitting the following code:

```
cost['Cheese']=10; cost['Fish']=7;
solve with lp/presolver=none
 basis=warmstart
 algorithm=ps
 logfreq=1;
print diet;
```

Note that the primal simplex solver is preferred because the primal solution to the last-solved LP is still feasible for the modified problem in this case. The solutions to the original diet problem and the modified problem are shown in Output 5.2.1.

Output 5.2.1 Optimal Solutions to the Original Diet Problem and the Diet Problem with Modified Objective Function


Output 5.2.1 continued


The following iteration log indicates that it takes the LP solver no more iterations to solve the modified problem by using BASIS=WARMSTART, since the optimal solution to the original problem remains optimal after the objective function is changed.

Output 5.2.2 Log

```
NOTE: There were 6 observations read from the data set WORK.FOODDATA.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 6 variables (0 free, 0 fixed).
NOTE: The problem has 4 linear constraints (1 LE, 0 EQ, 3 GE, 0 range).
NOTE: The problem has 23 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (O LE, O EQ, O GE, O range).
NOTE: The LP presolver value AUTOMATIC is applied.
NOTE: The LP presolver removed O variables and O constraints.
NOTE: The LP presolver removed 0 constraint coefficients.
NOTE: The presolved problem has 6 variables, 4 constraints, and 23 constraint
 coefficients.
NOTE: The LP solver is called.
NOTE: The Dual Simplex algorithm is used.
 Objective
\begin{tabular}{crcr}
Phase & Iteration & Value & Time \\
D 1 & 1 & \(0.000000 \mathrm{e}+00\) & 0 \\
D 2 & 2 & \(0.000000 \mathrm{e}+00\) & 0 \\
D 2 & 7 & \(9.503132 \mathrm{e}+00\) & 0
\end{tabular}
NOTE: Optimal.
NOTE: Objective = 9.5031324.
NOTE: The Dual Simplex solve time is 0.00 seconds.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 6 variables (0 free, 0 fixed).
NOTE: The problem has 4 linear constraints (1 LE, 0 EQ, 3 GE, 0 range).
NOTE: The problem has 23 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (O LE, O EQ, O GE, O range).
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Primal Simplex algorithm is used.
\begin{tabular}{cccccc}
& Objective & & Entering & Leaving \\
Phase Iteration & Value & Time & Variable & Variable \\
P 2 & 1 & \(1.098034 e+01\) & 0 & &
\end{tabular}
NOTE: Optimal.
NOTE: Objective = 10.9803355.
NOTE: The Primal Simplex solve time is 0.00 seconds.
```

Next, restore the original coefficients of the objective function and consider the case that you need a diet that supplies at least 150 calories. You can change the parameters and solve the modified problem by submitting the following code:

```
cost['Cheese']=8; cost['Fish']=11;cal_con.lb=150;
solve with lp/presolver=none
 basis=warmstart
 algorithm=ds
 logfreq=1;
print diet;
```

Note that the dual simplex solver is preferred because the dual solution to the last-solved LP is still feasible for the modified problem in this case. The solution is shown in Output 5.2.3.

Output 5.2.3 Optimal Solution to the Diet Problem with Modified RHS


The following iteration log indicates that it takes the LP solver just one more phase II iteration to solve the modified problem by using BASIS=WARMSTART.

Output 5.2.4 Log

```
NOTE: There were 6 observations read from the data set WORK.FOODDATA.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 6 variables (0 free, 0 fixed).
NOTE: The problem has 4 linear constraints (1 LE, O EQ, 3 GE, 0 range).
NOTE: The problem has 23 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (O LE, O EQ, O GE, O range).
NOTE: No basis information is available. The BASIS=WARMSTART option is ignored.
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Dual Simplex algorithm is used.
 Objective Entering Leaving
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Phase Iteration} & Objective Value & Time & \begin{tabular}{l}
Entering \\
Variable
\end{tabular} & \begin{tabular}{l}
Leaving \\
Variable
\end{tabular} \\
\hline D 1 & 1 & \(0.000000 \mathrm{e}+00\) & 0 & & \\
\hline D 2 & 2 & \(5.500000 \mathrm{e}+00\) & 0 & diet [Milk] & \\
\hline \multicolumn{6}{|l|}{fat_con (S)} \\
\hline D 2 & 3 & \(8.650000 e+00\) & 0 & diet[Cheese] & \\
\hline \multicolumn{6}{|l|}{prot_con (S)} \\
\hline D 2 & 4 & 8.925676e+00 & 0 & diet[Potato] & \\
\hline \multicolumn{6}{|l|}{carb_con (S)} \\
\hline D 2 & 5 & \(9.174413 \mathrm{e}+00\) & 0 & & \\
\hline D 2 & 6 & 9.174413e+00 & 0 & & \\
\hline
\end{tabular}
NOTE: Optimal.
NOTE: Objective = 9.1744132.
NOTE: The Dual Simplex solve time is 0.00 seconds.
```

Next, restore the original constraint on calories and consider the case that you need a diet that supplies no more than 550 mg of sodium per day. The following row is appended to Table 5.12.

	Bread	Milk	Cheese	Potato	Fish	Yogurt
sodium, mg	148	122	337	186	56	132

You can change the parameters, add the new constraint, and solve the modified problem by submitting the following code:

```
cal_con.lb=300;
num sod{FOOD}=[148 122 337 186 56 132];
con sodium: sum{i in FOOD}sod[i]*diet[i] <= 550;
solve with lp/presolver=none
 basis=warmstart
 logfreq=1;
print diet;
```

The solution is shown in Output 5.2.5.

Output 5.2.5 Optimal Solution to the Diet Problem with Additional Constraint


The following iteration log indicates that it takes the LP solver no more iterations to solve the modified problem by using the BASIS=WARMSTART option, since the optimal solution to the original problem remains optimal after one more constraint is added.

Output 5.2.6 Log

```
NOTE: There were 6 observations read from the data set WORK.FOODDATA.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 6 variables (0 free, 0 fixed).
NOTE: The problem has 5 linear constraints (2 LE, O EQ, 3 GE, 0 range).
NOTE: The problem has 29 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (O LE, O EQ, O GE, O range).
NOTE: No basis information is available. The BASIS=WARMSTART option is ignored.
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Dual Simplex algorithm is used.
```



```
NOTE: Optimal.
NOTE: Objective = 12.0813379.
NOTE: The Dual Simplex solve time is 0.00 seconds.
```


## Example 5.3: Two-Person Zero-Sum Game

Consider a two-person zero-sum game (where one person wins what the other person loses). The players make moves simultaneously, and each has a choice of actions. There is a payoff matrix that indicates the amount one player gives to the other under each combination of actions:

$$
\begin{array}{|ccc} 
& & \begin{array}{c}
\text { Player II plays } j \\
1
\end{array} 2
\end{array} 3-4
$$

If player I makes move $i$ and player II makes move $j$, then player I wins (and player II loses) $a_{i j}$. What is the best strategy for the two players to adopt? This example is simple enough to be analyzed from observation. Suppose player I plays 1 or 3 ; the best response of player II is to play 1 . In both cases, player I loses and player II wins. So the best action for player I is to play 2. In this case, the best response for player II is to play 3 , which minimizes the loss. In this case, $(2,3)$ is a pure-strategy Nash equilibrium in this game.

For illustration, consider the following mixed strategy case. Assume that player I selects $i$ with probability $p_{i}, i=1,2,3$, and player II selects $j$ with probability $q_{j}, j=1,2,3,4$. Consider player II's problem of minimizing the maximum expected payout:

$$
\min _{\mathbf{q}}\left\{\max _{i} \sum_{j=1}^{4} a_{i j} q_{j}\right\} \quad \text { subject to } \quad \sum_{j=1}^{4} q_{i j}=1, \quad \mathbf{q} \geq 0
$$

This is equivalent to

$$
\min _{\mathbf{q}, v} v \text { subject to } \begin{aligned}
\sum_{j=1}^{4} a_{i j} q_{j} & \leq v \quad \forall i \\
\sum_{j=1}^{4} q_{j} & =1 \\
\mathbf{q} & \geq 0
\end{aligned}
$$

The problem can be transformed into a more standard format by making a simple change of variables: $x_{j}=q_{j} / v$. The preceding LP formulation now becomes

$$
\min _{\mathbf{x}, v} v \text { subject to } \begin{aligned}
\sum_{j=1}^{4} a_{i j} x_{j} & \leq 1 \quad \forall i \\
\sum_{j=1}^{4} x_{j} & =1 / v \\
\mathbf{q} & \geq 0
\end{aligned}
$$

which is equivalent to

$$
\max _{\mathbf{x}} \sum_{j=1}^{4} x_{j} \quad \text { subject to } A \mathbf{x} \leq \mathbf{1}, \quad \mathbf{x} \geq 0
$$

where $A$ is the payoff matrix and $\mathbf{1}$ is a vector of 1 's. It turns out that the corresponding optimization problem from player I's perspective can be obtained by solving the dual problem, which can be written as

$$
\min _{\mathbf{y}} \sum_{i=1}^{3} y_{i} \quad \text { subject to } A^{\mathrm{T}} \mathbf{y} \geq \mathbf{1}, \quad \mathbf{y} \geq 0
$$

You can model the problem and solve it by using PROC OPTMODEL as follows:

```
proc optmodel;
 num a{1..3, 1..4}=[-5 3 1 8
 5 546
 -4 6 0 5];
 var x{1..4} >= 0;
 max f = sum{i in 1..4}x[i];
 con c{i in 1..3}: sum{j in 1..4}a[i,j]*x[j] <= 1;
 solve with lp / algorithm = ps presolver = none logfreq = 1;
 print x;
 print c.dual;
quit;
```

The optimal solution is displayed in Output 5.3.1.

Output 5.3.1 Optimal Solutions to the Two-Person Zero-Sum Game


Output 5.3.1 continued

$[1]$	c.DUAL
1	0.00
2	0.25
3	0.00

The optimal solution $\mathrm{x}^{*}=(0,0,0.25,0)$ with an optimal value of 0.25 . Therefore the optimal strategy for player II is $\mathbf{q}^{*}=\mathrm{x}^{*} / 0.25=(0,0,1,0)$. You can check the optimal solution of the dual problem by using the constraint suffix ".dual". So $y^{*}=(0,0.25,0)$ and player I's optimal strategy is $(0,1,0)$. The solution is consistent with our intuition from observation.

## Example 5.4: Finding an Irreducible Infeasible Set

This example demonstrates the use of the IIS= option to locate an irreducible infeasible set. Suppose you want to solve a linear program that has the following simple formulation:


It is easy to verify that the following three constraints (or rows) and one variable (or column) bound form an IIS for this problem:

$$
\begin{aligned}
x_{1}+x_{2} & \\
x_{1} & \\
& x_{2}+x_{3}
\end{aligned} \leq 10\left(\begin{array}{l}
\text { con } 1) \\
\\
\end{array}\right.
$$

You can formulate the problem and call the LP solver by using the following statements:

```
proc optmodel presolver=none;
 /* declare variables */
 var x{1..3} >=0;
 /* upper bound on variable x[3] */
 x[3].ub = 3;
 /* objective function */
 min obj = x[1] + x[2] + x[3];
```

```
/* constraints */
con c1: x[1] + x[2] >= 10;
con c2: x[1] + x[3] <= 4;
con c3: 4<= x[2] + x[3]<= 5;
solve with lp / iis = on;
print x.status;
print c1.status c2.status c3.status;
```

The notes printed in the log appear in Output 5.4.1.
Output 5.4.1 Finding an IIS: Log

```
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 3 variables (0 free, 0 fixed).
NOTE: The problem has 3 linear constraints (1 LE, O EQ, 1 GE, 1 range).
NOTE: The problem has 6 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (O LE, O EQ, O GE, O range).
NOTE: The IIS option is enabled.
 Objective
 Phase Iteration Value Time
 P 1 1 1.400000e+01 0
 P 1 4 1.000000e+00 0
NOTE: The IIS option found the problem to be infeasible.
NOTE: Applying the IIS sensitivity filter.
NOTE: The sensitivity filter removed 1 constraints and 3 variable bounds.
NOTE: Applying the IIS deletion filter.
NOTE: Processing constraints.
 Processed Removed Time
 0 0 0
 1 0
 2 0
 3 0 0
NOTE: Processing variable bounds.
 Processed Removed Time
 0 0 0
 1 0
 2 0}
 3 0 0
NOTE: The deletion filter removed O constraints and O variable bounds.
NOTE: The IIS option found the problem to be infeasible.
NOTE: The IIS option found an irreducible infeasible set with 1 variables and 3
 constraints.
NOTE: The IIS solve time is 0.00 seconds.
```

The output of the PRINT statements appears in Output 5.4.2. The value of the .status suffix for the variables $x[1]$ and $x[2]$ is "I," which indicates an infeasible problem. The value I is not one of those assigned by the IIS $=$ option to members of the IIS, however, so the variable bounds for $\mathrm{x}[1]$ and $\mathrm{x}[2]$ are not in the IIS.

Output 5.4.2 Solution Summary, Variable Status, and Constraint Status


The value of c3.status is I_U, which indicates that $x_{2}+x_{3} \leq 5$ is an element of the IIS. The original constraint is c3, a range constraint with a lower bound of 4 . If you choose to remove the constraint $x_{2}+$ $x_{3} \leq 5$, you can change the value of c 3 .ub to the largest positive number representable in your operating environment. You can specify this number by using the MIN aggregation expression in the OPTMODEL procedure. See "MIN Aggregation Expression" on page 96 for details.

The modified LP problem is specified and solved by adding the following lines to the original PROC OPTMODEL call.

```
/* relax upper bound on constraint c3 */
c3.ub = min{{}}0;
solve with lp / iis = on;
/* print solution */
print x;
```

Because one element of the IIS has been removed, the modified LP problem should no longer contain the infeasible set. Due to the size of this problem, there should be no additional irreducible infeasible sets.

The notes shown in Output 5.4.3 are printed to the log.

Output 5.4.3 Infeasibility Removed: Log

```
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 3 variables (0 free, 0 fixed).
NOTE: The problem has 3 linear constraints (1 LE, 0 EQ, 2 GE, 0 range).
NOTE: The problem has 6 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (O LE, O EQ, O GE, O range).
NOTE: The IIS option is enabled.
 Objective
 Phase Iteration Value Time
 P 1 1 1.400000e+01 0
 P 1 3 0.000000e+00 0
NOTE: The IIS option found the problem to be feasible.
NOTE: The IIS solve time is 0.00 seconds.
```

The solution summary and primal solution are displayed in Output 5.4.4.
Output 5.4.4 Infeasibility Removed: Solution


## Example 5.5: Using the Network Simplex Solver

This example demonstrates how you can use the network simplex solver to find the minimum-cost flow in a directed graph. Consider the directed graph in Figure 5.4, which appears in Ahuja, Magnanti, and Orlin (1993).

Figure 5.4 Minimum Cost Network Flow Problem: Data


You can use the following SAS statements to create the input data sets nodedata and arcdata:

```
data nodedata;
 input _node_ $ _sd_;
 datalines;
 10
 20
 0
 -5
 0
 0
 -15
 -10
;
data arcdata;
 input _tail_ $ _head_ $ _lo_ _capac_ _cost_;
 datalines;
\begin{tabular}{rllrl}
1 & 4 & 0 & 15 & 2 \\
2 & 1 & 0 & 10 & 1 \\
2 & 3 & 0 & 10 & 0 \\
2 & 6 & 0 & 10 & 6 \\
3 & 4 & 0 & 5 & 1 \\
3 & 5 & 0 & 10 & 4 \\
4 & 7 & 0 & 10 & 5 \\
5 & 6 & 0 & 20 & 2 \\
5 & 7 & 0 & 15 & 7 \\
6 & 8 & 0 & 10 & 8 \\
7 & 8 & 0 & 15 & 9
\end{tabular}
;
```

You can use the following call to PROC OPTMODEL to find the minimum-cost flow:

```
proc optmodel;
 set <str> NODES;
 num supply_demand {NODES};
 set <str,str> ARCS;
 num arcLower {ARCS};
 num arcUpper {ARCS};
 num arcCost {ARCS};
 read data arcdata into ARCS=[_tail_ _head_]
 arcLower=_lo_ arcUpper=_capac_ arcCost=_cost_;
 read data nodedata into NODES=[_node_] supply_demand=_sd_;
 var flow {<i,j> in ARCS} >= arcLower[i,j] <= arcUpper[i,j];
 min obj = sum {<i,j> in ARCS} arcCost[i,j] * flow[i,j];
 con balance {i in NODES}:
 sum {<(i),j> in ARCS} flow[i,j] - sum {<j,(i)> in ARCS} flow[j,i]
 = supply_demand[i];
 solve with lp / algorithm=ns scale=none logfreq=1;
 print flow;
quit;
%put &_OROPTMODEL_;
```

The optimal solution is displayed in Output 5.5.1.
Output 5.5.1 Network Simplex Solver: Primal Solution Output

The OPTMODEL Procedure	
Objective Sense Objective Function Objective Type	Minimization   obj   Linear
Number of Variables	11
Bounded Above	0
Bounded Below	0
Bounded Below and Above	11
Free	0
Fixed	0
Number of Constraints	8
Linear LE (<=)	0
Linear EQ ( $=$	8
Linear GE (>=)	0
Linear Range	0
Constraint Coefficients	22

Output 5.5.1 continued


The optimal solution is represented graphically in Figure 5.5.
Figure 5.5 Minimum Cost Network Flow Problem: Optimal Solution


The iteration $\log$ is displayed in Output 5.5.2.
Output 5.5.2 Log: Solution Progress

```
NOTE: There were 11 observations read from the data set WORK.ARCDATA.
NOTE: There were 8 observations read from the data set WORK.NODEDATA.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 11 variables (0 free, 0 fixed).
NOTE: The problem has }8\mathrm{ linear constraints (O LE, 8 EQ, O GE, O range).
NOTE: The problem has 22 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (O LE, O EQ, O GE, O range).
NOTE: The PRESOLVER value NONE is applied because a pure network has been found.
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Network Simplex algorithm is used.
NOTE: The network has }8\mathrm{ rows (100.00%), 11 columns (100.00%), and 1 component.
NOTE: The network extraction and setup time is 0.00 seconds.
 Primal Primal Dual
\begin{tabular}{rrrrr}
Iteration & Objective & Infeasibility & Infeasibility & Time \\
1 & 0 & 20.0000000 & 109.0000000 & 0.00 \\
2 & 0 & 20.0000000 & 109.0000000 & 0.00 \\
3 & 5.0000000 & 15.0000000 & 104.0000000 & 0.00 \\
4 & 5.0000000 & 15.0000000 & 103.0000000 & 0.00 \\
5 & 75.0000000 & 15.0000000 & 103.0000000 & 0.00 \\
6 & 75.0000000 & 15.0000000 & 99.0000000 & 0.00 \\
7 & 130.0000000 & 10.0000000 & 96.0000000 & 0.00 \\
8 & 270.0000000 & 0 & 0 & 0.00
\end{tabular}
NOTE: The Network Simplex solve time is 0.00 seconds.
NOTE: The total Network Simplex solve time is 0.00 seconds.
NOTE: Optimal.
NOTE: Objective = 270.
NOTE: The PROCEDURE OPTMODEL printed pages 40-41.
STATUS=OK ALGORITHM=NS SOLUTION_STATUS=OPTIMAL OBJECTIVE=270
PRIMAL_INFEASIBILITY=0 DUAL_INFEASIBILITY=0 BOUND_INFEASIBILITY=0 ITERATIONS=8
ITERATIONS2=0 PRESOLVE_TIME=0.00 SOLUTION_TIME=0.00
```

Now, suppose there is a budget on the flow that comes out of arc 2: the total arc cost of flow that comes out of arc 2 cannot exceed 50 . You can use the following call to PROC OPTMODEL to find the minimum-cost flow:

```
proc optmodel;
 set <str> NODES;
 num supply_demand {NODES};
 set <str,str> ARCS;
 num arclower {ARCS};
 num arcUpper {ARCS};
 num arcCost {ARCS};
 read data arcdata into ARCS=[_tail_ _head_]
 arcLower=_lo_ arcUpper=_capac_ arcCost=_cost_;
 read data nodedata into NODES=[_node_] supply_demand=_sd_;
```

```
 var flow {<i,j> in ARCS} >= arcLower[i,j] <= arcUpper[i,j];
 min obj = sum {<i,j> in ARCS} arcCost[i,j] * flow[i,j];
 con balance {i in NODES}:
 sum {<(i),j> in ARCS} flow[i,j] - sum {<j,(i)> in ARCS} flow[j,i]
 = supply_demand[i];
 con budgetOn2:
 sum {<i,j> in ARCS: i='2'} arcCost[i,j] * flow[i,j] <= 50;
 solve with lp / algorithm=ns scale=none logfreq=1;
 print flow;
quit;
%put &_OROPTMODEL_;
```

The optimal solution is displayed in Output 5.5.3.
Output 5.5.3 Network Simplex Solver: Primal Solution Output


Output 5.5.3 continued


The optimal solution is represented graphically in Figure 5.6.
Figure 5.6 Minimum Cost Network Flow Problem: Optimal Solution (with Budget Constraint)


The iteration $\log$ is displayed in Output 5.5.4. Note that the network simplex solver extracts a subnetwork in this case.

## Output 5.5.4 Log: Solution Progress

```
NOTE: There were 11 observations read from the data set WORK.ARCDATA.
NOTE: There were }8\mathrm{ observations read from the data set WORK.NODEDATA.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has }11\mathrm{ variables (0 free, 0 fixed).
NOTE: The problem has 9 linear constraints (1 LE, 8 EQ, 0 GE, 0 range).
NOTE: The problem has 24 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (O LE, O EQ, O GE, O range).
NOTE: The LP presolver value AUTOMATIC is applied.
NOTE: The LP presolver removed 6 variables and 7 constraints.
NOTE: The LP presolver removed 15 constraint coefficients.
NOTE: The presolved problem has 5 variables, 2 constraints, and 9 constraint
 coefficients.
NOTE: The LP solver is called.
NOTE: The Network Simplex algorithm is used.
NOTE: The network has 1 rows (50.00%), 5 columns (100.00%), and 1 component.
NOTE: The network extraction and setup time is 0.00 seconds.
 Primal Primal Dual
 Iteration Objective Infeasibility Infeasibility Time
 1 259.9800000
 2 264.9900000
 5 270.0000000 0 0 0 0.00
NOTE: The Network Simplex solve time is 0.00 seconds.
NOTE: The total Network Simplex solve time is 0.00 seconds.
NOTE: Optimal.
NOTE: Objective = 270.
NOTE: The Dual Simplex algorithm is used.
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Phase Iteration} & Objective & & Entering & Leaving \\
\hline & & Time & Variable & Variable \\
\hline D 21 & 2.700000e+02 & 0 & flow['5', '6'] & \\
\hline budgetOn2 (S) & & & & \\
\hline D 22 & \(2.700000 \mathrm{e}+02\) & 0 & flow['3', '4'] & \\
\hline flow['2', '3'] & & & & \\
\hline D 23 & \(2.740000 \mathrm{e}+02\) & 0 & & \\
\hline P 24 & \(2.740000 \mathrm{e}+02\) & 0 & & \\
\hline P 25 & \(2.740000 \mathrm{e}+02\) & 0 & & \\
\hline
\end{tabular}
NOTE: Optimal.
NOTE: Objective = 274.
NOTE: The Simplex solve time is 0.00 seconds.
NOTE: The PROCEDURE OPTMODEL printed pages 47-48.
STATUS=OK ALGORITHM=NS SOLUTION_STATUS=OPTIMAL OBJECTIVE=274
PRIMAL_INFEASIBILITY=8.881784E-16 DUAL_INFEASIBILITY=0 BOUND_INFEASIBILITY=0
ITERATIONS=5 ITERATIONS2=5 PRESOLVE_TIME=0.00 SOLUTION_TIME=0.00
```


## Example 5.6: Migration to OPTMODEL: Generalized Networks

The following example shows how to use PROC OPTMODEL to solve the example "Generalized Networks: Using the EXCESS= Option" in Chapter 7, "The NETFLOW Procedure" (SAS/OR User's Guide: Mathematical Programming Legacy Procedures). The input data sets are the same as in the PROC NETFLOW example.

```
title 'Generalized Networks';
data garcs;
 input _from_ $ _to_ $ _cost_ _mult_;
 datalines;
s1 d1 1 .
s1 d2 8 .
s2 d1 4 2
s2 d2 2 2
s2 d3 1 2
s3 d2 5 0.5
s3 d3 4 0.5
;
data gnodes;
 input _node_ $ _sd_ ;
 datalines;
s1 5
s2 20
s3 10
d1 -5
d2 -10
d3 -20
;
```

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve the model, and output the optimal solution to a SAS data set called GENETOUT:

```
proc optmodel;
 set <str> NODES;
 num _sd_ {NODES} init 0;
 read data gnodes into NODES=[_node_] _sd_;
 set <str,str> ARCS;
 num _lo_ {ARCS} init 0;
 num _capac_ {ARCS} init .;
 num _cost_ {ARCS};
 num _mult_ {ARCS} init 1;
 read data garcs nomiss into ARCS=[_from_ _to_] _cost_ _mult_;
 NODES = NODES union (union {<i,j> in ARCS} {i,j});
```

```
 var Flow {<i,j> in ARCS} >= _lo_[i,j];
 min obj = sum {<i,j> in ARCS} _cost_[i,j] * Flow[i,j];
 con balance {i in NODES}: sum {<(i),j> in ARCS} Flow[i,j]
 - sum {<j,(i)> in ARCS} _mult_[j,i] * Flow[j,i] = _sd_[i];
num infinity = min {r in {}} r;
/* change equality constraint to le constraint for supply nodes */
for {i in NODES: _sd_[i] > 0} balance[i].lb = -infinity;
solve;
num _supply_ {<i,j> in ARCS} = (if _sd_[i] ne 0 then _sd_[i] else .);
num _demand_ {<i,j> in ARCS} = (if _sd_[j] ne O then __sd_[j] else .);
num _fcost_ {<i,j> in ARCS} = _cost_[i,j] * Flow[i,j].sol;
create data gnetout from [_from_ _to_]
 cost _capac_ _lo_ _mult_ _supply_ _demand_ _flow_=Flow _fcost_;
quit;
```

To solve a generalized network flow problem, the usual balance constraint is altered to include the arc multiplier "_mult_[i,j]" in the second sum. The balance constraint is initially declared as an equality, but to mimic the EXCESS=SUPPLY option in PROC NETFLOW, the sense of this constraint is changed to " $\leq$ " by relaxing the constraint's lower bound for supply nodes. The output data set is displayed in Output 5.6.1.

Output 5.6.1 Optimal Solution with Excess Supply

Obs	Generalized Networks									
	from	to	st		10	ult	uppl	ma	flow	os
1	s1	d1	1	.	0	1.0	5	5	5	5
2	s1	d2	8	.	0	1.0	5	10	0	0
3	s2	d1	4	.	0	2.0	20	5	0	0
4	s2	d2	2	.	0	2.0	20	10	5	10
5	s2	d3	1	.	0	2.0	20	20	10	10
6	s3	d2	5	.	0	0.5	10	10	0	0
7	s3	d3	4	.	0	0.5	10	20	0	0

The $\log$ is displayed in Output 5.6.2.

## Output 5.6.2 OPTMODEL Log

```
NOTE: There were 6 observations read from the data set WORK.GNODES.
NOTE: There were }7\mathrm{ observations read from the data set WORK.GARCS.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 7 variables (0 free, 0 fixed).
NOTE: The problem has 6 linear constraints (}3\textrm{LE},3\textrm{EQ},0\textrm{GE},0\mathrm{ range).
NOTE: The problem has }14\mathrm{ linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (O LE, O EQ, O GE, O range).
NOTE: The OPTMODEL presolver is disabled for linear problems.
NOTE: The LP presolver value AUTOMATIC is applied.
NOTE: The LP presolver removed 2 variables and 2 constraints.
NOTE: The LP presolver removed 4 constraint coefficients.
NOTE: The presolved problem has 5 variables, 4 constraints, and 10 constraint
 coefficients.
NOTE: The LP solver is called.
NOTE: The Dual Simplex algorithm is used.
 Objective
\begin{tabular}{crcr}
Phase & Iteration & Value & Time \\
D 1 & 1 & \(0.000000 \mathrm{e}+00\) & 0 \\
D 2 & 2 & \(1.500000 \mathrm{e}+01\) & 0 \\
D 2 & 4 & \(2.500000 \mathrm{e}+01\) & 0
\end{tabular}
NOTE: Optimal.
NOTE: Objective = 25.
NOTE: The Dual Simplex solve time is 0.00 seconds.
NOTE: The data set WORK.GNETOUT has 7 observations and 10 variables.
NOTE: The PROCEDURE OPTMODEL printed pages 50-51.
```

Now consider the previous example but with a slight modification to the arc multipliers, as in the PROC NETFLOW example:

```
data garcs1;
 input _from_ $ _to_ $ _cost_ _mult_;
 datalines;
s1 d1 1 0.5
s1 d2 8 0.5
s2 d1 4 .
s2 d2 2 .
s2 d3 1 .
s3 d2 5 0.5
s3 d3 4 0.5
;
```

The following PROC OPTMODEL statements are identical to the preceding example, except for the balance constraint. The balance constraint is still initially declared as an equality, but to mimic the PROC NETFLOW EXCESS=DEMAND option, the sense of this constraint is changed to " $\geq$ " by relaxing the constraint's upper bound for demand nodes.

```
proc optmodel;
 set <str> NODES;
 num _sd_ {NODES} init 0;
 read data gnodes into NODES=[_node_] _sd_;
```

```
set <str,str> ARCS;
num _lo_ {ARCS} init 0;
num _capac_ {ARCS} init .;
num _cost_ {ARCS};
num _mult_ {ARCS} init 1;
read data garcs1 nomiss into ARCS=[_from_ _to_] _cost_ _mult_;
NODES = NODES union (union {<i,j> in ARCS} {i,j});
var Flow {<i,j> in ARCS} >= _lo_[i,j];
for {<i,j> in ARCS: _capac_[i,j] ne .} Flow[i,j].ub = _capac_[i,j];
min obj = sum {<i,j> in ARCS} _cost_[i,j] * Flow[i,j];
con balance {i in NODES}: sum {<(i),j> in ARCS} Flow[i,j]
 - sum {<j,(i)> in ARCS} _mult_[j,i] * Flow[j,i] = _sd_[i];
num infinity = min {r in {}} r;
/* change equality constraint to ge constraint */
for {i in NODES: _sd_[i] < O} balance[i].ub = infinity;
solve;
num _supply_ {<i,j> in ARCS} = (if _sd_[i] ne 0 then _sd_[i] else .);
num _demand_ {<i,j> in ARCS} = (if _sd_[j] ne 0 then __sd_[j] else .);
num _fcost_ {<i,j> in ARCS} = _cost_[i,j] * Flow[i,j].sol;
create data gnetout1 from [_from_ _to_]
 cost _capac_ _lo_ _mult_ _supply_ _demand_ _flow_=Flow _fcost_;
quit;
```

The output data set is displayed in Output 5.6.3.
Output 5.6.3 Optimal Solution with Excess Demand

Generalized Networks										
Obs _from_ _to_ _cost_ _capac_ _lo_ mult_ _supply_ _demand_ _flow_ _fcost										
1	s1	d1	1	.	0	0.5	5	5	5	5
2	s1	d2	8	.	0	0.5	5	10	0	0
3	s2	d1	4	.	0	1.0	20	5	0	0
4	s2	d2	2	.	0	1.0	20	10	5	10
5	s2	d3	1	.	0	1.0	20	20	15	15
6	s3	d2	5	.	0	0.5	10	10	0	0
7	s3	d3	4	.	0	0.5	10	20	10	40

The $\log$ is displayed in Output 5.6.4.

Output 5.6.4 OPTMODEL Log

```
NOTE: There were 6 observations read from the data set WORK.GNODES.
NOTE: There were }7\mathrm{ observations read from the data set WORK.GARCS1.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 7 variables (0 free, 0 fixed).
NOTE: The problem has 6 linear constraints (0 LE, 3 EQ, 3 GE, 0 range).
NOTE: The problem has }14\mathrm{ linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (O LE, O EQ, O GE, O range).
NOTE: The OPTMODEL presolver is disabled for linear problems.
NOTE: The LP presolver value AUTOMATIC is applied.
NOTE: The LP presolver removed 2 variables and 2 constraints.
NOTE: The LP presolver removed 4 constraint coefficients.
NOTE: The presolved problem has 5 variables, 4 constraints, and 10 constraint
 coefficients.
NOTE: The LP solver is called.
NOTE: The Dual Simplex algorithm is used.
 Objective
\begin{tabular}{crcr}
Phase & Iteration & Value & Time \\
D 1 & 1 & \(0.000000 \mathrm{e}+00\) & 0 \\
D 2 & 2 & \(4.999000 \mathrm{e}+01\) & 0 \\
D 2 & 5 & \(7.000000 \mathrm{e}+01\) & 0
\end{tabular}
NOTE: Optimal.
NOTE: Objective = 70.
NOTE: The Dual Simplex solve time is 0.00 seconds.
NOTE: The data set WORK.GNETOUT1 has }7\mathrm{ observations and 10 variables.
NOTE: The PROCEDURE OPTMODEL printed pages 54-55.
```


## Example 5.7: Migration to OPTMODEL: Maximum Flow

The following example shows how to use PROC OPTMODEL to solve the example "Maximum Flow Problem" in Chapter 7, "The NETFLOW Procedure" (SAS/OR User's Guide: Mathematical Programming Legacy Procedures). The input data set is the same as in that example.

```
title 'Maximum Flow Problem';
data arcs;
 input _from_ $ _to_ $ _cost_ _capac_;
 datalines;
S a . .
S b . .
a c 1 7
b c 2 9
a d 3 5
b d 4 8
c e 5 15
d f 6 20
e g 7 11
f g 8 6
e h 9 12
```

```
f h 10 4
g T . .
h T . .
;
```

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve the model, and output the optimal solution to a SAS data set called GOUT3:

```
proc optmodel;
 str source = 'S';
 str sink = 'T';
 set <str> NODES;
 num _supdem_ {i in NODES} = (if i in {source, sink} then . else 0);
 set <str,str> ARCS;
 num _lo_ {ARCS} init 0;
 num _capac_ {ARCS} init .;
 num _cost_ {ARCS} init 0;
 read data arcs nomiss into ARCS=[_from_ _to_] _cost_ _capac_;
 NODES = (union {<i,j> in ARCS} {i,j});
 var Flow {<i,j> in ARCS} >= _lo_[i,j];
 for {<i,j> in ARCS: _capac_[i,j] ne .} Flow[i,j].ub = _capac_[i,j];
 max obj = sum {<i,j> in ARCS: j = sink} Flow[i,j];
 con balance {i in NODES diff {source, sink}}:
 sum {<(i),j> in ARCS} Flow[i,j]
 - sum {<j,(i)> in ARCS} Flow[j,i] = _supdem_[i];
 solve;
 num _supply_ {<i,j> in ARCS} =
 (if _supdem_[i] ne O then _supdem_[i] else .);
 num _demand_ {<i,j> in ARCS} =
 (if _supdem_[j] ne 0 then __supdem_[j] else .);
 num _fcost_ {<i,j> in ARCS} = _cost_[i,j] * Flow[i,j].sol;
 create data gout3 from [_from_ _to_]
 cost _capac_ _lo_ _supply_ _demand_ _flow_=Flow _fcost_;
quit;
```

To solve a maximum flow problem, you solve a network flow problem that has a zero supply or demand at all nodes other than the source and sink nodes, as specified in the declaration of the _SUPDEM_ numeric parameter and the balance constraint. The objective declaration uses the logical condition $\mathrm{J}=$ SINK to maximize the flow into the sink node. The output data set is displayed in Output 5.7.1.

Output 5.7.1 Optimal Solution

Obs	Maximum Flow Problem								
	_from_	_to_	_cost_	_capac_	_10_	_supply_	_demand_	_flow_	_fcost_
1	S	a	0	.	0	.	.	12	0
2	S	b	0	.	0	-	-	13	0
3	a	c	1	7	0	-	-	7	7
4	b	c	2	9	0	.	.	8	16
5	a	d	3	5	0	.	.	5	15
6	b	d	4	8	0	-	.	5	20
7	c	e	5	15	0	.	.	15	75
8	d	f	6	20	0	-	.	10	60
9	e	g	7	11	0	.	-	3	21
10	f	g	8	6	0	-	-	6	48
11	e	h	9	12	0	.	.	12	108
12	f	h	10	4	0	-	-	4	40
13	g	T	0	.	0	.	.	9	0
14	h	T	0	-	0	-	-	16	0

The $\log$ is displayed in Output 5.7.2.

## Output 5.7.2 OPTMODEL Log

```
NOTE: There were 14 observations read from the data set WORK.ARCS.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has }14\mathrm{ variables (0 free, O fixed).
NOTE: The problem has }8\mathrm{ linear constraints (O LE, 8 EQ, O GE, 0 range).
NOTE: The problem has 24 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (O LE, O EQ, O GE, O range).
NOTE: The OPTMODEL presolver is disabled for linear problems.
NOTE: The LP presolver value AUTOMATIC is applied.
NOTE: The LP presolver removed 10 variables and 6 constraints.
NOTE: The LP presolver removed 20 constraint coefficients.
NOTE: The presolved problem has 4 variables, 2 constraints, and 4 constraint
 coefficients.
NOTE: The LP solver is called.
NOTE: The Dual Simplex algorithm is used.
 Objective
\begin{tabular}{rrcr}
Phase & Iteration & Value & Time \\
D 1 & 1 & \(0.000000 \mathrm{e}+00\) & 0 \\
D 2 & 2 & \(2.500000 \mathrm{e}+01\) & 0 \\
P 2 & 5 & \(2.500000 \mathrm{e}+01\) & 0 \\
P 2 & 6 & \(2.500000 \mathrm{e}+01\) & 0
\end{tabular}
NOTE: Optimal.
NOTE: Objective = 25.
NOTE: The Dual Simplex solve time is 0.00 seconds.
NOTE: The data set WORK.GOUT3 has 14 observations and 9 variables.
NOTE: The PROCEDURE OPTMODEL printed pages 58-59.
```


## Example 5.8: Migration to OPTMODEL: Production, Inventory, Distribution

The following example shows how to use PROC OPTMODEL to solve the example "Production, Inventory, Distribution Problem" in Chapter 7, "The NETFLOW Procedure" (SAS/OR User's Guide: Mathematical Programming Legacy Procedures). The input data sets are the same as in that example.

```
title 'Minimum Cost Flow Problem';
title2 'Production Planning/Inventory/Distribution';
data node0;
 input _node_ $ _supdem_ ;
 datalines;
fact1_1 1000
fact2_1 850
fact1_2 1000
fact2_2 1500
shop1_1 -900
shop2_1 -900
shop1_2 -900
shop2_2 -1450
;
data arc0;
 input _tail_ $ _head_ $ _cost_ _capac_ _lo_
 diagonal factory key_id $10. mth_made $ _name_&$17.;
 datalines;
fact1_1 f1_mar_1 127.9 500 50 19 1 production March prod f1 19 mar
fact1_1 f1_apr_1 78.6 600 50 19 1 production April prod f1 19 apl
fact1_1 f1_may_1 95.1 400 50 19 1 production May
f1_mar_1 f1_apr_1 15 50 . 19 1 storage March .
f1_apr_1 f1_may_1 12 50 . 19 1 storage April .
f1_apr_1 f1_mar_1 28 20 . 19 1 backorder April back f1 19 apl
f1_may_1 f1_apr_1 28 20 . 19 1 backorder May back f1 19 may
f1_mar_1 f2_mar_1 11 . . 19 . f1_to_2 March .
f1_apr_1 f2_apr_1 11 . . 19 . f1_to_2 April .
f1_may_1 f2_may_1 16 . . 19 . f1_to_2 May
f1_mar_1 shop1_1 -327.65 250 . 19 1 sales March .
f1_apr_1 shop1_1 -300 250 . 19 1 sales April .
f1_may_1 shop1_1 -285 250 . 19 1 sales May
f1_mar_1 shop2_1 -362.74 250 . 19 1 sales March .
f1_apr_1 shop2_1 -300 250 . 19 1 sales April .
f1_may_1 shop2_1 -245 250 . 19 1 sales May
fact2_1 f2_mar_1 88.0 450 35 19 2 production March prod f2 19 mar
fact2_1 f2_apr_1 62.4 480 35 19 2 production April prod f2 19 apl
fact2_1 f2_may_1 133.8 250 35 19 2 production May
f2_mar_1 f2_apr_1 18 30 . 19 2 storage March .
f2_apr_1 f2_may_1 20 30 . 19 2 storage April .
f2_apr_1 f2_mar_1 17 15 . 19 2 backorder April back f2 19 apl
f2_may_1 f2_apr_1 25 15 . 19 2 backorder May back f2 19 may
f2_mar_1 f1_mar_1 10 40 . 19 . f2_to_1 March .
f2_apr_1 f1_apr_1 11 40 . 19 . f2_to_1 April .
f2_may_1 f1_may_1 13 40 . 19 . f2_to_1 May .
```

```
f2_mar_1 shop1_1 -297.4 250 . 19 2 sales March .
f2_apr_1 shop1_1 -290 250 . 19 2 sales April .
f2_may_1 shop1_1 -292 250 . 19 2 sales May
f2_mar_1 shop2_1 -272.7 250 . 19 2 sales March .
f2_apr_1 shop2_1 -312 250 . 19 2 sales April .
f2_may_1 shop2_1 -299 250 . 19 2 sales May
fact1_2 f1_mar_2 217.9 400 40 25 1 production March prod f1 25 mar
fact1_2 f1_apr_2 174.5 550 50 25 1 production April prod f1 25 apl
fact1_2 f1_may_2 133.3 350 40 25 1 production May
f1_mar_2 f1_apr_2 20 40 . 25 1 storage March .
f1_apr_2 f1_may_2 18 40 . 25 1 storage April .
f1_apr_2 f1_mar_2 32 30 . 25 1 backorder April back f1 25 apl
f1_may_2 f1_apr_2 41 15 . 25 1 backorder May back f1 25 may
f1_mar_2 f2_mar_2 23 . . 25 . f1_to_2 March .
f1_apr_2 f2_apr_2 23 . . 25 . f1_to_2 April .
f1_may_2 f2_may_2 26 . . 25 . f1_to_2 May
f1_mar_2 shop1_2 -559.76 . . 25 1 sales March .
f1_apr_2 shop1_2 -524.28. . 25 1 sales April .
f1_may_2 shop1_2 -475.02 . . 25 1 sales May
f1_mar_2 shop2_2 -623.89 . . 25 1 sales March .
f1_apr_2 shop2_2 -549.68 . . 25 1 sales April .
f1_may_2 shop2_2 -460.00 . . 25 1 sales May
fact2_2 f2_mar_2 182.0 650 35 25 2 production March prod f2 25 mar
fact2_2 f2_apr_2 196.7 680 35 25 2 production April prod f2 25 apl
fact2_2 f2_may_2 201.4 550 35 25 2 production May
f2_mar_2 f2_apr_2 28 50 . 25 2 storage March .
f2_apr_2 f2_may_2 38 50 . 25 2 storage April .
f2_apr_2 f2_mar_2 31 15 . 25 2 backorder April back f2 25 apl
f2_may_2 f2_apr_2 54 15 . 25 2 backorder May back f2 25 may
f2_mar_2 f1_mar_2 20 25 . 25 . f2_to_1 March .
f2_apr_2 f1_apr_2 21 25 . 25 . f2_to_1 April .
f2_may_2 f1_may_2 43 25 . 25 . f2_to_1 May
f2_mar_2 shop1_2 -567.83 500 . 25 2 sales March .
f2_apr_2 shop1_2 -542.19 500 . 25 2 sales April .
f2_may_2 shop1_2 -461.56 500 . 25 2 sales May
f2_mar_2 shop2_2 -542.83 500 . 25 2 sales March .
f2_apr_2 shop2_2 -559.19 500 . 25 2 sales April .
f2_may_2 shop2_2 -489.06 500 . 25 2 sales May
;
```

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve the model, and output the optimal solution to SAS data sets called ARC1 and NODE2:

```
proc optmodel;
 set <str> NODES;
 num _supdem_ {NODES} init 0;
 read data nodeO into NODES=[_node_] _supdem_;
 set <str,str> ARCS;
 num _lo_ {ARCS} init 0;
 num _capac_ {ARCS} init .;
 num _cost_ {ARCS};
 num diagonal {ARCS};
 num factory {ARCS};
```

```
 str key_id {ARCS};
 str mth_made {ARCS};
 str _name_ {ARCS};
 read data arc0 nomiss into ARCS=[_tail_ _head_] _lo_ _capac_ _cost_
 diagonal factory key_id mth_made _name_;
 NODES = NODES union (union {<i,j> in ARCS} {i,j});
 var Flow {<i,j> in ARCS} >= _lo_[i,j];
 for {<i,j> in ARCS: _capac_[i,j] ne .} Flow[i,j].ub = _capac_[i,j];
 min obj = sum {<i,j> in ARCS} _cost_[i,j] * Flow[i,j];
 con balance {i in NODES}: sum {<(i),j> in ARCS} Flow[i,j]
 - sum {<j,(i)> in ARCS} Flow[j,i] = _supdem_[i];
num infinity = min {r in {}} r;
num excess = sum {i in NODES} _supdem_[i];
if (excess > 0) then do;
 /* change equality constraint to le constraint for supply nodes */
 for {i in NODES: _supdem_[i] > 0} balance[i].lb = -infinity;
end;
else if (excess < 0) then do;
 /* change equality constraint to ge constraint for demand nodes */
 for {i in NODES: _supdem_[i] < 0} balance[i].ub = infinity;
end;
solve;
num _supply_ {<i,j> in ARCS} =
 (if _supdem_[i] ne 0 then _supdem_[i] else .);
num _demand_ {<i,j> in ARCS} =
 (if _supdem_[j] ne 0 then __supdem_[j] else .);
num _fcost_ {<i,j> in ARCS} = _cost_[i,j] * Flow[i,j].sol;
create data arc1 from [_tail_ _head_]
 cost _capac_ _lo_ _name_ _supply_ _demand_ _flow_=Flow _fcost_
 rcost =
 (if Flow[_tail_,_head_].rc ne 0 then Flow[_tail_,_head_].rc else .)
 status = Flow.status diagonal factory key_id mth_made;
create data node2 from [_node_]
 supdem = (if _supdem_[_node_] ne 0 then _supdem_[_node_] else .)
 dual = balance.dual;
quit;
```

The PROC OPTMODEL statements use both single-dimensional (NODES) and multiple-dimensional (ARCS) index sets, which are populated from the corresponding data set variables in the READ DATA statements. The _SUPDEM_, _LO_, and _CAPAC_ parameters are given initial values, and the NOMISS option in the READ DATA statement tells PROC OPTMODEL to read only the nonmissing values from the input data set. The balance constraint is initially declared as an equality, but depending on the total supply or demand, the sense of this constraint is changed to " $\leq$ " or " $\geq$ " by relaxing the constraint's lower or upper bound, respectively. The ARC1 output data set contains most of the same information as in the NETFLOW example, including reduced cost, basis status, and dual values. The _ANUMB_ and _TNUMB_ values do not apply here.

The PROC PRINT statements are similar to the PROC NETFLOW example:

```
options ls=80 ps=54;
proc print data=arc1 heading=h width=min;
 var _tail_ _head_ _cost_ _capac_ _lo_ _name_
 supply _demand_ _flow_ _fcost_;
 sum _fcost_;
run;
proc print data=arc1 heading=h width=min;
 var _rcost_ _status_ diagonal factory key_id mth_made;
run;
proc print data=node2;
run;
```

The output data sets are displayed in Output 5.8.1.

Output 5.8.1 Output Data Sets

Obs	Minimum Cost Flow Problem Production Planning/Inventory/Distribution					
	_tail_	_head_	_cost_	_capac_	_10_	_name_
1	fact1_1	f1_mar_1	127.90	500	50	prod f1 19 mar
2	fact1_1	f1_apr_1	78.60	600	50	prod f1 19 apl
3	fact1_1	f1_may_1	95.10	400	50	
4	f1_mar_1	f1_apr_1	15.00	50	0	
5	f1_apr_1	f1_may_1	12.00	50	0	
6	f1_apr_1	f1_mar_1	28.00	20	0	back f1 19 apl
7	f1_may_1	f1_apr_1	28.00	20	0	back f1 19 may
8	f1_mar_1	f2_mar_1	11.00	.	0	
9	f1_apr_1	f2_apr_1	11.00	.	0	
10	f1_may_1	f2_may_1	16.00	.	0	
11	f1_mar_1	shop1_1	-327.65	250	0	
12	f1_apr_1	shop1_1	-300.00	250	0	
13	f1_may_1	shop1_1	-285.00	250	0	
14	f1_mar_1	shop2_1	-362.74	250	0	
15	f1_apr_1	shop2_1	-300.00	250	0	
16	f1_may_1	shop2_1	-245.00	250	0	
17	fact2_1	f2_mar_1	88.00	450	35	prod f2 19 mar
18	fact2_1	f2_apr_1	62.40	480	35	prod f2 19 apl
19	fact2_1	f2_may_1	133.80	250	35	
20	f2_mar_1	f2_apr_1	18.00	30	0	
21	f2_apr_1	f2_may_1	20.00	30	0	
22	f2_apr_1	f2_mar_1	17.00	15	0	back f2 19 apl
23	f2_may_1	f2_apr_1	25.00	15	0	back f2 19 may
Obs	_supply_	_demand_	_flow_	_fcost_		
1	1000	.	345	44125.50		
2	1000	.	600	47160.00		
3	1000	.	50	4755.00		
4	.	.	0	0.00		
5	.	.	50	600.00		
6	.	.	20	560.00		
7	.	.	0	0.00		
8	.	.	0	0.00		
9	.	.	30	330.00		
10	.	.	100	1600.00		
11	.	900	155	-50785.75		
12	.	900	250	-75000.00		
13	.	900	0	0.00		
14	.	900	250	-90685.00		
15	.	900	250	-75000.00		
16	.	900	0	0.00		
17	850	.	290	25520.00		
18	850	.	480	29952.00		
19	850	.	35	4683.00		
20	.	.	0	0.00		
21	.	.	15	300.00		
22	.	.	0	0.00		
23	.	-	0	0.00		

Output 5.8.1 continued

Obs	_tail_	Minimum Cost Flow Problem Production Planning/Inventory/Distribution				
		_head	_cost_	_capac_	10	_name_
24	f2_mar_1	f1_mar_1	10.00	40	0	
25	f2_apr_1	f1_apr_1	11.00	40	0	
26	f2_may_1	f1_may_1	13.00	40	0	
27	f2_mar_1	shop1_1	-297.40	250	0	
28	f2_apr_1	shop1_1	-290.00	250	0	
29	f2_may_1	shop1_1	-292.00	250	0	
30	f2_mar_1	shop2_1	-272.70	250	0	
31	f2_apr_1	shop2_1	-312.00	250	0	
32	f2_may_1	shop2_1	-299.00	250	0	
33	fact1_2	f1_mar_2	217.90	400	40	prod f1 25 mar
34	fact1_2	f1_apr_2	174.50	550	50	prod f1 25 apl
35	fact1_2	f1_may_2	133.30	350	40	
36	f1_mar_2	f1_apr_2	20.00	40	0	
37	f1_apr_2	f1_may_2	18.00	40	0	
38	f1_apr_2	f1_mar_2	32.00	30	0	back f1 25 apl
39	f1_may_2	f1_apr_2	41.00	15	0	back f1 25 may
40	f1_mar_2	f2_mar_2	23.00	.	0	
41	f1_apr_2	f2_apr_2	23.00	-	0	
42	f1_may_2	f2_may_2	26.00	-	0	
43	f1_mar_2	shop1_2	-559.76	-	0	
44	f1_apr_2	shop1_2	-524.28	-	0	
45	f1_may_2	shop1_2	-475.02	.	0	
46	f1_mar_2	shop2_2	-623.89	.	0	
Obs	_supply_	_demand_	_flow_	_fcos		
24	-	-	40	400		
25	-	-	0			
26	-	.	0			
27	.	900	250	-74350		
28	-	900	245	-71050		
29	.	900	0			
30	-	900	0			
31	-	900	250	-78000		
32	.	900	150	-44850		
33	1000	.	400	87160		
34	1000	-	550	95975		
35	1000	-	40	5332		
36	.	.	0			
37	.	-	0			
38	.	-	30	960		
39	.	-	15	615		
40	.	-	0			
41	-	-	0			
42	-	-	0			
43	.	900	0			
44	.	900	0			
45	-	900	25	-11875		
46	.	1450	455	-283869		

Output 5.8.1 continued

Obs	Minimum Cost Flow Problem tion Planning/Inventory/Distribution					
	_tail_	_head_	_cost_	_capac_	_10_	_name_
47	f1_apr_2	shop2_2	-549.68	.	0	
48	f1_may_2	shop2_2	-460.00	.	0	
49	fact2_2	f2_mar_2	182.00	650	35	prod f2 25 mar
50	fact2_2	f2_apr_2	196.70	680	35	prod f2 25 apl
51	fact2_2	f2_may_2	201.40	550	35	
52	f2_mar_2	f2_apr_2	28.00	50	0	
53	f2_apr_2	f2_may_2	38.00	50	0	
54	f2_apr_2	f2_mar_2	31.00	15	0	back f2 25 apl
55	f2_may_2	f2_apr_2	54.00	15	0	back f2 25 may
56	f2_mar_2	f1_mar_2	20.00	25	0	
57	f2_apr_2	f1_apr_2	21.00	25	0	
58	f2_may_2	f1_may_2	43.00	25	0	
59	f2_mar_2	shop1_2	-567.83	500	0	
60	f2_apr_2	shop1_2	-542.19	500	0	
61	f2_may_2	shop1_2	-461.56	500	0	
62	f2_mar_2	shop2_2	-542.83	500	0	
63	f2_apr_2	shop2_2	-559.19	500	0	
64	f2_may_2	shop2_2	-489.06	500	0	
Obs	_supply_	_demand	_flow	_fcost_		
47	.	1450	535	-294078.80		
48	$\cdot$	1450	0	0.00		
49	1500	.	645	117390.00		
50	1500	-	680	133756.00		
51	1500	.	35	7049.00		
52	.	.	0	0.00		
53	.	-	0	0.00		
54	.	.	0	0.00		
55	.	.	15	810.00		
56	.	.	25	500.00		
57	.		0	0.00		
58	.	.	0	0.00		
59	-	900	500	-283915.00		
60	.	900	375	-203321.25		
61	.	900	0	0.00		
62	.	1450	120	-65139.60		
63	.	1450	320	-178940.80		
64	-	1450	20	-9781. 20		
				-1281110.35		

Output 5.8.1 continued

Obs	_rcost_	Minimum Cost Flow Problem Production Planning/Inventory/Distribution				
		_status_	diagonal	factory	key_id	mth_made
1	.	B	19	1	production	March
2	-0.65	U	19	1	production	April
3	0.85	L	19	1	production	May
4	63.65	L	19	1	storage	March
5	-3.00	U	19	1	storage	April
6	-20.65	U	19	1	backorder	April
7	43.00	L	19	1	backorder	May
8	50.90	L	19	-	f1_to_2	March
9	.	B	19	.	f1_to_2	April
10	-	B	19	.	f1_to_2	May
11	.	B	19	1	sales	March
12	-21.00	U	19	1	sales	April
13	9.00	L	19	1	sales	May
14	-46.09	U	19	1	sales	March
15	-32.00	U	19	1	sales	April
16	38.00	L	19	1	sales	May
17	.	B	19	2	production	March
18	-27.85	U	19	2	production	April
19	23.55	L	19	2	production	May
20	15.75	L	19	2	storage	March
21	.	B	19	2	storage	April
22	19.25	L	19	2	backorder	April
23	45.00	L	19	2	backorder	May
24	-29.90	U	19	.	f2_to_1	March
25	22.00	L	19	-	f2_to_1	April
26	29.00	L	19	.	f2_to_1	May
27	-9.65	U	19	2	sales	March
28	-	B	19	2	sales	April
29	18.00	L	19	2	sales	May
30	4.05	L	19	2	sales	March
31	-33.00	U	19	2	sales	April
32	.	B	19	2	sales	May
33	-45.16	U	25	1	production	March
34	-14.35	U	25	1	production	April
35	2.11	L	25	1	production	May
36	94.21	L	25	1	storage	March
37	75.66	L	25	1	storage	April
38	-42.21	U	25	1	backorder	April
39	-16.66	U	25	1	backorder	May
40	104.06	L	25	.	f1_to_2	March
41	13.49	L	25	.	f1_to_2	April
42	28.96	L	25	.	f1_to_2	May
43	47.13	L	25	1	sales	March
44	8.40	L	25	1	sales	April
45	.	B	25	1	sales	May
46	.	B	25	1	sales	March
47	.	B	25	1	sales	April
48	32.02	L	25	1	sales	May
49	.	B	25	2	production	March

Output 5.8.1 continued

Obs	_rcost_	Minimum Cost Flow Problem ion Planning/Inventory/Distribution				
50	-1. 66	U	25	2	production	April
51	73.17	L	25	2	production	May
52	11.64	L	25	2	storage	March
53	108.13	L	25	2	storage	April
54	47.36	L	25	2	backorder	April
55	-16.13	U	25	2	backorder	May
56	-61.06	U	25	.	f2_to_1	March
57	30.51	L	25	.	f2_to_1	April
58	40.04	L	25	-	f2_to_1	May
59	-42.00	U	25	2	sales	March
60	.	B	25	2	sales	April
61	10.50	L	25	2	sales	May
62	.	B	25	2	sales	March
63	.	B	25	2	sales	April
64	-	B	25	2	sales	May
		Minimum Cost Flow Problem				Production Planning/Inventory/Distribution
		Obs	_node	_supdem	_dual_	
		1	fact1_1	1000	0.00	
		2	fact2_1	850	0.00	
		3	fact1_2	1000	0.00	
		4	fact2_2	1500	0.00	
		5	shop1_1	-900	199.75	
		6	shop2_1	-900	188.75	
		7	shop1_2	-900	343.83	
		8	shop2_2	-1450	360.83	
		9	f1_mar_1	.	-127.90	
		10	f1_apr_1	.	-79.25	
		11	f1_may_1	.	-94.25	
		12	f2_mar_1	-	-88.00	
		13	f2_apr_1	.	-90.25	
		14	f2_may_1	-	-110.25	
		15	f1_mar_2	-	-263.06	
		16	f1_apr_2	-	-188.85	
		17	f1_may_2	-	-131.19	
		18	f2_mar_2	.	-182.00	
		19	f2_apr_2	-	-198.36	
		20	f2_may_2	-	-128.23	

The $\log$ is displayed in Output 5.8.2.

Output 5.8.2 OPTMODEL Log

```
NOTE: There were 8 observations read from the data set WORK.NODEO.
NOTE: There were }64\mathrm{ observations read from the data set WORK.ARCO.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 64 variables (0 free, 0 fixed).
NOTE: The problem has 20 linear constraints (4 LE, 16 EQ, 0 GE, 0 range).
NOTE: The problem has }128\mathrm{ linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (O LE, O EQ, O GE, O range).
NOTE: The OPTMODEL presolver is disabled for linear problems.
NOTE: The LP presolver value AUTOMATIC is applied.
NOTE: The LP presolver removed O variables and O constraints.
NOTE: The LP presolver removed 0 constraint coefficients.
NOTE: The presolved problem has 64 variables, 20 constraints, and 128
 constraint coefficients.
NOTE: The LP solver is called.
NOTE: The Dual Simplex algorithm is used.
 Objective
\begin{tabular}{crrr}
Phase & Iteration & Value & Time \\
D 1 & 1 & \(0.000000 \mathrm{e}+00\) & 0 \\
D 2 & 2 & \(-4.012320 \mathrm{e}+06\) & 0 \\
D 2 & 33 & \(-1.281110 \mathrm{e}+06\) & 0
\end{tabular}
NOTE: Optimal.
NOTE: Objective = -1281110.35.
NOTE: The Dual Simplex solve time is 0.00 seconds.
NOTE: The data set WORK.ARC1 has }64\mathrm{ observations and 16 variables.
NOTE: The data set WORK.NODE2 has }20\mathrm{ observations and 3 variables.
NOTE: The PROCEDURE OPTMODEL printed pages 62-63.
```


## Example 5.9: Migration to OPTMODEL: Shortest Path

The following example shows how to use PROC OPTMODEL to solve the example "Shortest Path Problem" in Chapter 7, "The NETFLOW Procedure" (SAS/OR User's Guide: Mathematical Programming Legacy Procedures). The input data set is the same as in that example.

```
title 'Shortest Path Problem';
title2 'How to get Hawaiian Pineapples to a London Restaurant';
data aircost1;
 input ffrom&$13. tto&$15. _cost_;
 datalines;
Honolulu Chicago 105
Honolulu San Francisco }7
Honolulu Los Angeles 68
Chicago Boston 45
Chicago New York 56
San Francisco Boston 71
San Francisco New York 48
San Francisco Atlanta 63
Los Angeles New York 44
Los Angeles Atlanta 57
Boston Heathrow London 88
```

```
New York Heathrow London 65
Atlanta Heathrow London }7
;
```

The following PROC OPTMODEL statements read the data sets, build the linear programming model, solve the model, and output the optimal solution to a SAS data set called SPATH:

```
proc optmodel;
 str sourcenode = 'Honolulu';
 str sinknode = 'Heathrow London';
 set <str> NODES;
 num _supdem_ {i in NODES} = (if i = sourcenode then 1
 else if i = sinknode then -1 else 0);
 set <str,str> ARCS;
 num _lo_ {ARCS} init 0;
 num _capac_ {ARCS} init .;
 num _cost_ {ARCS};
 read data aircost1 into ARCS=[ffrom tto] _cost_;
 NODES = (union {<i,j> in ARCS} {i,j});
 var Flow {<i,j> in ARCS} >= _lo_[i,j];
 min obj = sum {<i,j> in ARCS} _cost_[i,j] * Flow[i,j];
 con balance {i in NODES}: sum {<(i),j> in ARCS} Flow[i,j]
 - sum {<j,(i)> in ARCS} Flow[j,i] = _supdem_[i];
 solve;
 num _supply_ {<i,j> in ARCS} =
 (if _supdem_[i] ne 0 then _supdem_[i] else .);
 num _demand_ {<i,j> in ARCS} =
 (if _supdem_[j] ne O then __supdem_[j] else .);
 num _fcost_ {<i,j> in ARCS} = _cost_[i,j] * Flow[i,j].sol;
 create data spath from [ffrom tto]
 cost _capac_ _lo_ _supply_ _demand_ _flow_=Flow _fcost_
 rcost=(if Flow[ffrom,tto].rc ne 0 then Flow[ffrom,tto].rc else .)
 status=Flow.status;
quit;
```

The statements use both single-dimensional (NODES) and multiple-dimensional (ARCS) index sets. The ARCS index set is populated from the ffrom and to data set variables in the READ DATA statement. To solve a shortest path problem, you solve a minimum cost network flow problem that has a supply of one unit at the source node, a demand of one unit at the sink node, and zero supply or demand at all other nodes, as specified in the declaration of the _SUPDEM_ numeric parameter. The SPATH output data set contains most of the same information as in the PROC NETFLOW example, including reduced cost and basis status. The _ANUMB_ and _TNUMB_ values do not apply here.

The PROC PRINT statements are similar to the PROC NETFLOW example:

```
proc print data=spath;
 sum _fcost_;
run;
```

The output is displayed in Output 5.9.1.
Output 5.9.1 Output Data Set

How to get Hawaiian Pineapples to a London Restaurant											
						-	-				-
				-		$s$	d		-	-	s
			-	c		u	e	-	f	$r$	$t$
	f		c	a		p	m	f	c	C	a
	f		$\bigcirc$	p	-	p	a	1	$\bigcirc$	$\bigcirc$	$t$
0	r	t	s	a	1	1	n	$\bigcirc$	S	S	u
b	$\bigcirc$	t	t	c	$\bigcirc$	Y	d	w	t	t	s
$s$	m	$\bigcirc$	-	-	-	-	-	-	-	-	-
1	Honolulu	Chicago	105	.	0	1	-	0	0	-	B
2	Honolulu	San Francisco	75	-	0	1	-	0	0	-	B
3	Honolulu	Los Angeles	68	-	0	1	-	1	68	.	B
4	Chicago	Boston	45	-	0	.	-	0	0	61	L
5	Chicago	New York	56	.	0	.	-	0	0	49	L
6	San Francisco	Boston	71	.	0	.	-	0	0	57	L
7	San Francisco	New York	48	.	0	.	.	0	0	11	L
8	San Francisco	Atlanta	63	-	0	.	-	0	0	37	L
9	Los Angeles	New York	44	.	0	.	.	1	44	.	B
10	Los Angeles	Atlanta	57	.	0	.	.	0	0	24	L
11	Boston	Heathrow London	88	.	0	.	1	0	0	.	B
12	New York	Heathrow London	65	.	0	.	1	1	65	.	B
13	Atlanta	Heathrow London	76	-	0	-	1	0	0	-	B
===											
									177		

The $\log$ is displayed in Output 5.9.2.

## Output 5.9.2 OPTMODEL Log

```
NOTE: There were 13 observations read from the data set WORK.AIRCOST1.
NOTE: Problem generation will use 4 threads.
NOTE: The problem has }13\mathrm{ variables (0 free, 0 fixed).
NOTE: The problem has }8\mathrm{ linear constraints (0 LE, 8 EQ, 0 GE, 0 range).
NOTE: The problem has 26 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (O LE, O EQ, O GE, O range).
NOTE: The OPTMODEL presolver is disabled for linear problems.
NOTE: The LP presolver value AUTOMATIC is applied.
NOTE: The LP presolver removed all variables and constraints.
NOTE: Optimal.
NOTE: Objective = 177.
NOTE: The data set WORK.SPATH has }13\mathrm{ observations and 11 variables.
NOTE: The PROCEDURE OPTMODEL printed pages 71-72.
```


## References

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993), Network Flows, Prentice-Hall, New Jersey.
Andersen, E. D. and Andersen, K. D. (1995), "Presolving in Linear Programming," Mathematical Programming, 71(2), 221-245.

Dantzig, G. B. (1963), Linear Programming and Extensions, Princeton, NJ: Princeton University Press.
Forrest, J. J. and Goldfarb, D. (1992), "Steepest-Edge Simplex Algorithms for Linear Programming," Mathematical Programming, 5, 1-28.

Gondzio, J. (1997), "Presolve Analysis of Linear Programs prior to Applying an Interior Point Method," INFORMS Journal on Computing, 9 (1), 73-91.

Harris, P. M. J. (1973), "Pivot Selection Methods in the Devex LP Code," Mathematical Programming, 57, 341-374.

Maros, I. (2003), Computational Techniques of the Simplex Method, Kluwer Academic.

## Chapter 6 <br> The Mixed Integer Linear Programming Solver

## Contents

Overview: MILP Solver ..... 237
Getting Started: MILP Solver ..... 238
Syntax: MILP Solver ..... 239
Functional Summary ..... 239
MILP Solver Options ..... 241
Details: MILP Solver ..... 249
Branch-and-Bound Algorithm ..... 249
Controlling the Branch-and-Bound Algorithm ..... 251
Presolve and Probing ..... 252
Cutting Planes ..... 253
Primal Heuristics ..... 254
Node Log ..... 255
Problem Statistics ..... 256
Macro Variable _OROPTMODEL ..... 257
Examples: MILP Solver ..... 260
Example 6.1: Scheduling ..... 260
Example 6.2: Multicommodity Transshipment Problem with Fixed Charges ..... 264
Example 6.3: Facility Location ..... 270
Example 6.4: Traveling Salesman Problem ..... 280
References ..... 286

## Overview: MILP Solver

The OPTMODEL procedure provides a framework for specifying and solving mixed integer linear programs (MILPs). A standard mixed integer linear program has the formulation

$$
\begin{align*}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & \mathbf{A x}\{\geq,=, \leq\} \mathbf{b}  \tag{MILP}\\
& \mathbf{l} \leq \mathbf{x} \leq \mathbf{u} \\
& \mathbf{x}_{i} \in \mathbb{Z} \quad \forall i \in \mathcal{S}
\end{align*}
$$

where
$\mathrm{x} \in \mathbb{R}^{n} \quad$ is the vector of structural variables
A $\in \mathbb{R}^{m \times n}$ is the matrix of technological coefficients
c $\in \mathbb{R}^{n} \quad$ is the vector of objective function coefficients
b $\in \mathbb{R}^{m} \quad$ is the vector of constraints right-hand sides (RHS)
$1 \in \mathbb{R}^{n} \quad$ is the vector of lower bounds on variables
$\mathbf{u} \in \mathbb{R}^{n} \quad$ is the vector of upper bounds on variables
$\mathcal{S}$
is a nonempty subset of the set $\{1 \ldots, n\}$ of indices
The MILP solver, available in the OPTMODEL procedure, implements an linear-programming-based branch-and-bound algorithm. This divide-and-conquer approach attempts to solve the original problem by solving linear programming relaxations of a sequence of smaller subproblems. The MILP solver also implements advanced techniques such as presolving, generating cutting planes, and applying primal heuristics to improve the efficiency of the overall algorithm.

The MILP solver provides various control options and solution strategies. In particular, you can enable, disable, or set levels for the advanced techniques previously mentioned. It is also possible to input an incumbent solution; see the section "Warm Start Option" on page 242 for details.

## Getting Started: MILP Solver

The following example illustrates how you can use the OPTMODEL procedure to solve mixed integer linear programs. For more examples, see the section "Examples: MILP Solver" on page 260. Suppose you want to solve the following problem:

$$
\begin{array}{rlllllll}
\min & 2 x_{1} & -3 x_{2} & -4 x_{3} & & & \\
\mathrm{s.t.} & & -2 x_{2} & -3 x_{3} & \geq & -5 & (\mathrm{R} 1) \\
& x_{1} & +x_{2} & + & 2 x_{3} & \leq & 4 & (\mathrm{R} 2) \\
& x_{1} & + & 2 x_{2} & + & 3 x_{3} & \leq & 7 \\
& & & x_{1}, & x_{2}, & x_{3} & \geq & 0 \\
& & & x_{1}, & x_{2}, & x_{3} & \in \mathbb{Z} &
\end{array}
$$

You can use the following statements to call the OPTMODEL procedure for solving mixed integer linear programs:

```
proc optmodel;
 var x{1..3} >= 0 integer;
 min f = 2*x[1] - 3*x[2] - 4*x[3];
 con r1: -2*x[2] - 3*x[3] >= -5;
 con r2: x[1] + x[2] + 2*x[3] <= 4;
 con r3: x[1] + 2*x[2] + 3*x[3] <= 7;
 solve with milp / presolver = automatic heuristics = automatic;
 print x;
quit;
```

The PRESOLVER= and HEURISTICS= options specify the levels for presolving and applying heuristics, respectively. In this example, each option is set to its default value, AUTOMATIC, meaning that the solver automatically determines the appropriate levels for presolve and heuristics.

The optimal value of x is shown in Figure 6.1.
Figure 6.1 Solution Output

The OPTMODEL Procedure	
$[1]$	$\mathbf{x}$
1	0
2	1
3	1

The solution summary stored in the macro variable _OROPTMODEL_ can be viewed by issuing the following statement:
\%put \&_OROPTMODEL_;
This statement produces the output shown in Figure 6.2.
Figure 6.2 Macro Output

```
STATUS=OK ALGORITHM=BAC SOLUTION_STATUS=OPTIMAL OBJECTIVE=-7 RELATIVE_GAP=0
ABSOLUTE_GAP=0 PRIMAL_INFEASIBILITY=0 BOUND_INFEASIBILITY=0
INTEGER_INFEASIBILITY=0 BEST_BOUND=-7 NODES=1 ITERATIONS=5 PRESOLVE_TIME=0.00
SOLUTION_TIME=0.00
```


## Syntax: MILP Solver

The following statement is available in the OPTMODEL procedure:
SOLVE WITH MILP </ options > ;

## Functional Summary

Table 6.1 summarizes the options available for the SOLVE WITH MILP statement, classified by function.
Table 6.1 Options for the MILP Solver

Description	Option
Presolve Option	PRESOLVER $=$
Specifies the type of presolve	

Table 6.1 (continued)

Description	Option
Warm Start Option	
Specifies the input primal solution (warm start)	PRIMALIN
Control Options	
Specifies the stopping criterion based on absolute objective gap	ABSOBJGAP=
Specifies the cutoff value for node removal	CUTOFF=
Emphasizes feasibility or optimality	EMPHASIS=
Specifies the maximum violation on variables and constraints	FEASTOL=
Specifies the maximum allowed difference between an integer variable's value and an integer	INTTOL=
Specifies the frequency of printing the node log	LOGFREQ=
Specifies the detail of solution progress printed in log	LOGLEVEL=
Specifies the maximum number of nodes to be processed	MAXNODES=
Specifies the maximum number of solutions to be found	MAXSOLS $=$
Specifies the time limit for the optimization process	MAXTIME=
Specifies the tolerance used in determining the optimality of nodes in the branch-and-bound tree	OPTTOL=
Specifies the probing level	PROBE=
Specifies the stopping criterion based on relative objective gap	RELOBJGAP=
Specifies the scale of the problem matrix	SCALE=
Specifies the stopping criterion based on target objective value	TARGET=
Specifies whether time units are CPU time or real time	TIMETYPE=
Heuristics Option	
Specifies the primal heuristics level	HEURISTICS=
Search Options	
Specifies the level of conflict search	CONFLICTSEARCH=
Specifies the node selection strategy	NODESEL=
Enables use of variable priorities	PRIORITY=
Specifies the number of simplex iterations performed on each variable in strong branching strategy	STRONGITER=
Specifies the number of candidates for strong branching	STRONGLEN=
Specifies the rule for selecting branching variable	VARSEL=
Cut Options	
Specifies the cut level for all cuts	ALLCUTS=
Specifies the clique cut level	CUTCLIQUE=
Specifies the flow cover cut level	CUTFLOWCOVER=
Specifies the flow path cut level	CUTFLOWPATH=
Specifies the Gomory cut level	CUTGOMORY=

Table 6.1 (continued)

Description	Option
Specifies the generalized upper bound (GUB) cover   cut level	CUTGUB=
Specifies the implied bounds cut level	CUTIMPLIED=
Specifies the knapsack cover cut level	CUTKNAPSACK=
Specifies the lift-and-project cut level	CUTLAP=
Specifies the mixed lifted 0-1 cut level	CUTMILIFTED=
Specifies the mixed integer rounding (MIR) cut level	CUTMIR=
Specifies the row multiplier factor for cuts	

## MILP Solver Options

This section describes the options that are recognized by the MILP solver in PROC OPTMODEL. These options can be specified after a forward slash (/) in the SOLVE statement, provided that the MILP solver is explicitly specified using a WITH clause. For example, the following line could appear in PROC OPTMODEL statements:

```
solve with milp / allcuts=aggressive maxnodes=10000 primalin;
```


## Presolve Option

PRESOLVER=number \| string
specifies a presolve string or its corresponding value number, as listed in Table 6.2.
Table 6.2 Values for PRESOLVER= Option

number	string	Description
-1	AUTOMATIC	Applies the default level of presolve processing
0	NONE	Disables presolver
1	BASIC	Performs minimal presolve processing
2	MODERATE	Applies a higher level of presolve processing
3	AGGRESSIVE	Applies the highest level of presolve processing

The default value is AUTOMATIC.

## Warm Start Option

## PRIMALIN

enables you to input a starting solution in PROC OPTMODEL before invoking the MILP solver. Adding the PRIMALIN option to the SOLVE statement requests that the MILP solver use the current variable values as a starting solution (warm start). If the MILP solver finds that the input solution is feasible, then the input solution provides an incumbent solution and a bound for the branch-andbound algorithm. If the solution is not feasible, the MILP solver tries to repair it. It is possible to set a variable value to the missing value '.' to mark a variable for repair. When it is difficult to find a good integer feasible solution for a problem, warm start can reduce solution time significantly.

Note: If the MILP solver produces a feasible solution, the variable values from that run can be used as the warm start solution for a subsequent run. If the warm start solution is not feasible for the subsequent run, the solver automatically tries to repair it.

## Control Options

## ABSOBJGAP=number

specifies a stopping criterion. When the absolute difference between the best integer objective and the objective of the best remaining node falls below the value of number, the solver stops. The value of number can be any nonnegative number; the default value is $1 \mathrm{E}-6$.

## CUTOFF=number

cuts off any nodes in a minimization (maximization) problem with an objective value above (below) number. The value of number can be any number; the default value is the positive (negative) number that has the largest absolute value representable in your operating environment.

## EMPHASIS=number | string

specifies a search emphasis string or its corresponding value number as listed in Table 6.3.
Table 6.3 Values for EMPHASIS= Option

number	string	Description
0	BALANCE	Performs a balanced search
1	OPTIMAL	Emphasizes optimality over feasibility
2	FEASIBLE	Emphasizes feasibility over optimality

The default value is BALANCE.

## FEASTOL=number

specifies the tolerance used to check the feasibility of a solution. This tolerance applies both to the maximum violation of bounds on variables and to the difference between the right-hand sides and left-hand sides of constraints. The value of number can be any value between (and including) $1 \mathrm{E}-4$ and $1 \mathrm{E}-9$. The default value is $1 \mathrm{E}-6$.

If the MILP solver fails to find a feasible solution within this tolerance but does find a solution with a slightly larger violation, then the solver ends with a solution status of OPTIMAL_COND (see the section "Macro Variable _OROPTMODEL_" on page 257).

## INTTOL=number

specifies the amount by which an integer variable value can differ from an integer and still be considered integer feasible. The value of number can be any number between 0.0 and 1.0 ; the default value is $1 \mathrm{E}-5$. The MILP solver attempts to find an optimal solution with integer infeasibility less than number. If you assign a value smaller than 1E-10 to number and the best solution found by the solver has integer infeasibility between number and $1 \mathrm{E}-10$, then the solver terminates with a solution status of OPTIMAL_COND (see the section "Macro Variable _OROPTMODEL_" on page 257).

## LOGFREQ=number

## PRINTFREQ=number

specifies how often information is printed in the node log. The value of number can be any nonnegative number up to the largest four-byte signed integer, which is $2^{31}-1$. The default value of number is 100 . If number is set to 0 , then the node $\log$ is disabled. If number is positive, then an entry is made in the node log at the first node, at the last node, and at intervals dictated by the value of number. An entry is also made each time a better integer solution is found.

## LOGLEVEL=number | string

PRINTLEVEL2=number | string
controls the amount of information displayed in the SAS log by the MILP solver, from a short description of presolve information and summary to details at each node. Table 6.4 describes the valid values for this option.

Table 6.4 Values for LOGLEVEL= Option

number	string	Description
0	NONE	Turns off all solver-related messages to SAS log
1	BASIC	Displays a solver summary after stopping   2
MODERATE	Prints a solver summary and a node log by using   the interval dictated by the LOGFREQ= option	
3	AGGRESSIVE	Prints a detailed solver summary and a node log   by using the interval dictated by the LOGFREQ=   option

The default value is MODERATE.

## MAXNODES=number

specifies the maximum number of branch-and-bound nodes to be processed. The value of number can be any nonnegative integer up to the largest four-byte signed integer, which is $2^{31}-1$. The default value of number is $2^{31}-1$.

## MAXSOLS=number

specifies a stopping criterion. If number solutions have been found, then the solver stops. The value of number can be any positive integer up to the largest four-byte signed integer, which is $2^{31}-1$. The default value of number is $2^{31}-1$.

## MAXTIME= $t$

specifies an upper limit of $t$ units of time for the optimization process, including problem generation time and solution time. The value of the TIMETYPE= option determines the type of units used. If you do not specify the MAXTIME= option, the solver does not stop based on the amount of time
elapsed. The value of $t$ can be any positive number; the default value is the positive number that has the largest absolute value that can be represented in your operating environment.

## OPTTOL=number

specifies the tolerance used to determine the optimality of nodes in the branch-and-bound tree. The value of number can be any value between (and including) $1 \mathrm{E}-4$ and $1 \mathrm{E}-9$. The default is $1 \mathrm{E}-6$.

## PROBE=number | string

specifies a probing string or its corresponding value number, as listed in the following table:
Table 6.5 Values for PROBE= Option

number	string	Description
-1	AUTOMATIC	Uses the probing strategy determined by the
		MILP solver
0	NONE	Disables probing
1	MODERATE	Uses probing moderately
2	AGGRESSIVE	Uses probing aggressively

The default value is AUTOMATIC.

## RELOBJGAP=number

specifies a stopping criterion based on the best integer objective (BestInteger) and the objective of the best remaining node (BestBound). The relative objective gap is equal to

$$
\mid \text { BestInteger }- \text { BestBound } \mid /(1 \mathrm{E}-10+\mid \text { BestBound } \mid)
$$

When this value becomes smaller than the specified gap size number, the solver stops. The value of number can be any nonnegative number; the default value is $1 \mathrm{E}-4$.

## SCALE=option

indicates whether to scale the problem matrix. SCALE= can take either of the values AUTOMATIC $(-1)$ and NONE (0). SCALE=AUTOMATIC scales the matrix as determined by the MILP solver; SCALE=NONE disables scaling. The default value is AUTOMATIC.

## TARGET=number

specifies a stopping criterion for minimization (maximization) problems. If the best integer objective is better than or equal to number, the solver stops. The value of number can be any number; the default value is the negative (positive) number that has the largest absolute value representable in your operating environment.

## TIMETYPE=string | number

specifies the units of time used by the MAXTIME= option and reported by the PRESOLVE_TIME and SOLUTION_TIME terms in the _OROPTMODEL_ macro variable. Table 6.6 describes the valid values of the TIMETYPE= option.

Table 6.6 Values for TIMETYPE= Option

number	string	Description
0	CPU	Specifies units of CPU time
1	REAL	Specifies units of real time

The Optimization Statistics table, an output of PROC OPTMODEL if option PRINTLEVEL=2 is specified in the PROC OPTMODEL statement, also includes the same time units for "Presolver Time" and "Solver Time." The other times (such as "Problem Generation Time") in the Optimization Statistics table are always CPU times.
The default value of the TIMETYPE= option depends on the values of the NTHREADS= and NODES $=$ options in the PERFORMANCE statement of the OPTMODEL procedure. See the section "PERFORMANCE Statement" on page 17 for more information about the NTHREADS= option. See Chapter 3, "Shared Concepts and Topics" (SAS High-Performance Analytics Server: User's Guide), for more information about the NODES = option. (The NODES $=$ option requires SAS ${ }^{\otimes}$ HighPerformance Analytics software.)

If you specify a value greater than 1 for either the NTHREADS= or the NODES= option, the default value of the TIMETYPE= option is REAL. If you specify a value of 1 for both the NTHREADS= and NODES $=$ options, the default value of the TIMETYPE $=$ option is CPU.

## Heuristics Option

## HEURISTICS=number | string

controls the level of primal heuristics applied by the MILP solver. This level determines how frequently primal heuristics are applied during the branch-and-bound tree search. It also affects the maximum number of iterations allowed in iterative heuristics. Some computationally expensive heuristics might be disabled by the solver at less aggressive levels. The values of string and the corresponding values of number are listed in Table 6.7.

Table 6.7 Values for HEURISTICS= Option

number	string	Description
-1	AUTOMATIC	Applies default level of heuristics, similar to MODERATE
0	NONE	Disables all primal heuristics
1	BASIC	Applies basic primal heuristics at low frequency
2	MODERATE	Applies most primal heuristics at moderate frequency
3	AGGRESSIVE	Applies all primal heuristics at high frequency

Setting HEURISTICS=NONE does not disable the heuristics that repair an infeasible input solution that is specified by using the PRIMALIN option.

The default value is AUTOMATIC. For details about primal heuristics, see the section "Primal Heuristics" on page 254.

## Search Options

CONFLICTSEARCH=number | string
specifies the level of conflict search performed by the MILP solver. Conflict finds clauses resulting from infeasible subproblems that arise in the search tree. The values of string and the corresponding values of number are listed in Table 6.8.

Table 6.8 Values for CONFLICTSEARCH= Option

number	string	Description
-1	AUTOMATIC	Performs conflict search based on a strategy de-   termined by the MILP solver
0	NONE	Disables conflict search
1	MODERATE	Performs a moderate conflict search
2	AGGRESSIVE	Performs an aggressive conflict search

The default value is AUTOMATIC.

## NODESEL=number | string

specifies the node selection strategy string or its corresponding value number as listed in Table 6.9.
Table 6.9 Values for NODESEL= Option

number	string	Description
-1	AUTOMATIC	Uses automatic node selection   0
BESTBOUND	Chooses the node with the best relaxed objective   (best-bound-first strategy)	
1	BESTESTIMATE	Chooses the node with the best estimate of the in-   teger objective value (best-estimate-first strategy)
2	DEPTH	Chooses the most recently created node (depth-   first strategy)

The default value is AUTOMATIC. For details about node selection, see the section "Node Selection" on page 251.

## PRIORITY=0 | 1

indicates whether to use specified branching priorities for integer variables. PRIORITY=0 ignores variable priorities; PRIORITY=1 uses priorities when they exist. The default value is 1 . See the section "Branching Priorities" on page 252 for details.

## STRONGITER=number | AUTOMATIC

specifies the number of simplex iterations performed for each variable in the candidate list when the strong branching variable selection strategy is used. The value of number can be any positive integer up to the largest four-byte signed integer, which is $2^{31}-1$. If you specify the keyword AUTOMATIC or the value -1 , the MILP solver uses the default value; this value is calculated automatically.

## STRONGLEN=number | AUTOMATIC

specifies the number of candidates used when the strong branching variable selection strategy is performed. The value of number can be any positive integer up to the largest four-byte signed integer, which is $2^{31}-1$. If you specify the keyword AUTOMATIC or the value -1 , the MILP solver uses the default value; this value is calculated automatically.

## VARSEL=number | string

specifies the rule for selecting the branching variable. The values of string and the corresponding values of number are listed in Table 6.10.

Table 6.10 Values for VARSEL= Option

number	string	Description
-1	AUTOMATIC	Uses automatic branching variable selection
0	MAXINFEAS	Chooses the variable with maximum infeasibility
1	MININFEAS	Chooses the variable with minimum infeasibility
2	PSEUDO	Chooses a branching variable based on pseudo-   cost
3	STRONG	Uses strong branching variable selection strategy

The default value is AUTOMATIC. For details about variable selection, see the section "Variable Selection" on page 252.

## Cut Options

Table 6.11 describes the string and number values for the cut options in the OPTMODEL procedure.
Table 6.11 Values for Individual Cut Options

number	string	Description
-1	AUTOMATIC	Generates cutting planes based on a strategy de-   termined by the MILP solver
0	NONE	Disables generation of cutting planes
1	MODERATE	Uses a moderate cut strategy
2	AGGRESSIVE	Uses an aggressive cut strategy

You can specify the CUTSTRATEGY= option to set the overall aggressiveness of the cut generation in the MILP solver. Alternatively, you can use the ALLCUTS= option to set all cut types to the same level. You can override the ALLCUTS= value by using the options that correspond to particular cut types. For example, if you want the MILP solver to generate only Gomory cuts, specify ALLCUTS=NONE and CUTGOMORY=AUTOMATIC. If you want to generate all cuts aggressively but generate no lift-and-project cuts, set ALLCUTS=AGGRESSIVE and CUTLAP=NONE.

## ALLCUTS=number | string

provides a shorthand way of setting all the cuts-related options in one setting. In other words, ALLCUTS=number is equivalent to setting each of the individual cuts parameters to the same value number. Thus, ALLCUTS $=-1$ has the effect of setting CUTCLIQUE=-1, CUTFLOWCOVER=1, CUTFLOWPATH=-1, $\ldots$, CUTMIR=-1, and CUTZEROHALF=-1. Table 6.11 lists the values that can be assigned to option and number. In addition, you can override levels for individual cuts with the CUTCLIQUE=, CUTFLOWCOVER=, CUTFLOWPATH=, CUTGOMORY=, CUTGUB=, CUTIMPLIED=, CUTKNAPSACK=, CUTLAP=, CUTMILIFTED=, CUTMIR=, and CUTZEROHALF= options. If the ALLCUTS $=$ option is not specified, then all the cuts-related options are either at their individually specified values (if the corresponding option is specified) or at their default values (if that option is not specified).

## CUTCLIQUE=number | string

specifies the level of clique cuts that are generated by the MILP solver. Table 6.11 lists the values that can be assigned to option and number. The CUTCLIQUE= option overrides the ALLCUTS= option. The default value is AUTOMATIC.

## CUTFLOWCOVER=number | string

specifies the level of flow cover cuts that are generated by the MILP solver. Table 6.11 lists the values that can be assigned to option and number. The CUTFLOWCOVER= option overrides the ALLCUTS = option. The default value is AUTOMATIC.

## CUTFLOWPATH=number | string

specifies the level of flow path cuts that are generated by the MILP solver. Table 6.11 lists the values that can be assigned to option and number. The CUTFLOWPATH= option overrides the ALLCUTS= option. The default value is AUTOMATIC.

## CUTGOMORY=number \| string

specifies the level of Gomory cuts that are generated by the MILP solver. Table 6.11 lists the values that can be assigned to option and number. The CUTGOMORY= option overrides the ALLCUTS= option. The default value is AUTOMATIC.

## CUTGUB=number | string

specifies the level of generalized upper bound (GUB) cover cuts that are generated by the MILP solver. Table 6.11 lists the values that can be assigned to option and number. The CUTGUB=option overrides the ALLCUTS= option. The default value is AUTOMATIC.

## CUTIMPLIED=number | string

specifies the level of implied bound cuts that are generated by the MILP solver. Table 6.11 lists the values that can be assigned to option and number. The CUTIMPLIED= option overrides the ALLCUTS = option. The default value is AUTOMATIC.

## CUTKNAPSACK=number | string

specifies the level of knapsack cover cuts that are generated by the MILP solver. Table 6.11 lists the values that can be assigned to option and number. The CUTKNAPSACK= option overrides the ALLCUTS = option. The default value is AUTOMATIC.

## CUTLAP=number | string

specifies the level of lift-and-project (LAP) cuts that are generated by the MILP solver. Table 6.11 lists the values that can be assigned to option and number. The CUTLAP= option overrides the ALLCUTS $=$ option. The default value is NONE.

## CUTMILIFTED=number | string

specifies the level of mixed lifted $0-1$ cuts that are generated by the MILP solver. Table 6.11 lists the values that can be assigned to option and number. The CUTMILIFTED= option overrides the ALLCUTS $=$ option. The default value is AUTOMATIC.

## CUTMIR=number | string

specifies the level of mixed integer rounding (MIR) cuts that are generated by the MILP solver. Table 6.11 lists the values that can be assigned to option and number. The CUTMIR=option overrides the ALLCUTS = option. The default value is AUTOMATIC.

## CUTSFACTOR=number

specifies a row multiplier factor for cuts. The number of cuts that are added is limited to number times the original number of rows. The value of number can be any nonnegative number less than or equal to 100 ; the default value is automatically calculated by the MILP solver.

## CUTSTRATEGY=number | string

CUTS=number | string
specifies the overall aggressiveness of the cut generation in the solver. Setting a nondefault value adjusts a number of cut parameters such that the cut generation is basic, moderate, or aggressive compared to the default value.

## CUTZEROHALF=number | string

specifies the level of zero-half cuts that are generated by the MILP solver. Table 6.11 lists the values that can be assigned to option and number.The CUTZEROHALF= option overrides the ALLCUTS= option. The default value is AUTOMATIC.

## Decomposition Algorithm Options

The following options are available for the decomposition algorithm in the MILP solver. For information about the decomposition algorithm, see Chapter 12, "The Decomposition Algorithm."

## DECOMP=(options)

enables the decomposition algorithm and specifies overall control options for the algorithm. For more information about this option, see Chapter 12, "The Decomposition Algorithm."

## DECOMP_MASTER=(options)

specifies options for the master problem. For more information about this option, see Chapter 12, "The Decomposition Algorithm."

## DECOMP_MASTER_IP=(options)

specifies options for the (restricted) master problem solved as a MILP with the current set of columns in an effort to obtain an integer feasible solution. For more information about this option, see Chapter 12, "The Decomposition Algorithm."

## DECOMP_SUBPROB=(options)

specifies option for the subproblem. For more information about this option, see Chapter 12, "The Decomposition Algorithm."

## Details: MILP Solver

## Branch-and-Bound Algorithm

The branch-and-bound algorithm, first proposed by Land and Doig (1960), is an effective approach to solving mixed integer linear programs. The following discussion outlines the approach and explains how to enhance its progress by using several advanced techniques.

The branch-and-bound algorithm solves a mixed integer linear program by dividing the search space and generating a sequence of subproblems. The search space of a mixed integer linear program can be represented by a tree. Each node in the tree is identified with a subproblem derived from previous subproblems on the path that leads to the root of the tree. The subproblem ( $\mathrm{MILP}^{0}$ ) associated with the root is identical to the original problem, which is called (MILP), given in the section "Overview: MILP Solver" on page 237.

The linear programming relaxation $\left(\mathrm{LP}^{0}\right)$ of $\left(\mathrm{MILP}^{0}\right)$ can be written as

$$
\begin{aligned}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & \mathbf{A x}\{\geq,=, \leq\} \mathbf{b} \\
& \mathbf{l} \leq \mathbf{x} \leq \mathbf{u}
\end{aligned}
$$

The branch-and-bound algorithm generates subproblems along the nodes of the tree by using the following scheme. Consider $\bar{x}^{0}$, the optimal solution to ( $\mathrm{LP}^{0}$ ), which is usually obtained by using the dual simplex algorithm. If $\bar{x}_{i}^{0}$ is an integer for all $i \in \mathcal{S}$, then $\bar{x}^{0}$ is an optimal solution to (MILP). Suppose that for some $i \in \mathcal{S}, \bar{x}_{i}^{0}$ is nonintegral. In that case the algorithm defines two new subproblems (MILP ${ }^{1}$ ) and (MILP ${ }^{2}$ ), descendants of the parent subproblem (MILP ${ }^{0}$ ). The subproblem (MILP ${ }^{1}$ ) is identical to (MILP ${ }^{0}$ ) except for the additional constraint

$$
x_{i} \leq\left\lfloor\bar{x}_{i}^{0}\right\rfloor
$$

and the subproblem $\left(\right.$ MILP $\left.^{2}\right)$ is identical to (MILP ${ }^{0}$ ) except for the additional constraint

$$
x_{i} \geq\left\lceil\bar{x}_{i}^{0}\right\rceil
$$

The notation $\lfloor y\rfloor$ represents the largest integer that is less than or equal to $y$, and the notation $\lceil y\rceil$ represents the smallest integer that is greater than or equal to $y$. The two preceding constraints can be handled by modifying the bounds of the variable $x_{i}$ rather than by explicitly adding the constraints to the constraint matrix. The two new subproblems do not have $\bar{x}^{0}$ as a feasible solution, but the integer solution to (MILP) must satisfy one of the preceding constraints. The two subproblems thus defined are called active nodes in the branch-and-bound tree, and the variable $x_{i}$ is called the branching variable.

In the next step the branch-and-bound algorithm chooses one of the active nodes and attempts to solve the linear programming relaxation of that subproblem. The relaxation might be infeasible, in which case the subproblem is dropped (fathomed). If the subproblem can be solved and the solution is integer feasible (that is, $x_{i}$ is an integer for all $i \in \mathcal{S}$ ), then its objective value provides an upper bound for the objective value in the minimization problem (MILP); if the solution is not integer feasible, then it defines two new subproblems. Branching continues in this manner until there are no active nodes. At this point the best integer solution found is an optimal solution for (MILP). If no integer solution has been found, then (MILP) is integer infeasible. You can specify other criteria to stop the branch-and-bound algorithm before it processes all the active nodes; see the section "Controlling the Branch-and-Bound Algorithm" on page 251 for details.

Upper bounds from integer feasible solutions can be used to fathom or cut off active nodes. Since the objective value of an optimal solution cannot be greater than an upper bound, active nodes with lower bounds higher than an existing upper bound can be safely deleted. In particular, if $z$ is the objective value of the current best integer solution, then any active subproblems whose relaxed objective value is greater than or equal to $z$ can be discarded.

It is important to realize that mixed integer linear programs are non-deterministic polynomial-time hard (NP-hard). Roughly speaking, this means that the effort required to solve a mixed integer linear program grows exponentially with the size of the problem. For example, a problem with 10 binary variables can generate in the worst case $2^{10}=1,024$ nodes in the branch-and-bound tree. A problem with 20 binary variables can generate in the worst case $2^{20}=1,048,576$ nodes in the branch-and-bound tree. Although it is unlikely that the branch-and-bound algorithm has to generate every single possible node, the need to explore even a small fraction of the potential number of nodes for a large problem can be resource-intensive.

A number of techniques can speed up the search progress of the branch-and-bound algorithm. Heuristics are used to find feasible solutions, which can improve the upper bounds on solutions of mixed integer linear programs. Cutting planes can reduce the search space and thus improve the lower bounds on solutions of mixed integer linear programs. When using cutting planes, the branch-and-bound algorithm is also called the branch-and-cut algorithm. Preprocessing can reduce problem size and improve problem solvability. The MILP solver in PROC OPTMODEL employs various heuristics, cutting planes, preprocessing, and other techniques, which you can control through corresponding options.

## Controlling the Branch-and-Bound Algorithm

There are numerous strategies that can be used to control the branch-and-bound search (see Linderoth and Savelsbergh 1998, Achterberg, Koch, and Martin 2005). The MILP solver in PROC OPTMODEL implements the most widely used strategies and provides several options that enable you to direct the choice of the next active node and of the branching variable. In the discussion that follows, let (LP ${ }^{k}$ ) be the linear programming relaxation of subproblem (MILP ${ }^{k}$ ). Also, let

$$
f_{i}(k)=\bar{x}_{i}^{k}-\left\lfloor\bar{x}_{i}^{k}\right\rfloor
$$

where $\bar{x}^{k}$ is the optimal solution to the relaxation problem $\left(\mathrm{LP}^{k}\right)$ solved at node $k$.

## Node Selection

The NODESEL= option specifies the strategy used to select the next active node. The valid keywords for this option are AUTOMATIC, BESTBOUND, BESTESTIMATE, and DEPTH. The following list describes the strategy associated with each keyword:

AUTOMATIC enables the MILP solver to choose the best node selection strategy based on problem characteristics and search progress. This is the default setting.

BESTBOUND chooses the node with the smallest (or largest, in the case of a maximization problem) relaxed objective value. The best-bound strategy tends to reduce the number of nodes to be processed and can improve lower bounds quickly. However, if there is no good upper bound, the number of active nodes can be large. This can result in the solver running out of memory.
BESTESTIMATE chooses the node with the smallest (or largest, in the case of a maximization problem) objective value of the estimated integer solution. Besides improving lower bounds, the best-estimate strategy also attempts to process nodes that can yield good feasible solutions.

DEPTH chooses the node that is deepest in the search tree. Depth-first search is effective in locating feasible solutions, since such solutions are usually deep in the search tree. Compared to the costs of the best-bound and best-estimate strategies, the cost of solving LP relaxations is less in the depth-first strategy. The number of active nodes is generally small, but it is possible that the depth-first search will remain in a portion of the search tree with no good integer solutions. This occurrence is computationally expensive.

## Variable Selection

The VARSEL= option specifies the strategy used to select the next branching variable. The valid keywords for this option are AUTOMATIC, MAXINFEAS, MININFEAS, PSEUDO, and STRONG. The following list describes the action taken in each case when $\bar{x}^{k}$, a relaxed optimal solution of (MILP ${ }^{k}$ ), is used to define two active subproblems. In the following list, "INTTOL" refers to the value assigned using the INTTOL= option. For details about the INTTOL= option, see the section "Control Options" on page 242.

AUTOMATIC enables the MILP solver to choose the best variable selection strategy based on problem characteristics and search progress. This is the default setting.

MAXINFEAS
chooses as the branching variable the variable $x_{i}$ such that $i$ maximizes

$$
\begin{aligned}
& \left\{\min \left\{f_{i}(k), 1-f_{i}(k)\right\} \mid i \in \mathcal{S}\right. \text { and } \\
& \left.\quad \mathrm{INTTOL} \leq f_{i}(k) \leq 1-\mathrm{INTTOL}\right\}
\end{aligned}
$$

MININFEAS
chooses as the branching variable the variable $x_{i}$ such that $i$ minimizes

$$
\begin{aligned}
& \left\{\min \left\{f_{i}(k), 1-f_{i}(k)\right\} \mid i \in \mathcal{S}\right. \text { and } \\
& \left.\quad \mathrm{INTTOL} \leq f_{i}(k) \leq 1-\mathrm{INTTOL}\right\}
\end{aligned}
$$

PSEUDO chooses as the branching variable the variable $x_{i}$ such that $i$ maximizes the weighted up and down pseudocosts. Pseudocost branching attempts to branch on significant variables first, quickly improving lower bounds. Pseudocost branching estimates significance based on historical information; however, this approach might not be accurate for future search.

STRONG chooses as the branching variable the variable $x_{i}$ such that $i$ maximizes the estimated improvement in the objective value. Strong branching first generates a list of candidates, then branches on each candidate and records the improvement in the objective value. The candidate with the largest improvement is chosen as the branching variable. Strong branching can be effective for combinatorial problems, but it is usually computationally expensive.

## Branching Priorities

In some cases, it is possible to speed up the branch-and-bound algorithm by branching on variables in a specific order. You can accomplish this in PROC OPTMODEL by attaching branching priorities to the integer variables in your model by using the .priority suffix. More information about this suffix is available in the section "Integer Variable Suffixes" on page 124 in Chapter 4. For an example in which branching priorities are used, see Example 6.3.

## Presolve and Probing

The MILP solver in PROC OPTMODEL includes a variety of presolve techniques to reduce problem size, improve numerical stability, and detect infeasibility or unboundedness (Andersen and Andersen 1995; Gondzio 1997). During presolve, redundant constraints and variables are identified and removed. Presolve can further reduce the problem size by substituting variables. Variable substitution is a very effective technique, but it might occasionally increase the number of nonzero entries in the constraint matrix. Presolve might also modify the constraint coefficients to tighten the formulation of the problem.

In most cases, using presolve is very helpful in reducing solution times. You can enable presolve at different levels by specifying the PRESOLVER= option.

Probing is a technique that tentatively sets each binary variable to 0 or 1 , then explores the logical consequences (Savelsbergh 1994). Probing can expedite the solution of a difficult problem by fixing variables and improving the model. However, probing is often computationally expensive and can significantly increase the solution time in some cases. You can enable probing at different levels by specifying the $\mathrm{PROBE}=$ option.

## Cutting Planes

The feasible region of every linear program forms a polyhedron. Every polyhedron in $n$-space can be written as a finite number of half-spaces (equivalently, inequalities). In the notation used in this chapter, this polyhedron is defined by the set $\mathcal{Q}=\left\{x \in \mathbb{R}^{n} \mid A x \leq b, l \leq x \leq u\right\}$. After you add the restriction that some variables must be integral, the set of feasible solutions, $\mathcal{F}=\left\{x \in \mathcal{Q} \mid x_{i} \in \mathbb{Z} \forall i \in \mathcal{S}\right\}$, no longer forms a polyhedron.

The convex hull of a set $X$ is the minimal convex set that contains $X$. In solving a mixed integer linear program, in order to take advantage of LP-based algorithms you want to find the convex hull, $\operatorname{conv}(\mathcal{F})$, of $\mathcal{F}$. If you can find $\operatorname{conv}(\mathcal{F})$ and describe it compactly, then you can solve a mixed integer linear program with a linear programming solver. This is generally very difficult, so you must be satisfied with finding an approximation. Typically, the better the approximation, the more efficiently the LP-based branch-and-bound algorithm can perform.

As described in the section "Branch-and-Bound Algorithm" on page 249, the branch-and-bound algorithm begins by solving the linear programming relaxation over the polyhedron $\mathcal{Q}$. Clearly, $\mathcal{Q}$ contains the convex hull of the feasible region of the original integer program; that is, $\operatorname{conv}(\mathcal{F}) \subseteq \mathcal{Q}$.

Cutting plane techniques are used to tighten the linear relaxation to better approximate $\operatorname{conv}(\mathcal{F})$. Assume you are given a solution $\bar{x}$ to some intermediate linear relaxation during the branch-and-bound algorithm. A cut, or valid inequality $\left(\pi x \leq \pi^{0}\right)$, is some half-space with the following characteristics:

- The half-space contains $\operatorname{conv}(\mathcal{F})$; that is, every integer feasible solution is feasible for the cut $(\pi x \leq$ $\left.\pi^{0}, \forall x \in \mathcal{F}\right)$.
- The half-space does not contain the current solution $\bar{x}$; that is, $\bar{x}$ is not feasible for the cut $\left(\pi \bar{x}>\pi^{0}\right)$.

Cutting planes were first made popular by Dantzig, Fulkerson, and Johnson (1954) in their work on the traveling salesman problem. The two major classifications of cutting planes are generic cuts and structured cuts. Generic cuts are based solely on algebraic arguments and can be applied to any relaxation of any integer program. Structured cuts are specific to certain structures that can be found in some relaxations of the mixed integer linear program. These structures are automatically discovered during the cut initialization phase of the MILP solver. Table 6.12 lists the various types of cutting planes that are built into the MILP solver. Included in each type are algorithms for numerous variations based on different relaxations and lifting techniques. For a survey of cutting plane techniques for mixed integer programming, see Marchand et al. (1999). For a survey of lifting techniques, see Atamturk (2004).

Table 6.12 Cutting Planes in the MILP Solver

Generic Cutting Planes	Structured Cutting Planes
Gomory mixed integer	Cliques
Lift-and-project	Flow cover
Mixed integer rounding	Flow path
Mixed lifted 0-1	Generalized upper bound cover
Zero-half	Implied bound
	Knapsack cover

You can set levels for individual cuts by using the CUTCLIQUE=, CUTFLOWCOVER=, CUTFLOWPATH=, CUTGOMORY=, CUTGUB=, CUTIMPLIED=, CUTKNAPSACK=, CUTLAP=, CUTMILIFTED=, CUTMIR=, and CUTZEROHALF= options. The valid levels for these options are listed in Table 6.11.

The cut level determines the internal strategy that is used by the MILP solver for generating the cutting planes. The strategy consists of several factors, including how frequently the cut search is called, the number of cuts allowed, and the aggressiveness of the search algorithms.

Sophisticated cutting planes, such as those included in the MILP solver, can take a great deal of CPU time. Typically the additional tightening of the relaxation helps to speed up the overall process, because it provides better bounds for the branch-and-bound tree and helps guide the LP solver toward integer solutions. In rare cases, shutting off cutting planes completely might lead to faster overall run times.

The default settings of the MILP solver have been tuned to work well for most instances. However, problemspecific expertise might suggest adjusting one or more of the strategies. These options give you that flexibility.

## Primal Heuristics

Primal heuristics, an important component of the MILP solver in PROC OPTMODEL, are applied during the branch-and-bound algorithm. They are used to find integer feasible solutions early in the search tree, thereby improving the upper bound for a minimization problem. Primal heuristics play a role that is complementary to cutting planes in reducing the gap between the upper and lower bounds, thus reducing the size of the branch-and-bound tree.

Applying primal heuristics in the branch-and-bound algorithm assists in the following areas:

- finding a good upper bound early in the tree search (this can lead to earlier fathoming, resulting in fewer subproblems to be processed)
- locating a reasonably good feasible solution when that is sufficient (sometimes a reasonably good feasible solution is the best the solver can produce within certain time or resource limits)
- providing upper bounds for some bound-tightening techniques

The MILP solver implements several heuristic methodologies. Some algorithms, such as rounding and iterative rounding (diving) heuristics, attempt to construct an integer feasible solution by using fractional solutions to the continuous relaxation at each node of the branch-and-cut tree. Other algorithms start with an incumbent solution and attempt to find a better solution within a neighborhood of the current best solution.

The HEURISTICS = option enables you to control the level of primal heuristics applied by the MILP solver. This level determines how frequently primal heuristics are applied during the tree search. Some expensive heuristics might be disabled by the solver at less aggressive levels. Setting the HEURISTICS= option to a lower level also reduces the maximum number of iterations allowed in iterative heuristics. The valid values for this option are listed in Table 6.7.

## Node Log

The following information about the status of the branch-and-bound algorithm is printed in the node log:
Node indicates the sequence number of the current node in the search tree.
Active indicates the current number of active nodes in the branch-and-bound tree.
Sols indicates the number of feasible solutions found so far.
BestInteger indicates the best upper bound (assuming minimization) found so far.
BestBound indicates the best lower bound (assuming minimization) found so far.
Gap indicates the relative gap between BestInteger and BestBound, displayed as a percentage. If the relative gap is larger than 1,000 , then the absolute gap is displayed. If no active nodes remain, the value of Gap is 0 .

Time indicates the elapsed real time.
The LOGFREQ= option can be used to control the amount of information printed in the node log. By default a new entry is included in the log at the first node, at the last node, and at 100 -node intervals. A new entry is also included each time a better integer solution is found. The LOGFREQ= option enables you to change the interval between entries in the node log. Figure 6.3 shows a sample node log.

Figure 6.3 Sample Node Log

```
NOTE: Problem generation will use 2 threads.
NOTE: The problem has }10\mathrm{ variables (0 free, 0 fixed).
NOTE: The problem has 0 binary and 10 integer variables.
NOTE: The problem has 2 linear constraints (2 LE, O EQ, O GE, 0 range).
NOTE: The problem has 20 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (O LE, O EQ, O GE, O range).
NOTE: The OPTMODEL presolver is disabled for linear problems.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed O variables and O constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 10 variables, 2 constraints, and 20 constraint
 coefficients.
NOTE: The MILP solver is called.
\begin{tabular}{rrrrrrr}
Node & Active & Sols & BestInteger & BestBound & Gap & Time \\
0 & 1 & 3 & 85.0000000 & 178.0000000 & \(52.25 \%\) & 0 \\
0 & 1 & 3 & 85.0000000 & 88.0955497 & \(3.51 \%\) & 0 \\
0 & 1 & 3 & 85.0000000 & 87.8923914 & \(3.29 \%\) & 0 \\
0 & 1 & 4 & 86.0000000 & 87.8372425 & \(2.09 \%\) & 0 \\
0 & 1 & 4 & 86.0000000 & 87.8342067 & \(2.09 \%\) & 0 \\
0 & 1 & 4 & 86.0000000 & 87.8293532 & \(2.08 \%\) & 0 \\
0 & 1 & 4 & 86.0000000 & 87.7862201 & \(2.03 \%\) & 0 \\
0 & 1 & 4 & 86.0000000 & 87.7857235 & \(2.03 \%\) & 0 \\
0 & 1 & 4 & 86.0000000 & 87.7559469 & \(2.00 \%\) & 0
\end{tabular}
NOTE: The MILP solver added 3 cuts with 30 cut coefficients at the root.
 5 lllllll
NOTE: Optimal.
NOTE: Objective = 87.
```


## Problem Statistics

Optimizers can encounter difficulty when solving poorly formulated models. Information about data magnitude provides a simple gauge to determine how well a model is formulated. For example, a model whose constraint matrix contains one very large entry (on the order of $10^{9}$ ) can cause difficulty when the remaining entries are single-digit numbers. The PRINTLEVEL=2 option in the OPTMODEL procedure causes the ODS table ProblemStatistics to be generated when the MILP solver is called. This table provides basic data magnitude information that enables you to improve the formulation of your models.

The example output in Figure 6.4 demonstrates the contents of the ODS table ProblemStatistics.

Figure 6.4 ODS Table ProblemStatistics

ProblemStatistics			
Obs	Label1	cValue1	nValue1
1	Number of Constraint Matrix Nonzeros	8	8.000000
2	Maximum Constraint Matrix Coefficient	3	3.000000
3	Minimum Constraint Matrix Coefficient	1	1.000000
4	Average Constraint Matrix Coefficient	1.875	1.875000
5			
6	Number of Objective Nonzeros	3	3.000000
7	Maximum Objective Coefficient	4	4.000000
8	Minimum Objective Coefficient	2	2.000000
9	Average Objective Coefficient	3	3.000000
10			
11	Number of RHS Nonzeros	3	3.000000
12	Maximum RHS	7	7.000000
13	Minimum RHS	4	4.000000
14	Average RHS	5.3333333333	5.333333
15			
16	Maximum Number of Nonzeros per Column	3	3.000000
17	Minimum Number of Nonzeros per Column	2	2.000000
18	Average Number of Nonzeros per Column	2	2.000000
19			.
20	Maximum Number of Nonzeros per Row	3	3.000000
21	Minimum Number of Nonzeros per Row	2	2.000000
22	Average Number of Nonzeros per Row	2	2.000000

The variable names in the ODS table ProblemStatistics are Label1, cValue1, and nValue1.

## Macro Variable _OROPTMODEL_

The OPTMODEL procedure defines a macro variable named _OROPTMODEL_. This variable contains a character string that indicates the status of the solver upon termination. The contents of the macro variable depend on which solver was invoked. For the MILP solver, the various terms of _OROPTMODEL_ are interpreted as follows.

## STATUS

indicates the solver status at termination. It can take one of the following values:
OK The solver terminated normally.

SYNTAX_ERROR
DATA_ERROR
OUT_OF_MEMORY
IO_ERROR
SEMANTIC_ERROR
ERROR

Syntax was used incorrectly.
The input data was inconsistent.
Insufficient memory was allocated to the solver.
A problem occurred in reading or writing data.
An evaluation error, such as an invalid operand type, was found.
The status cannot be classified into any of the preceding categories.

## ALGORITHM

indicates the algorithm that produced the solution data in the macro variable. This term only appears when STATUS=OK. It can take one of the following values:

BAC The branch-and-cut algorithm produced the solution data.
DECOMP The decomposition algorithm produced the solution data.

## SOLUTION_STATUS

indicates the solution status at termination. It can take one of the following values:

OPTIMAL	The solution is optimal.   OPTIMAL_AGAP
	The solution is optimal within the absolute gap specified by   the ABSOBJGAP= option.
OPTIMAL_RGAP	The solution is optimal within the relative gap specified by the   RELOBJGAP= option.
OPTIMAL_COND	The solution is optimal, but some infeasibilities (primal,   bound, or integer) exceed tolerances due to scaling or choice   of small INTTOL= value.
	The solution is not worse than the target specified by the TAR-   GET= option.
TARGET	The problem is infeasible.
INFEASIBLE	The problem is unbounded.

## OBJECTIVE

indicates the objective value obtained by the solver at termination.

## RELATIVE_GAP

specifies the relative gap between the best integer objective (BestInteger) and the objective of the best remaining node (BestBound) upon termination of the MILP solver. The relative gap is equal to

$$
\mid \text { BestInteger }- \text { BestBound } \mid /(1 \mathrm{E}-10+\mid \text { BestBound } \mid)
$$

## ABSOLUTE_GAP

specifies the absolute gap between the best integer objective (BestInteger) and the objective of the best remaining node (BestBound) upon termination of the MILP solver. The absolute gap is equal to | BestInteger - BestBound |.

## PRIMAL_INFEASIBILITY

indicates the maximum (absolute) violation of the primal constraints by the solution.

## BOUND_INFEASIBILITY

indicates the maximum (absolute) violation by the solution of the lower or upper bounds (or both).

## INTEGER_INFEASIBILITY

indicates the maximum (absolute) violation of the integrality of integer variables returned by the MILP solver.

## BEST_BOUND

specifies the best LP objective value of all unprocessed nodes on the branch-and-bound tree at the end of execution. A missing value indicates that the MILP solver has processed either all or none of the nodes on the branch-and-bound tree.

## NODES

specifies the number of nodes enumerated by the MILP solver by using the branch-and-bound algorithm.

## ITERATIONS

indicates the number of simplex iterations taken to solve the problem.

## PRESOLVE_TIME

indicates the time (in seconds) used in preprocessing.

## SOLUTION_TIME

indicates the time (in seconds) taken to solve the problem, including preprocessing time.
Note: The time reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real time. The type is determined by the TIMETYPE= option.

When SOLUTION_STATUS has a value of OPTIMAL, CONDITIONAL_OPTIMAL, ITERATION_LIMIT_REACHED, or TIME_LIMIT_REACHED, all terms of the _OROPTMODEL_ macro variable are present; for other values of SOLUTION_STATUS, some terms do not appear.

## Examples: MILP Solver

This section contains examples that illustrate the options and syntax of the MILP solver in PROC OPTMODEL. Example 6.1 illustrates the use of PROC OPTMODEL to solve an employee scheduling problem. Example 6.2 discusses a multicommodity transshipment problem with fixed charges. Example 6.3 demonstrates how to warm start the MILP solver. Example 6.4 shows the solution of an instance of the traveling salesman problem in PROC OPTMODEL. Other examples of mixed integer linear programs, along with example SAS code, are given in Chapter 10.

## Example 6.1: Scheduling

The following example has been adapted from the example "A Scheduling Problem" in Chapter 6, "The LP Procedure" (SAS/OR User's Guide: Mathematical Programming Legacy Procedures).

Scheduling is a common application area in which mixed integer linear programming techniques are used. In this example, you have eight one-hour time slots in each of five days. You have to assign four employees to these time slots so that each slot is covered every day. You allow the employees to specify preference data for each slot on each day. In addition, the following constraints must be satisfied:

- Each employee has some time slots for which he or she is unavailable (OneEmpPerSlot).
- Each employee must have either time slot 4 or time slot 5 off for lunch (EmpMustHaveLunch).
- Each employee can work at most two time slots in a row (AtMost2ConSlots).
- Each employee can work only a specified number of hours in the week (WeeklyHoursLimit).

To formulate this problem, let $i$ denote a person, $j$ denote a time slot, and $k$ denote a day. Then, let $x_{i j k}=1$ if person $i$ is assigned to time slot $j$ on day $k$, and 0 otherwise. Let $p_{i j k}$ denote the preference of person $i$ for slot $j$ on day $k$. Let $h_{i}$ denote the number of hours in a week that person $i$ will work. The formulation of this problem follows:

$$
\begin{array}{lll}
\max & & \\
\sum_{i j k} p_{i j k} x_{i j k} & =1 \quad \forall j, k & \text { (OneEmpPerSlot) } \\
\text { s.t. } \sum_{i} x_{i j k} & \leq 1 \quad \forall i, k & \text { (EmpMustHaveLunch) } \\
x_{i 4 k}+x_{i 5 k} & \leq & \forall i, k, \text { and } l \leq 6 \\
x_{i, \ell, k}+x_{i, \ell+1, k}+x_{i, \ell+2, k} & \leq i & \text { (AtMost2ConSlots) } \\
\sum_{j k} x_{i j k} & & 0 \\
& & \forall i, j, k \text { s.t. } p_{i j k}>0
\end{array}
$$

The following data set preferences gives the preferences for each individual, time slot, and day. A 10 represents the most desirable time slot, and a 1 represents the least desirable time slot. In addition, a 0 indicates that the time slot is not available. The data set maxhours gives the maximum number of hours each employee can work per week.

```
data preferences;
 input name $ slot mon tue wed thu fri;
 datalines;
marc 1 10 10 10 10 10
marc 2
marc }\begin{array}{lllllll}{3}&{8}&{8}&{8}&{8}&{8}
marc 4 4 1 1 1 1 1 1 1
marc 5 1 1 1 1 1 1 1
marc 6 1 1 1 1 1 1 1
marc 7 7 1 1 1 1 1 1
marc 8 1 1 1 1 1 1 1
mike 1 1 10
mike 2 10 10
mike
mike 4 4 10
mike 5 5 1 1 1 1 1 1 1
mike 6 1 1 2 3 4
mike }\begin{array}{lllllll}{7}&{1}&{2}&{3}&{4}&{5}
mike
bill 1 10 10 10 10 10
bill 2 % 9 9 9
bill 3 % 8 8 8 8 8 8
bill 4 0 0 0 0 0
bill 5 1 1 1 1 1 1 1
bill 6 1 1 1 1 1 1
bill 7 1 1 1 1 1 1 1
bill 8 1 1 1 1 1 1 1
bob 1 1 10 9 8 7 7 6
bob }
bob
bob 4
bob
bob
bob
bob
;
data maxhours;
 input name $ hour;
 datalines;
marc 20
mike 20
bill 20
bob 20
;
```

Using PROC OPTMODEL, you can model and solve the scheduling problem as follows:

```
proc optmodel;
 /* read in the preferences and max hours from the data sets */
 set <string,num> DailyEmployeeSlots;
 set <string> Employees;
 set <num> TimeSlots = (setof {<name,slot> in DailyEmployeeSlots} slot);
 set <string> WeekDays = {"mon","tue","wed","thu","fri"};
 num WeeklyMaxHours{Employees };
 num PreferenceWeights{DailyEmployeeSlots,Weekdays};
 num NSlots = card(TimeSlots);
 read data preferences into DailyEmployeeSlots=[name slot]
 {day in Weekdays} <PreferenceWeights[name,slot,day] = col(day)>;
 read data maxhours into Employees=[name] WeeklyMaxHours=hour;
 /* declare the binary assignment variable x[i,j,k] */
 var Assign{<name,slot> in DailyEmployeeSlots, day in Weekdays} binary;
 /* for each p[i,j,k] = 0, fix x[i,j,k] = 0 */
 for {<name,slot> in DailyEmployeeSlots, day in Weekdays:
 PreferenceWeights[name,slot,day] = 0}
 fix Assign[name,slot,day] = 0;
 /* declare the objective function */
max TotalPreferenceWeight =
 sum{<name,slot> in DailyEmployeeSlots, day in Weekdays}
 PreferenceWeights[name,slot,day] * Assign[name,slot,day];
 /* declare the constraints */
con OneEmpPerSlot{slot in TimeSlots, day in Weekdays}:
 sum{name in Employees} Assign[name,slot,day] = 1;
con EmpMustHaveLunch{name in Employees, day in Weekdays}:
 Assign[name, 4,day] + Assign[name,5,day] <= 1;
```

```
 con AtMost2ConsSlots{name in Employees, start in 1..NSlots-2,
 day in Weekdays}:
 Assign[name,start,day] + Assign[name,start+1,day]
 + Assign[name,start+2,day] <= 2 ;
con WeeklyHoursLimit{name in Employees}:
 sum{slot in TimeSlots, day in Weekdays} Assign[name,slot,day]
 <= WeeklyMaxHours[name];
 /* solve the model */
solve with milp;
 /* clean up the solution */
for {<name,slot> in DailyEmployeeSlots, day in Weekdays}
 Assign[name,slot,day] = round(Assign[name,slot,day],1e-6);
create data report from [name slot]={<name,slot> in DailyEmployeeSlots:
 max {day in Weekdays} Assign[name,slot,day] > 0}
 {day in Weekdays} <col(day)=(if Assign[name,slot,day] > 0
 then Assign[name,slot,day] else .)>;
quit;
```

The following statements demonstrate how to use the TABULATE procedure to display a schedule that shows how the eight time slots are covered for the week:

```
title 'Reported Solution';
proc format;
 value xfmt 1=' xxx ';
run;
proc tabulate data=report;
 class name slot;
 var mon--fri;
 table (slot * name), (mon tue wed thu fri)*sum=' '*f=xfmt.
 /misstext=' ';
run;
```

The output from the preceding code is displayed in Output 6.1.1.

Output 6.1.1 Scheduling Reported Solution


## Example 6.2: Multicommodity Transshipment Problem with Fixed Charges

The following example has been adapted from the example "A Multicommodity Transshipment Problem with Fixed Charges" in Chapter 6, "The LP Procedure" (SAS/OR User's Guide: Mathematical Programming Legacy Procedures).

This example illustrates the use of PROC OPTMODEL to generate a mixed integer linear program to solve a multicommodity network flow model with fixed charges. Consider a network with nodes $N$, arcs $A$, and a set $C$ of commodities to be shipped between the nodes. The commodities are defined in the data set COMMODITY_DATA, as follows:

```
title 'Multicommodity Transshipment Problem with Fixed Charges';
data commodity_data;
 do c = 1 to 4;
 output;
 end;
run;
```

Shipping cost $s_{i j c}$ is for each of the four commodities $c$ across each of the arcs $(i, j)$. In addition, there is a fixed charge $f_{i j}$ for the use of each arc $(i, j)$. The shipping costs and fixed charges are defined in the data set ARC_DATA, as follows:

```
data arc_data;
 input from $ to $ c1 c2 c3 c4 fx;
 datalines;
farm-a Chicago 20 15 17 22 100
farm-b Chicago 15 15 15 30 75
farm-c Chicago 30 30 10 10 100
farm-a StLouis 30 25 27 22 150
farm-c StLouis 10 9 11 10 75
Chicago NY 75 75 75 75 200
StLouis NY 80 80 80 80 200
;
run;
```

The supply (positive numbers) or demand (negative numbers) $d_{i c}$ at each of the nodes for each commodity $c$ is shown in the data set SUPPLY_DATA, as follows:

```
data supply_data;
 input node $ sd1 sd2 sd3 sd4;
 datalines;
farm-a 100 100 40 .
farm-b 100 200 50 50
farm-c 40 100 75 100
NY -150 -200 -50 -75
;
run;
```

Let $x_{i j c}$ define the flow of commodity $c$ across $\operatorname{arc}(i, j)$. Let $y_{i j}=1$ if arc $(i, j)$ is used, and 0 otherwise. Since the total flow on an arc $(i, j)$ must be at most the total demand across all nodes $k \in N$, you can define the trivial upper bound $u_{i j c}$ as

$$
x_{i j c} \leq u_{i j c}=\sum_{k \in N \mid d_{k c}<0}\left(-d_{k c}\right)
$$

This model can be represented using the following mixed integer linear program:

$$
\begin{array}{lllll}
\min & \sum_{(i, j) \in A} \sum_{c \in C} s_{i j c} x_{i j c}+\sum_{(i, j) \in A} f_{i j} y_{i j} & & \\
\text { s.t. } & \sum_{j \in N \backslash(i, j) \in A} x_{i j c}-\sum_{j \in N \mid(j, i) \in A} x_{j i c} & \leq d_{i c} & \forall i \in N, c \in C \quad \text { (balance_con) } \\
& & \leq u_{i j c} y_{i j} & \forall(i, j) \in A, c \in C & \text { (fixed_charge_con) } \\
x_{i j c} & \geq 0 & \forall(i, j) \in A, c \in C & \\
x_{i j c} & & & \forall(i, j) \in A &
\end{array}
$$

Constraint (balance_con) ensures conservation of flow for both supply and demand. Constraint (fixed_charge_con) models the fixed charge cost by forcing $y_{i j}=1$ if $x_{i j c}>0$ for some commodity $c \in C$.

The PROC OPTMODEL statements follow:

```
proc optmodel;
 set COMMODITIES;
 read data commodity_data into COMMODITIES=[c];
 set <str,str> ARCS;
 num unit_cost {ARCS, COMMODITIES};
 num fixed_charge {ARCS};
 read data arc_data into ARCS=[from to] {c in COMMODITIES}
 <unit_cost[from,to,c]=col('c'||c)> fixed_charge=fx;
 print unit_cost fixed_charge;
 set <str> NODES = union {<i,j> in ARCS} {i,j};
 num supply {NODES, COMMODITIES} init 0;
 read data supply_data nomiss into [node] {c in COMMODITIES}
 <supply[node,c]=col('sd'||c)>;
 print supply;
 var AmountShipped {ARCS, c in COMMODITIES} >= 0 <= sum {i in NODES}
 max(supply[i,c],0);
 /* UseArc[i,j] = 1 if arc (i,j) is used, O otherwise */
 var UseArc {ARCS} binary;
 /* TotalCost = variable costs + fixed charges */
 min TotalCost = sum {<i,j> in ARCS, c in COMMODITIES}
 unit_cost[i,j,c] * AmountShipped[i,j,c]
 + sum {<i,j> in ARCS} fixed_charge[i,j] * UseArc[i,j];
 con flow_balance {i in NODES, c in COMMODITIES}:
 sum {<(i),j> in ARCS} AmountShipped[i,j,c] -
 sum {<j,(i)> in ARCS} AmountShipped[j,i,c] <= supply[i,c];
 /* if AmountShipped[i,j,c] > 0 then UseArc[i,j] = 1 */
 con fixed_charge_def {<i,j> in ARCS, c in COMMODITIES}:
 AmountShipped[i,j,c] <= AmountShipped[i,j,c].ub * UseArc[i,j];
 solve;
```

```
 print AmountShipped;
 create data solution from [from to commodity]={<i,j> in ARCS,
 c in COMMODITIES: AmountShipped[i,j,c].sol ne O} amount=AmountShipped;
quit;
```

Although the PROC LP example used $m=1.0 e 6$ in the FIXED_CHARGE_DEF constraint that links the continuous variable to the binary variable, it is numerically preferable to use a smaller, data-dependent value. Here, the upper bound on AmountShipped $[i, j, c]$ is used instead. This upper bound is calculated in the first VAR statement as the sum of all positive supplies for commodity $c$. The logical condition AmountShipped $[\mathrm{i}, \mathrm{j}, \mathrm{k}]$.sol ne 0 in the CREATE DATA statement ensures that only the nonzero parts of the solution appear in the SOLUTION data set.

The problem summary, solution summary, and the output from the two PRINT statements are shown in Output 6.2.1.

Output 6.2.1 Multicommodity Transshipment Problem with Fixed Charges Solution Summary

Multicommodity Transshipment Problem with Fixed Charges The OPTMODEL Procedure			
[1]	[2]	[3]	unit_cost
Chicago	NY	1	75
Chicago	NY	2	75
Chicago	NY	3	75
Chicago	NY	4	75
StLouis	NY	1	80
StLouis	NY	2	80
StLouis	NY	3	80
StLouis	NY	4	80
farm-a	Chicago	1	20
farm-a	Chicago	2	15
farm-a	Chicago	3	17
farm-a	Chicago	4	22
farm-a	StLouis	1	30
farm-a	StLouis	2	25
farm-a	StLouis	3	27
farm-a	StLouis	4	22
farm-b	Chicago	1	15
farm-b	Chicago	2	15
farm-b	Chicago	3	15
farm-b	Chicago	4	30
farm-c	Chicago	1	30
farm-c	Chicago	2	30
farm-c	Chicago	3	10
farm-c	Chicago	4	10
farm-c	StLouis	1	10
farm-c	StLouis	2	9
farm-c	StLouis	3	11
farm-c	StLouis	4	10

Output 6.2.1 continued


Output 6.2.1 continued

Solution Summary			
SolverAlgorithm			MILP
			$h$ and Cut
Objective Function			TotalCost
Solution Status			Optimal
Objective Value			42825
Iterations			28
Best Bound			42825
Nodes			1
Relative Gap			0
Absolute Gap			0
Primal Infeasibility			0
Bound Infeasibility			0
Integer Infeasibility		9.999113E-12	
			Amount
[1]	[2]	[3]	Shipped
Chicago	NY	1	110
Chicago	NY	2	100
Chicago	NY	3	50
Chicago	NY	4	75
StLouis	NY	1	40
StLouis	NY	2	100
StLouis	NY	3	0
StLouis	NY	4	0
farm-a	Chicago	1	10
farm-a	Chicago	2	100
farm-a	Chicago	3	0
farm-a	Chicago	4	0
farm-a	StLouis	1	0
farm-a	StLouis	2	0
farm-a	StLouis	3	0
farm-a	StLouis	4	0
farm-b	Chicago	1	100
farm-b	Chicago	2	0
farm-b	Chicago	3	0
farm-b	Chicago	4	0
farm-c	Chicago	1	0
farm-c	Chicago	2	0
farm-c	Chicago	3	50
farm-c	Chicago	4	75
farm-c	StLouis	1	40
farm-c	StLouis	2	100
farm-c	StLouis	3	0
farm-c	StLouis	4	0

## Example 6.3: Facility Location

Consider the classic facility location problem. Given a set $L$ of customer locations and a set $F$ of candidate facility sites, you must decide on which sites to build facilities and assign coverage of customer demand to these sites so as to minimize cost. All customer demand $d_{i}$ must be satisfied, and each facility has a demand capacity limit $C$. The total cost is the sum of the distances $c_{i j}$ between facility $j$ and its assigned customer $i$, plus a fixed charge $f_{j}$ for building a facility at site $j$. Let $y_{j}=1$ represent choosing site $j$ to build a facility, and 0 otherwise. Also, let $x_{i j}=1$ represent the assignment of customer $i$ to facility $j$, and 0 otherwise. This model can be formulated as the following integer linear program:

$$
\begin{array}{llll}
\min & \sum_{i \in L} \sum_{j \in F} c_{i j} x_{i j}+\sum_{j \in F} f_{j} y_{j} & & \\
\text { s.t. } & \sum_{j \in F} x_{i j} & =1 & \forall i \in L
\end{array} \quad \text { (assign_def) }
$$

Constraint (assign_def) ensures that each customer is assigned to exactly one site. Constraint (link) forces a facility to be built if any customer has been assigned to that facility. Finally, constraint (capacity) enforces the capacity limit at each site.

Consider also a variation of this same problem where there is no cost for building a facility. This problem is typically easier to solve than the original problem. For this variant, let the objective be

$$
\min \sum_{i \in L} \sum_{j \in F} c_{i j} x_{i j}
$$

First, construct a random instance of this problem by using the following DATA steps:

```
title 'Facility Location Problem';
```

```
%let NumCustomers = 50;
%let NumSites = 10;
%let SiteCapacity = 35;
%let MaxDemand = 10;
%let xmax = 200;
%let ymax = 100;
%let seed = 938;
/* generate random customer locations */
data cdata(drop=i);
 length name $8;
 do i = 1 to &NumCustomers;
 name = compress('C'||put(i,best.));
 x = ranuni(&seed) * &xmax;
 y = ranuni(&seed) * &ymax;
```

```
 demand = ranuni(&seed) * &MaxDemand;
 output;
 end;
run;
/* generate random site locations and fixed charge */
data sdata(drop=i);
 length name $8;
 do i = 1 to &NumSites;
 name = compress('SITE'||put(i,best.));
 x = ranuni(&seed) * &xmax;
 y = ranuni(&seed) * &ymax;
 fixed_charge = 30 * (abs(&xmax/2-x) + abs(&ymax/2-y));
 output;
 end;
run;
```

The following PROC OPTMODEL statements first generate and solve the model with the no-fixed-charge variant of the cost function. Next, they solve the fixed-charge model. Note that the solution to the model with no fixed charge is feasible for the fixed-charge model and should provide a good starting point for the MILP solver. Use the PRIMALIN option to provide an incumbent solution (warm start).

```
proc optmodel;
 set <str> CUSTOMERS;
 set <str> SITES init {};
 /* x and y coordinates of CUSTOMERS and SITES */
 num x {CUSTOMERS union SITES};
 num y {CUSTOMERS union SITES};
 num demand {CUSTOMERS};
 num fixed_charge {SITES};
 /* distance from customer i to site j */
 num dist {i in CUSTOMERS, j in SITES}
 = sqrt((x[i] - x[j])^2 + (y[i] - y[j])^2);
 read data cdata into CUSTOMERS=[name] x y demand;
 read data sdata into SITES=[name] x y fixed_charge;
 var Assign {CUSTOMERS, SITES} binary;
 var Build {SITES} binary;
 min CostNoFixedCharge
 = sum {i in CUSTOMERS, j in SITES} dist[i,j] * Assign[i,j];
 min CostFixedCharge
 = CostNoFixedCharge + sum {j in SITES} fixed_charge[j] * Build[j];
 /* each customer assigned to exactly one site */
 con assign_def {i in CUSTOMERS}:
 sum {j in SITES} Assign[i,j] = 1;
 /* if customer i assigned to site j, then facility must be built at j */
 con link {i in CUSTOMERS, j in SITES}:
 Assign[i,j] <= Build[j];
```

```
 /* each site can handle at most &SiteCapacity demand */
 con capacity {j in SITES}:
 sum {i in CUSTOMERS} demand[i] * Assign[i,j] <=
 &SiteCapacity * Build[j];
 /* solve the MILP with no fixed charges */
 solve obj CostNoFixedCharge with milp / logfreq = 500;
 /* clean up the solution */
 for {i in CUSTOMERS, j in SITES} Assign[i,j] = round(Assign[i,j]);
 for {j in SITES} Build[j] = round(Build[j]);
 call symput('varcostNo',put(CostNoFixedCharge,6.1));
 /* create a data set for use by GPLOT */
 create data CostNoFixedCharge_Data from
 [customer site]={i in CUSTOMERS, j in SITES: Assign[i,j] = 1}
 xi=x[i] yi=y[i] xj=x[j] yj=y[j];
/* solve the MILP, with fixed charges with warm start */
solve obj CostFixedCharge with milp / primalin logfreq = 500;
/* clean up the solution */
for {i in CUSTOMERS, j in SITES} Assign[i,j] = round(Assign[i,j]);
for {j in SITES} Build[j] = round(Build[j]);
num varcost = sum {i in CUSTOMERS, j in SITES} dist[i,j] * Assign[i,j].sol;
num fixcost = sum {j in SITES} fixed_charge[j] * Build[j].sol;
call symput('varcost', put(varcost, 6.1));
call symput('fixcost', put(fixcost,5.1));
call symput('totalcost', put(CostFixedCharge,6.1));
/* create a data set for use by GPLOT */
create data CostFixedCharge_Data from
 [customer site]={i in CUSTOMERS, j in SITES: Assign[i,j] = 1}
 xi=x[i] yi=y[i] xj=x[j] yj=y[j];
quit;
```

The information printed in the log for the no-fixed-charge model is displayed in Output 6.3.1.
Output 6.3.1 OPTMODEL Log for Facility Location with No Fixed Charges

```
NOTE: Problem generation will use 2 threads.
NOTE: The problem has }510\mathrm{ variables (0 free, 0 fixed).
NOTE: The problem has }510\mathrm{ binary and 0 integer variables.
NOTE: The problem has 560 linear constraints (510 LE, 50 EQ, O GE, O range).
NOTE: The problem has 2010 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (O LE, O EQ, O GE, O range).
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 10 variables and 500 constraints.
NOTE: The MILP presolver removed 1010 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has }500\mathrm{ variables, }60\mathrm{ constraints, and 1000
 constraint coefficients.
NOTE: The MILP solver is called.
\begin{tabular}{rrrrrrr}
Node & Active & Sols & BestInteger & BestBound & Gap & Time \\
0 & 1 & 2 & 972.1737321 & 0 & 972.2 & 0 \\
0 & 1 & 2 & 972.1737321 & 961.2403449 & \(1.14 \%\) & 0 \\
0 & 1 & 3 & 966.4832160 & 966.4832160 & \(0.00 \%\) & 0 \\
0 & 0 & 3 & 966.4832160 & 966.4832160 & \(0.00 \%\) & 0
\end{tabular}
NOTE: The MILP solver added }11\mathrm{ cuts with }596\mathrm{ cut coefficients at the root.
NOTE: Optimal.
NOTE: Objective = 966.483216.
```

The results from the warm start approach are shown in Output 6.3.2.

Output 6.3.2 OPTMODEL Log for Facility Location with Fixed Charges, Using Warm Start

```
NOTE: Problem generation will use 2 threads.
NOTE: The problem has }510\mathrm{ variables (0 free, 0 fixed).
NOTE: The problem uses 1 implicit variables.
NOTE: The problem has }510\mathrm{ binary and 0 integer variables.
NOTE: The problem has 560 linear constraints (510 LE, 50 EQ, O GE, 0 range).
NOTE: The problem has 2010 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (O LE, O EQ, O GE, O range).
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed O variables and O constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has }510\mathrm{ variables, }560\mathrm{ constraints, and 2010
 constraint coefficients.
NOTE: The MILP solver is called.
\begin{tabular}{rrrrrrr}
Node & Active & Sols & BestInteger & BestBound & Gap & Time \\
0 & 1 & 3 & 16070.0150023 & 0 & 16070 & 0 \\
0 & 1 & 3 & 16070.0150023 & 9946.2514269 & \(61.57 \%\) & 0 \\
0 & 1 & 3 & 16070.0150023 & 10928.9752350 & \(47.04 \%\) & 0 \\
0 & 1 & 3 & 16070.0150023 & 10935.9357070 & \(46.95 \%\) & 0 \\
0 & 1 & 3 & 16070.0150023 & 10939.3645882 & \(46.90 \%\) & 0 \\
0 & 1 & 3 & 16070.0150023 & 10939.8308022 & \(46.89 \%\) & 0 \\
0 & 1 & 3 & 16070.0150023 & 10940.6691108 & \(46.88 \%\) & 0 \\
0 & 1 & 6 & 12678.8372464 & 10941.0776158 & \(15.88 \%\) & 0 \\
0 & 1 & 6 & 12678.8372464 & 10941.0776158 & \(15.88 \%\) & 0
\end{tabular}
NOTE: The MILP solver added 16 cuts with 405 cut coefficients at the root.
\begin{tabular}{lrlllll}
28 & 6 & 7 & 10948.4603380 & 10941.6896516 & \(0.06 \%\) & 0 \\
38 & 15 & 8 & 10948.4603380 & 10941.6896516 & \(0.06 \%\) & 0 \\
66 & 3 & 8 & 10948.4603380 & 10947.6054588 & \(0.01 \%\) & 1
\end{tabular}
NOTE: Optimal within relative gap.
NOTE: Objective \(=10948.4603\).
```

The following two SAS programs produce a plot of the solutions for both variants of the model, using data sets produced by PROC OPTMODEL:

```
title1 h=1.5 "Facility Location Problem";
title2 "TotalCost = &varcostNo (Variable = &varcostNo, Fixed = 0)";
data csdata;
 set cdata(rename=(y=cy)) sdata(rename=(y=sy));
run;
/* create Annotate data set to draw line between customer and assigned site */
%annomac;
data anno(drop=xi yi xj yj);
 %SYSTEM(2, 2, 2);
 set CostNoFixedCharge_Data(keep=xi yi xj yj);
 %LINE(xi, yi, xj, yj, *, 1, 1);
run;
proc gplot data=csdata anno=anno;
 axis1 label=none order=(0 to &xmax by 10);
 axis2 label=none order=(0 to &ymax by 10);
```

```
 symboll value=dot interpol=none
 pointlabel=("#name" nodropcollisions height=1) cv=black;
 symbol2 value=diamond interpol=none
 pointlabel=("#name" nodropcollisions color=blue height=1) cv=blue;
 plot cy*x sy*x / overlay haxis=axis1 vaxis=axis2;
run;
quit;
```

The output of the first program is shown in Output 6.3.3.
Output 6.3.3 Solution Plot for Facility Location with No Fixed Charges


The output of the second program is shown in Output 6.3.4.

```
title1 "Facility Location Problem";
title2 "TotalCost = &totalcost (Variable = &varcost, Fixed = &fixcost)";
/* create Annotate data set to draw line between customer and assigned site */
data anno(drop=xi yi xj yj);
 %SYSTEM(2, 2, 2);
 set CostFixedCharge_Data(keep=xi yi xj yj);
 %LINE(xi, yi, xj, yj, *, 1, 1);
run;
```

```
proc gplot data=csdata anno=anno;
 axis1 label=none order=(0 to &xmax by 10);
 axis2 label=none order=(0 to &ymax by 10);
 symboll value=dot interpol=none
 pointlabel=("#name" nodropcollisions height=1) cv=black;
 symbol2 value=diamond interpol=none
 pointlabel=("#name" nodropcollisions color=blue height=1) cv=blue;
 plot cy*x sy*x / overlay haxis=axis1 vaxis=axis2;
run;
quit;
```

Output 6.3.4 Solution Plot for Facility Location with Fixed Charges


The economic trade-off for the fixed-charge model forces you to build fewer sites and push more demand to each site.

It is possible to expedite the solution of the fixed-charge facility location problem by choosing appropriate branching priorities for the decision variables. Recall that for each site $j$, the value of the variable $y_{j}$ determines whether or not a facility is built on that site. Suppose you decide to branch on the variables $y_{j}$ before the variables $x_{i j}$. You can set a higher branching priority for $y_{j}$ by using the .priority suffix for the Build variables in PROC OPTMODEL, as follows:

```
for{j in SITES} Build[j].priority=10;
```

Setting higher branching priorities for certain variables is not guaranteed to speed up the MILP solver, but it can be helpful in some instances. The following program creates and solves an instance of the facility location problem, giving higher priority to the variables $y_{j}$. The LOGFREQ $=$ option is used to abbreviate the node log.

```
%let NumCustomers = 45;
%let NumSites = 8;
%let SiteCapacity = 35;
%let MaxDemand = 10;
%let xmax = 200;
%let ymax = 100;
%let seed = 2345;
/* generate random customer locations */
data cdata(drop=i);
 length name $8;
 do i = 1 to &NumCustomers;
 name = compress('C'||put(i,best.));
 x = ranuni(&seed) * &xmax;
 y = ranuni(&seed) * &ymax;
 demand = ranuni(&seed) * &MaxDemand;
 output;
 end;
run;
/* generate random site locations and fixed charge */
data sdata(drop=i);
length name $8;
 do i = 1 to &NumSites;
 name = compress('SITE'||put(i,best.));
 x = ranuni(&seed) * &xmax;
 y = ranuni (&seed) * &ymax;
 fixed_charge = (abs(&xmax/2-x) + abs(&ymax/2-y)) / 2;
 output;
 end;
run;
```

```
proc optmodel;
 set <str> CUSTOMERS;
 set <str> SITES init {};
 /* x and y coordinates of CUSTOMERS and SITES */
 num x {CUSTOMERS union SITES};
 num y {CUSTOMERS union SITES};
 num demand {CUSTOMERS};
 num fixed_charge {SITES};
 /* distance from customer i to site j */
 num dist {i in CUSTOMERS, j in SITES}
 = sqrt((x[i] - x[j])^2 + (y[i] - y[j])^2);
 read data cdata into CUSTOMERS=[name] x y demand;
 read data sdata into SITES=[name] x y fixed_charge;
 var Assign {CUSTOMERS, SITES} binary;
 var Build {SITES} binary;
 min CostFixedCharge
 = sum {i in CUSTOMERS, j in SITES} dist[i,j] * Assign[i,j]
 + sum {j in SITES} fixed_charge[j] * Build[j];
 /* each customer assigned to exactly one site */
 con assign_def {i in CUSTOMERS}:
 sum {j in SITES} Assign[i,j] = 1;
 /* if customer i assigned to site j, then facility must be built at j */
 con link {i in CUSTOMERS, j in SITES}:
 Assign[i,j] <= Build[j];
 /* each site can handle at most &SiteCapacity demand */
 con capacity {j in SITES}:
 sum {i in CUSTOMERS} demand[i] * Assign[i,j] <= &SiteCapacity * Build[j];
 /* assign priority to Build variables (y) */
 for{j in SITES} Build[j].priority=10;
 /* solve the MILP with fixed charges, using branching priorities */
 solve obj CostFixedCharge with milp / logfreq=1000;
quit;
```

The resulting output is shown in Output 6.3.5.

Output 6.3.5 PROC OPTMODEL Log for Facility Location with Branching Priorities
NOTE: There were 45 observations read from the data set WORK.CDATA.
NOTE: There were 8 observations read from the data set WORK. SDATA.
NOTE: Problem generation will use 2 threads.
NOTE: The problem has 368 variables (0 free, 0 fixed).
NOTE: The problem has 368 binary and 0 integer variables.

NOTE: Optimal within relative gap.
NOTE: Objective $=1819.91243$.

## Example 6.4: Traveling Salesman Problem

The traveling salesman problem (TSP) is that of finding a minimum cost tour in an undirected graph $G$ with vertex set $V=\{1, \ldots,|V|\}$ and edge set $E$. A tour is a connected subgraph for which each vertex has degree two. The goal is then to find a tour of minimum total cost, where the total cost is the sum of the costs of the edges in the tour. With each edge $e \in E$ we associate a binary variable $x_{e}$, which indicates whether edge $e$ is part of the tour, and a cost $c_{e} \in \mathbb{R}$. Let $\delta(S)=\{\{i, j\} \in E \mid i \in S, j \notin S\}$. Then an integer linear programming (ILP) formulation of the TSP is as follows:

$$
\begin{array}{lll}
\min & \sum_{e \in E} c_{e} x_{e} & \\
\text { s.t. } & \sum_{e \in \delta(i)} x_{e}=2 \quad \forall i \in V \\
& \sum_{e \in \delta(S)} x_{e} \geq 2 \quad \forall S \subset V, 2 \leq|S| \leq|V|-1 \quad \text { (two_match) } \\
& x_{e} \in\{0,1\} & \forall e \in E
\end{array}
$$

The equations (two_match) are the matching constraints, which ensure that each vertex has degree two in the subgraph, while the inequalities (subtour_elim) are known as the subtour elimination constraints (SECs) and enforce connectivity.
Since there is an exponential number $O\left(2^{|V|}\right)$ of SECs, it is impossible to explicitly construct the full TSP formulation for large graphs. An alternative formulation of polynomial size was introduced by Miller, Tucker, and Zemlin (1960) (MTZ):

$$
\begin{array}{llll}
\min & \sum_{(i, j) \in E} c_{i j} x_{i j} & & \\
\text { s.t. } & \sum_{j \in V} x_{i j} & =1 & \forall i \in V \\
& \sum_{i \in V} x_{i j} & =1 & \forall j \in V \\
& & \\
& u_{i}-u_{j}+1 & \leq(|V|-1)\left(1-x_{i j}\right) & \forall(i, j) \in V, i \neq 1, j \neq 1 \\
2 \leq u_{i} & \leq|V| & \forall i \in\{2, \ldots,|V|\}, & \\
& x_{i j} \in\{0,1\} & & \forall(i, j) \in E
\end{array}
$$

This formulation uses a directed graph. Constraints (assign_i) and (assign_j) now enforce that each vertex has degree two (one edge in, one edge out). The MTZ constraints (mtz) enforce that no subtours exist.

TSPLIB, located at http://elib.zib.de/pub/Packages/mp-testdata/tsp/tsplib/tsplib.html, is a set of benchmark instances for the TSP. The following DATA step converts a TSPLIB instance of type EUC_2D into a SAS data set that contains the coordinates of the vertices:

```
/* convert the TSPLIB instance into a data set */
data tspData(drop=H);
 infile "st70.tsp";
 input H $1. @;
 if H not in ('N','T','C','D','E');
 input @1 var1-var3;
run;
```

The following PROC OPTMODEL statements attempt to solve the TSPLIB instance st70.tsp by using the MTZ formulation:

```
/* direct solution using the MTZ formulation */
proc optmodel;
 set VERTICES;
 set EDGES = {i in VERTICES, j in VERTICES: i ne j};
 num xc {VERTICES};
 num yc {VERTICES};
 /* read in the instance and customer coordinates (xc, yc) */
 read data tspData into VERTICES=[_n_] xc=var2 yc=var3;
 /* the cost is the euclidean distance rounded to the nearest integer */
 num c {<i,j> in EDGES}
 init floor(sqrt(((xc[i]-xc[j])**2 + (yc[i]-yc[j])**2)) + 0.5);
 var x {EDGES} binary;
 var u {i in 2..card(VERTICES)} >= 2 <= card(VERTICES);
 /* each vertex has exactly one in-edge and one out-edge */
 con assign_i {i in VERTICES}:
 sum {j in VERTICES: i ne j} x[i,j] = 1;
 con assign_j {j in VERTICES}:
 sum {i in VERTICES: i ne j} x[i,j] = 1;
 /* minimize the total cost */
 min obj
 = sum {<i,j> in EDGES} (if i > j then c[i,j] else c[j,i]) * x[i,j];
 /* no subtours */
 con mtz {<i,j> in EDGES : (i ne 1) and (j ne 1)}:
 u[i] - u[j] + 1 <= (card(VERTICES) - 1) * (1 - x[i,j]);
 solve with milp / maxtime = 600;
quit;
```

It is well known that the MTZ formulation is much weaker than the subtour formulation. The exponential number of SECs makes it impossible, at least in large instances, to use a direct call to the MILP solver with the subtour formulation. For this reason, if you want to solve the TSP with one SOLVE statement, you must use the MTZ formulation and rely strictly on generic cuts and heuristics. Except for very small instances, this is unlikely to be a good approach.

A much more efficient way to tackle the TSP is to dynamically generate the subtour inequalities as cuts. Typically this is done by solving the LP relaxation of the two-matching problem, finding violated subtour cuts, and adding them iteratively. The problem of finding violated cuts is known as the separation problem. In this case, the separation problem takes the form of a minimum cut problem, which is nontrivial to implement efficiently. Therefore, for the sake of illustration, an integer program is solved at each step of the process.

The initial formulation of the TSP is the integral two-matching problem. You solve this by using PROC OPTMODEL to obtain an integral matching, which is not necessarily a tour. In this case, the separation problem is trivial. If the solution is a connected graph, then it is a tour, so the problem is solved. If the solution is a disconnected graph, then each component forms a violated subtour constraint. These
constraints are added to the formulation, and the integer program is solved again. This process is repeated until the solution defines a tour.

The following PROC OPTMODEL statements solve the TSP by using the subtour formulation and iteratively adding subtour constraints:

```
/* iterative solution using the subtour formulation */
proc optmodel;
 set VERTICES;
 set EDGES = {i in VERTICES, j in VERTICES: i > j};
 num xc {VERTICES};
 num yc {VERTICES};
 num numsubtour init 0;
 set SUBTOUR {1..numsubtour};
 /* read in the instance and customer coordinates (xc, yc) */
 read data tspData into VERTICES=[var1] xc=var2 yc=var3;
 /* the cost is the euclidean distance rounded to the nearest integer */
 num c {<i,j> in EDGES}
 init floor(sqrt(((xc[i]-xc[j])**2 + (yc[i]-yc[j])**2)) + 0.5);
 var x {EDGES} binary;
 /* minimize the total cost */
 min obj =
 sum {<i,j> in EDGES} c[i,j] * x[i,j];
 /* each vertex has exactly one in-edge and one out-edge */
 con two_match {i in VERTICES}:
 sum {j in VERTICES: i > j} x[i,j]
 + sum {j in VERTICES: i < j} x[j,i] = 2;
 /* no subtours (these constraints are generated dynamically) */
 con subtour_elim {s in 1..numsubtour}:
 sum {<i,j> in EDGES: (i in SUBTOUR[s] and j not in SUBTOUR[s])
 or (i not in SUBTOUR[s] and j in SUBTOUR[s])} x[i,j] >= 2;
 /* this starts the algorithm to find violated subtours */
 set <num,num> EDGES1;
 set INITVERTICES = setof{<i,j> in EDGES1} i;
 set VERTICES1;
 set NEIGHBORS;
 set <num,num> CLOSURE;
 num component {INITVERTICES};
 num numcomp init 2;
 num iter init 1;
 num numiters init 1;
 set ITERS = 1..numiters;
 num sol {ITERS, EDGES};
```

```
 /* initial solve with just matching constraints */
 solve;
 call symput(compress('obj'||put(iter,best.)),
 trim(left(put(round(obj),best.))));
 for {<i,j> in EDGES} sol[iter,i,j] = round(x[i,j]);
 /* while the solution is disconnected, continue */
 do while (numcomp > 1);
 iter = iter + 1;
 /* find connected components of support graph */
 EDGES1 = {<i,j> in EDGES: round(x[i,j].sol) = 1};
 EDGES1 = EDGES1 union {setof {<i,j> in EDGES1} <j,i>};
 VERTICES1 = INITVERTICES;
 CLOSURE = EDGES1;
 for {i in INITVERTICES} component[i] = 0;
 for {i in VERTICES1} do;
 NEIGHBORS = slice(<i,*>,CLOSURE);
 CLOSURE = CLOSURE union (NEIGHBORS cross NEIGHBORS);
 end;
 numcomp = 0;
 do while (card(VERTICES1) > 0);
 numcomp = numcomp + 1;
 for {i in VERTICES1} do;
 NEIGHBORS = slice(<i,*>,CLOSURE);
 for {j in NEIGHBORS} component[j] = numcomp;
 VERTICES1 = VERTICES1 diff NEIGHBORS;
 leave;
 end;
 end;
 if numcomp = 1 then leave;
 numiters = iter;
 numsubtour = numsubtour + numcomp;
 for {comp in 1..numcomp} do;
 SUBTOUR[numsubtour-numcomp+comp]
 = {i in VERTICES: component[i] = comp};
 end;
 solve;
 call symput(compress('obj'||put(iter,best.)),
 trim(left(put(round(obj),best.))));
 for {<i,j> in EDGES} sol[iter,i,j] = round(x[i,j]);
end;
/* create a data set for use by gplot */
create data solData from
 [iter i j]={it in ITERS, <i,j> in EDGES: sol[it,i,j] = 1}
 xi=xc[i] yi=yc[i] xj=xc[j] yj=yc[j];
call symput('numiters',put(numiters,best.));
quit;
```

You can generate plots of the solution and objective value at each stage by using the following statements:

```
%macro plotTSP;
 %annomac;
 %do i = 1 %to &numiters;
 /* create annotate data set to draw subtours */
 data anno(drop=iter xi yi xj yj);
 %SYSTEM(2, 2, 2);
 set solData(keep=iter xi yi xj yj);
 where iter = &i;
 %LINE(xi, yi, xj, yj, *, 1, 1);
 run;
 title1 h=2 "TSP: Iter = &i, Objective = &&obj&i";
 title2;
 axis1 label=none;
 symboll value=dot interpol=none
 pointlabel=("#var1" nodropcollisions height=1) cv=black;
 plot var3*var2 / haxis=axis1 vaxis=axis1;
 run;
 quit;
 %end;
%mend plotTSP;
%plotTSP;
```

The plot in Output 6.4.1 shows the solution and objective value at each stage. Notice that each stage restricts some subset of subtours. When you reach the final stage, you have a valid tour.

NOTE: An alternative way of approaching the TSP is to use a genetic algorithm. See the "Examples" section in Chapter 3, "The GA Procedure" (SAS/OR User's Guide: Local Search Optimization), for an example of how to use PROC GA to solve the TSP.

Note: See the "Examples" section in Chapter 2, "The OPTNET Procedure" (SAS/OR User's Guide: Network Optimization Algorithms). for an example of how to use PROC OPTNET to solve the TSP.

Output 6.4.1 Traveling Salesman Problem Iterative Solution


## References

Achterberg, T., Koch, T., and Martin, A. (2005), "Branching Rules Revisited," Operations Research Letters, 33(1), 42-54.

Andersen, E. D. and Andersen, K. D. (1995), "Presolving in Linear Programming," Mathematical Programming, 71(2), 221-245.

Atamturk, A. (2004), "Sequence Independent Lifting for Mixed-Integer Programming," Operations Research, 52, 487-490.

Dantzig, G. B., Fulkerson, R., and Johnson, S. M. (1954), "Solution of a Large-Scale Traveling Salesman Problem," Operations Research, 2, 393-410.

Gondzio, J. (1997), "Presolve Analysis of Linear Programs prior to Applying an Interior Point Method," INFORMS Journal on Computing, 9 (1), 73-91.

Land, A. H. and Doig, A. G. (1960), "An Automatic Method for Solving Discrete Programming Problems," Econometrica, 28, 497-520.

Linderoth, J. T. and Savelsbergh, M. (1998), "A Computational Study of Search Strategies for Mixed Integer Programming," INFORMS Journal on Computing, 11, 173-187.

Marchand, H., Martin, A., Weismantel, R., and Wolsey, L. (1999), "Cutting Planes in Integer and Mixed Integer Programming," DP 9953, CORE, Université Catholique de Louvainla-Neuve, 1999.

Miller, C. E., Tucker, A. W., and Zemlin, R. A. (1960), "Integer Programming Formulations of Traveling Salesman Problems," Journal of the Association for Computing Machinery, 7(4), 326-329.

Savelsbergh, M. W. P. (1994), "Preprocessing and Probing Techniques for Mixed Integer Programming Problems," ORSA J. on Computing, 6, 445-454.

## Chapter 7 The Nonlinear Programming Solver

## Contents

Overview: NLP Solver ..... 287
Getting Started: NLP Solver ..... 289
Syntax: NLP Solver ..... 297
Functional Summary ..... 297
NLP Solver Options ..... 298
Details: NLP Solver ..... 302
Basic Definitions and Notation ..... 302
Constrained Optimization ..... 302
Interior Point Algorithm ..... 304
Active-Set Method ..... 305
Multistart ..... 307
Iteration Log for the Local Solver ..... 308
Iteration Log for Multistart ..... 308
Solver Termination Criterion ..... 309
Solver Termination Messages ..... 310
Macro Variable _OROPTMODEL ..... 311
Examples: NLP Solver ..... 313
Example 7.1: Solving Highly Nonlinear Optimization Problems ..... 313
Example 7.2: Solving Unconstrained and Bound-Constrained Optimization Problems ..... 315
Example 7.3: Solving NLP Problems with Range Constraints ..... 317
Example 7.4: Solving Large-Scale NLP Problems ..... 320
Example 7.5: Solving NLP Problems with Several Local Minima ..... 322
References ..... 325

## Overview: NLP Solver

The sparse nonlinear programming (NLP) solver is a component of the OPTMODEL procedure that can solve optimization problems containing both nonlinear equality and inequality constraints. The general nonlinear optimization problem can be defined as

```
minimize
\(f(x)\)
subject to \(h_{i}(x)=0, i \in \mathcal{E}=\{1,2, \ldots, p\}\)
\(g_{i}(x) \geq 0, i \in \mathcal{I}=\{1,2, \ldots, q\}\)
\(l \leq x \leq u\)
```

where $x \in \mathbb{R}^{n}$ is the vector of the decision variables; $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is the objective function; $h: \mathbb{R}^{n} \mapsto \mathbb{R}^{p}$ is the vector of equality constraints-that is, $h=\left(h_{1}, \ldots, h_{p}\right) ; g: \mathbb{R}^{n} \mapsto \mathbb{R}^{q}$ is the vector of inequality constraints-that is, $g=\left(g_{1}, \ldots, g_{q}\right)$; and $l, u \in \mathbb{R}^{n}$ are the vectors of the lower and upper bounds, respectively, on the decision variables.
It is assumed that the functions $f, h_{i}$, and $g_{i}$ are twice continuously differentiable. Any point that satisfies the constraints of the NLP problem is called a feasible point, and the set of all those points forms the feasible region of the NLP problem-that is, $\mathcal{F}=\left\{x \in \mathbb{R}^{n}: h(x)=0, g(x) \geq 0, l \leq x \leq u\right\}$.

The NLP problem can have a unique minimum or many different minima, depending on the type of functions involved. If the objective function is convex, the equality constraint functions are linear, and the inequality constraint functions are concave, then the NLP problem is called a convex program and has a unique minimum. All other types of NLP problems are called nonconvex and can contain more than one minimum, usually called local minima. The solution that achieves the lowest objective value of all local minima is called the global minimum or global solution of the NLP problem. The NLP solver can find the unique minimum of convex programs and a local minimum of a general NLP problem. In addition, the solver is equipped with specific options that enable it to locate the global minimum or a good approximation of it, for those problems that contain many local minima.

The NLP solver implements the following primal-dual methods for finding a local minimum:

- interior point trust-region line-search algorithm
- active-set trust-region line-search algorithm

Both methods can solve small-, medium-, and large-scale optimization problems efficiently and robustly. These methods use exact first and second derivatives to calculate search directions. The memory requirements of both algorithms are reduced dramatically because only nonzero elements of matrices are stored. Convergence of both algorithms is achieved by using a trust-region line-search framework that guides the iterations towards the optimal solution. If a trust-region subproblem fails to provide a suitable step of improvement, a line-search is then used to fine tune the trust-region radius and ensure sufficient decrease in objective function and constraint violations.
The interior point technique implements a primal-dual interior point algorithm in which barrier functions are used to ensure that the algorithm remains feasible with respect to the bound constraints. Interior point methods are extremely useful when the optimization problem contains many inequality constraints and you suspect that most of these constraints will be satisfied as strict inequalities at the optimal solution.

The active-set technique implements an active-set algorithm in which only the inequality constraints that are satisfied as equalities, together with the original equality constraints, are considered. Once that set of constraints is identified, active-set algorithms typically converge faster than interior point algorithms. They converge faster because the size and the complexity of the original optimization problem can be reduced if only few constraints need to be considered.

For optimization problems that contain many local optima, the NLP solver can be run in multistart mode. If the multistart mode is specified, the solver samples the feasible region and generates a number of starting points. Then the local solvers can be called from each of those starting points to converge to different local optima. The local minimum with the smallest objective value is then reported back to the user as the optimal solution.

The NLP solver implements many powerful features that are obtained from recent research in the field of nonlinear optimization algorithms (Akrotirianakis and Rustem 2005; Armand, Gilbert, and Jan-Jégou 2002;

Erway, Gill, and Griffin 2007; Forsgren and Gill 1998; Vanderbei and Shanno 1999; Wächter and Biegler 2006; Yamashita 1998). The term primal-dual means that the algorithm iteratively generates better approximations of the decision variables $x$ (usually called primal variables) in addition to the dual variables (also referred to as Lagrange multipliers). At every iteration, the algorithm uses a modified Newton's method to solve a system of nonlinear equations. The modifications made to Newton's method are implicitly controlled by the current trust-region radius. The solution of that system provides the direction and the steps along which the next approximation of the local minimum is searched. The active-set algorithm ensures that the primal iterations are always within their bounds-that is, $l \leq x^{k} \leq u$, for every iteration $k$. However, the interior approach relaxes this condition by using slack variables, and intermediate iterations might be infeasible.

## Getting Started: NLP Solver

The NLP solver consists of two techniques that can solve a wide class of optimization problems efficiently and robustly. In this section two examples that introduce the two techniques of NLP are presented. The examples also introduce basic features of the modeling language of PROC OPTMODEL that is used to define the optimization problem.

The NLP solver can be invoked using the SOLVE statement,
SOLVE WITH NLP </ options > ;
where options specify the technique name, termination criteria, and how to display the results in the iteration log. For a detailed description of the options, see the section "NLP Solver Options" on page 298.

## A Simple Problem

Consider the following simple example of a nonlinear optimization problem:

```
minimize \(f(x)=\left(x_{1}+3 x_{2}+x_{3}\right)^{2}+4\left(x_{1}-x_{2}\right)^{2}\)
subject to \(x_{1}+x_{2}+x_{3}=1\)
\(6 x_{2}+4 x_{3}-x_{1}^{3}-3 \geq 0\)
\(x_{i} \geq 0, i=1,2,3\)
```

The problem consists of a quadratic objective function, a linear equality constraint, and a nonlinear inequality constraint. The goal is to find a local minimum, starting from the point $x^{0}=(0.1,0.7,0.2)$. You can use the following call to PROC OPTMODEL to find a local minimum:

```
proc optmodel;
 var x{1..3} >= 0;
 minimize f = (x[1] + 3*x[2] + x[3])**2 + 4*(x[1] - x[2])**2;
 con constr1: sum{i in 1..3}x[i] = 1;
 con constr2: 6*x[2] + 4*x[3] - x[1]**3 - 3 >= 0;
 /* starting point */
 x[1] = 0.1;
```

```
 x[2] = 0.7;
 x[3] = 0.2;
 solve with NLP;
 print x;
quit;
```

Because no options have been specified, the default solver (INTERIORPOINT) is used to solve the problem. The SAS output displays a detailed summary of the problem along with the status of the solver at termination, the total number of iterations required, and the value of the objective function at the local minimum. The summaries and the optimal solution are shown in Figure 7.1.

Figure 7.1 Problem Summary, Solution Summary, and the Optimal Solution


Figure 7.1 continued

$[1]$	$\mathbf{x}$
1	0.0000162497
2	0.0000039553
3	0.9999798200

The SAS log shown in Figure 7.2 displays a brief summary of the problem being solved, followed by the iterations that are generated by the solver.

Figure 7.2 Progress of the Algorithm as Shown in the Log

```
NOTE: Problem generation will use 2 threads.
NOTE: The problem has 3 variables (0 free, 0 fixed).
NOTE: The problem has 1 linear constraints (0 LE, 1 EQ, 0 GE, 0 range).
NOTE: The problem has 3 linear constraint coefficients.
NOTE: The problem has 1 nonlinear constraints (O LE, O EQ, 1 GE, 0 range).
NOTE: The OPTMODEL presolver removed O variables, 0 linear constraints, and 0
 nonlinear constraints.
NOTE: Using analytic derivatives for objective.
NOTE: Using analytic derivatives for nonlinear constraints.
NOTE: The NLP solver is called.
NOTE: The Interior Point algorithm is used.
 Iter Value
 0 7.20000000
 1 1.22115550 0.00042385 0.00500000
 2 1.00188693 0.00003290 0.00480263
 3 1.00275609 0.00002123 0.00005000
 4 1.00001702 0.0000000252254 0.00187172
 5 1.00001738 0.0000000250883 0.0000005000000
NOTE: Optimal.
NOTE: Objective = 1.00001738.
NOTE: Objective of the best feasible solution found = 1.00001587.
NOTE: The best feasible solution found is returned.
NOTE: To return the local optimal solution found, set option SOLTYPE to 0.
```


## A Larger Optimization Problem

Consider the following larger optimization problem:
$\operatorname{minimize} f(x)=\sum_{i=1}^{1000} x_{i} y_{i}+\frac{1}{2} \sum_{j=1}^{5} z_{j}^{2}$
subject to $\quad x_{k}+y_{k}+\sum_{j=1}^{5} z_{j}=5$, for $k=1,2, \ldots, 1000$
$\sum_{i=1}^{1000}\left(x_{i}+y_{i}\right)+\sum_{j=1}^{5} z_{j} \geq 6$
$-1 \leq x_{i} \leq 1, i=1,2, \ldots, 1000$
$-1 \leq y_{i} \leq 1, i=1,2, \ldots, 1000$
$0 \leq z_{i} \leq 2, i=1,2, \ldots, 5$

The problem consists of a quadratic objective function, 1,000 linear equality constraints, and a linear inequality constraint. There are also 2,005 variables. The goal is to find a local minimum by using the ACTIVESET technique. This can be accomplished by issuing the following call to PROC OPTMODEL:

```
proc optmodel;
 number n = 1000;
 number b = 5;
 var x{1..n} >= -1 <= 1 init 0.99;
 var y{1..n} >= -1 <= 1 init -0.99;
 var z{1..b} >= 0 <= 2 init 0.5;
 minimize f = sum {i in 1..n} x[i] * y[i] + sum {j in 1..b} 0.5 * z[j]^2;
 con consl{k in 1..n}: x[k] + y[k] + sum {j in 1..b} z[j] = b;
 con cons2: sum {i in 1..n} (x[i] + y[i]) + sum {j in 1..b} z[j] >= b + 1;
 solve with NLP / algorithm=activeset logfreq=10;
quit;
```

The SAS output displays a detailed summary of the problem along with the status of the solver at termination, the total number of iterations required, and the value of the objective function at the local minimum. The summaries are shown in Figure 7.3.

Figure 7.3 Problem Summary and Solution Summary


Figure 7.3 continued

Solution Summary	
Solver	NLP
Algorithm	Active Set
Objective Function	f
Solution Status	Best Feasible
Objective Value	-996.5000004
Iterations	7
Optimality Error	$6.5443656 \mathrm{E}-6$
Infeasibility	$5.4803721 \mathrm{E}-7$

The SAS $\log$ shown in Figure 7.4 displays a brief summary of the problem that is being solved, followed by the iterations that are generated by the solver.

Figure 7.4 Progress of the Algorithm as Shown in the Log

```
NOTE: Problem generation will use 2 threads.
NOTE: The problem has 2005 variables (0 free, O fixed).
NOTE: The problem has 1001 linear constraints (0 LE, 1000 EQ, 1 GE, O range).
NOTE: The problem has }9005\mathrm{ linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (O LE, O EQ, O GE, O range).
NOTE: The OPTMODEL presolver removed O variables, O linear constraints, and O
 nonlinear constraints
NOTE: Using analytic derivatives for objective.
NOTE: Using 2 threads for nonlinear evaluation.
NOTE: The NLP solver is called.
NOTE: The Active Set algorithm is used.
\begin{tabular}{rrrr}
& Objective & & Optimality \\
Iter & Value & Infeasibility & Error \\
0 & -979.47500000 & 3.50000000 & 0.50000000 \\
10 & -996.49999991 & 0.0000000052502 & 0.0000000081298
\end{tabular}
NOTE: Optimal.
NOTE: Objective = -996.5.
```


## An Optimization Problem with Many Local Minima

Consider the following optimization problem:

$$
\begin{aligned}
\operatorname{minimize} f(x)= & e^{\sin (50 x)}+\sin \left(60 e^{y}\right)+\sin (70 \sin (x))+\sin (\sin (80 y)) \\
& -\sin (10(x+y))+\left(x^{2}+y^{2}\right) / 4 \\
\text { subject to } & -1 \leq x \leq 1 \\
& -1 \leq y \leq 1
\end{aligned}
$$

The objective function is highly nonlinear and contains many local minima. The NLP solver provides you with the option of searching the feasible region and identifying local minima of better quality. This is achieved by writing the following SAS program:

```
proc optmodel;
 var x >= -1 <= 1;
 var y >= -1 <= 1;
 min f = exp(sin(50*x)) + sin(60*exp (y)) + sin(70*sin(x)) + sin(\operatorname{sin}(80*y))
 - sin(10*(x+y)) + (x^2+y^2)/4;
 solve with nlp / multistart seed=94245 msmaxstarts=30;
quit;
```

The MULTISTART option is specified, which directs the algorithm to start the local solver from many different starting points. The SAS $\log$ is shown in Figure 7.5.

Figure 7.5 Progress of the Algorithm as Shown in the Log

## NOTE: Problem generation will use 2 threads.

NOTE: The problem has 2 variables ( 0 free, 0 fixed).
NOTE: The problem has 0 linear constraints ( $0 \mathrm{LE}, 0 \mathrm{EQ}, 0 \mathrm{GE}, 0$ range).
NOTE: The problem has 0 nonlinear constraints ( $0 \mathrm{LE}, 0 \mathrm{EQ}, \mathrm{O} \mathrm{GE}, 0$ range).
NOTE: The OPTMODEL presolver removed 0 variables, 0 linear constraints, and 0 nonlinear constraints.
NOTE: Using analytic derivatives for objective.
NOTE: The NLP solver is called.
NOTE: The Interior Point algorithm is used.
NOTE: The MULTISTART option is enabled.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Multistart algorithm is using up to 2 threads.
NOTE: Random number seed 94245 is used.

	Best	Local	Optimality	Infeasi-	Local	Local
Start	Objective	Objective	Error	bility	Iters	Status
1	-1.6426974	-1.6426974	5E-7	0	3	Optimal
2	-1.6426974	-1.5650191	5E-7	0	4	Optimal
3	-1.6426974	-1.1044506	$5 \mathrm{E}-7$	0	4	Optimal
4	-2.8376555	-2.8376555	5E-7	0	5	Optimal
5	-2.8376555	-1.2485371	5E-7	0	6	Optimal
6	-2.8376555	-2.333689	5E-7	0	4	Optimal
7	-2.8376555	-0.480206	5E-7	0	5	Optimal
8	-2.8376555	-1.0585595	5E-7	0	3	Optimal
9	-2.8376555	-2.5753281	5E-7	0	4	Optimal
10	-2.8376555	-2.5267443	5E-7	0	4	Optimal
11	* -2.8376555	-1.3289057	5E-7	0	4	Optimal
12	-2.8376555	-2.119774	5E-7	0	3	Optimal
13	-2.9525781	-2.9525781	5E-7	0	4	Optimal
14	-2.9525781	-1.9508557	5E-7	0	4	Optimal
15	-2.9525781	-1.8175105	5E-7	0	4	Optimal
16	-2.9525781	-1.3557927	5E-7	0	4	Optimal
17	-2.9525781	-2.0402058	5E-7	0	4	Optimal
18	-2.9525781	-0.2693636	5E-7	0	4	Optimal
19	-2.9525781	-1.9746745	5E-7	0	4	Optimal
20	-2.9525781	-0.5021146	5E-7	0	3	Optimal
21	-2.9525781	-0.3721518	5E-7	0	6	Optimal
22	-2.9525781	-0.7000047	$5 \mathrm{E}-7$	0	4	Optimal
23	-2.9525781	-1.8461741	5E-7	0	6	Optimal
24	-2.9525781	-1.734773	$5 \mathrm{E}-7$	0	3	Optimal
25	-3.2081391	-3.2081391	5E-7	0	3	Optimal
26	-3.2081391	-2.0724927	5E-7	0	4	Optimal
27	r -3.2081391	-1.2485371	5E-7	0	5	Optimal

NOTE: The Multistart algorithm generated 320 sample points.
NOTE: 26 distinct local optima were found.
NOTE: The best objective value found by local solver $=-3.20813913$.

The SAS log presents additional information when the MULTISTART option is enabled. The first column counts the number of restarts of the local solver. The second column records the best local optimum that has been found so far, and the third through sixth columns record the local optimum to which the solver has converged. The final column records the status of the local solver at every iteration.

The SAS output is shown in Figure 7.6.
Figure 7.6 Problem Summary and Solution Summary


## Syntax: NLP Solver

The following PROC OPTMODEL statement is available for the NLP solver:

```
SOLVE WITH NLP </ options>;
```


## Functional Summary

Table 7.1 summarizes the options that can be used with the SOLVE WITH NLP statement.
Table 7.1 Options for the NLP Solver

Description	Option
Multistart Options   Specifies the maximum range of values that each variable can   take during the sampling process   Specifies the tolerance for local optima to be considered dis-   tinct	MSBNDRANGE=
Specifies the time limit in multistart mode	MSMAXTIME=
Specifies the number of starting points to be used by multistart	MSMAXSTARTS=
Specifies the seed used to generate random numbers	
Optimization Options	SEED=
Specifies the optimization technique	ALGORITHM=
Directs the local solver to start from multiple initial points   Output Options	MULTISTART
Specifies the frequency of printing solution progress (local   solvers)	LOGFREQ=
Specifies the amount of printing solution progress in multistart	MSLOGLEVEL=
mode	SOLTYPE=
Specifies the allowable types of output solution	FEASTOL=
Solver Options   Specifies the feasibility tolerance	HESSTYPE=
Specifies the type of Hessian used by the solver	MAXITER=
Specifies the maximum number of iterations	
Specifies the time limit for the optimization process	MAXTIME=
Specifies the upper limit on the objective	OBJLIMIT=
Specifies the convergence tolerance	
Specifies units of CPU time or real time	OPTTOL=

## NLP Solver Options

This section describes the options that are recognized by the NLP solver. These options can be specified after a forward slash (/) in the SOLVE statement, provided that the NLP solver is explicitly specified using a WITH clause.

## Multistart Options

## MSBNDRANGE= $M$

defines the range from which each variable can take values during the sampling process. This option affects only the sampling process that determines starting points for the local solver. It does not affect the bounds of the original nonlinear optimization problem. More specifically, if the $i$ th variable $x_{i}$ has lower and upper bounds $\ell_{i}$ and $u_{i}$ respectively (that is, $\ell_{i} \leq x_{i} \leq u_{i}$ ), then an initial point is generated by a sampling process as follows:

For each sample point $x$, the $i$ th coordinate $x_{i}$ is generated so that the following bounds hold where $x_{i}^{0}$ is the default starting point or a specified starting point:

$$
\begin{array}{ll}
l_{i} \leq x_{i} \leq u_{i} & \text { if } l_{i} \text { and } u_{i} \text { are both finite } \\
l_{i} \leq x_{i} \leq l_{i}+M & \text { if only } l_{i} \text { is finite } \\
u_{i}-M \leq x_{i} \leq u_{i} & \text { if only } u_{i} \text { is finite } \\
x_{i}^{0}-M / 2 \leq x_{i} \leq x_{i}^{0}+M / 2 & \text { otherwise }
\end{array}
$$

This option is effective only when the MULTISTART option is specified. The default value is 200 in a shared-memory computing environment and 1,000 in a distributed computing environment.

## MSDISTTOL= $\epsilon$

defines the tolerance by which two optimal points are considered distinct. Optimal points are considered distinct if the Euclidean distance between them is at least $\epsilon$. This option is effective only when the MULTISTART option is specified. The default is $\epsilon=1.0 \mathrm{E}-6$.

## MSMAXTIME= $T$

defines the maximum allowable time $T$ (in seconds) for the NLP solver to locate the best local optimum in multistart mode. The value of the TIMETYPE= option determines the type of units used. The time specified by the MSMAXTIME= option is checked only once after the completion of the local solver. Since the local solver might be called many times, the maximum time specified for multistart is recommended to be greater than the maximum time specified for the local solver (that is, MSMAXTIME $\geq$ MAXTIME). This option is effective only when the MULTISTART option is specified. If you do not specify this option, the procedure does not stop based on the amount of time elapsed.

## MSMAXSTARTS=N

defines the maximum number of starting points to be used for local optimization. That is, there will be no more than $N$ local optimization calls in the multistart algorithm. You can specify $N$ to be any nonnegative integer. When $N=0$, the algorithm uses the default value of this option. In a shared memory computing environment, the default value is 100 . In a distributed computing environment, the default value is a number proportional to the number of threads across all the grid nodes (usually more than 100). This option is effective only when the MULTISTART option is specified.

## SEED=N

specifies a positive integer to be used as the seed for generating random number sequences. You can use this option to replicate results from different runs.

## Optimization Options

## ALGORITHM=keyword

TECHNIQUE=keyword

## TECH=keyword

## SOLVER=keyword

specifies the optimization technique to be used to solve the problem. The following keywords are valid:

## INTERIORPOINT

uses a primal-dual interior point method. This technique is recommended for both small- and large-scale nonlinear optimization problems. This is the preferred solver if the problem includes a large number of inactive constraints.

## ACTIVESET

uses a primal-dual active-set method. This technique is recommended for both small- and largescale nonlinear optimization problems. This is the preferred solver if the problem includes only bound constraints or if the optimal active set can be quickly determined by the solver.

## CONCURRENT (experimental)

runs the INTERIORPOINT and ACTIVESET techniques in parallel, with one thread using the INTERIORPOINT technique and the other thread using the ACTIVESET technique. The solution is returned by the first method that terminates.

The default is INTERIORPOINT.

## MULTISTART

MS
enables multistart mode. In this mode, the local solver solves the problem from multiple starting points, possibly finding a better local minimum as a result. This option is disabled by default. For more information about multistart, see the section "Multistart" on page 307.

## Output Options

## LOGFREQ= $N$

## PRINTFREQ= $N$

specifies how often the iterations are displayed in the SAS log. $N$ should be an integer between zero and the largest four-byte, signed integer, which is $2^{31}-1$. If $N \geq 1$, the solver prints only those iterations that are a multiple of $N$. If $N=0$, no iteration is displayed in the log. The default value is 1.

## MSLOGLEVEL=number

## MSPRINTLEVEL=number

defines the amount of information displayed in the SAS log by the MULTISTART option. Table 7.2 describes the valid values of this option.

Table 7.2 Values for MSLOGLEVEL= Option

number	Description
0	Turns off all solver-related messages to SAS log
1	Displays multistart summary information when   the algorithm terminates
2	Displays multistart iteration log and summary   information when the algorithm terminates   3
Displays the same information as   MSLOGLEVEL=2 and might display additional   information	

This option is effective only when the MULTISTART option is specified. The default is 2.

## SOLTYPE=0 | 1

specifies whether the NLP solver should return only a solution that is locally optimal. If SOLTYPE=0, the solver returns a locally optimal solution, provided it locates one. If SOLTYPE=1, the solver returns the best feasible solution found, provided its objective value is better than that of the locally optimal solution found. The default is 1 .

## Solver Options

## FEASTOL= $\epsilon$

defines the feasible tolerance. The solver will exit if the constraint violation is less than FEASTOL and the scaled optimality conditions are less than OPTTOL. The default is $\epsilon=1 \mathrm{E}-6$.

## HESSTYPE=FULL | PRODUCT

specifies the type of Hessian to be used by the solver. The valid keywords for this option are FULL and PRODUCT. If HESSTYPE=FULL, the solver uses a full Hessian. If HESSTYPE=PRODUCT, the solver uses only Hessian-vector products, not the full Hessian. When the solver uses only Hessianvector products to find a search direction, it usually uses much less memory, especially when the problem is large and the Hessian is not sparse. On the other hand, when the full Hessian is used, the algorithm can create a better preconditioner to solve the problem in less CPU time. The default is FULL.

## MAXITER=N

specifies that the solver take at most $N$ major iterations to determine an optimum of the NLP problem. The value of $N$ is an integer between zero and the largest four-byte, signed integer, which is $2^{31}-1$. A major iteration in NLP consists of finding a descent direction and a step size along which the next approximation of the optimum resides. The default is 5,000 iterations.

## MAXTIME $=t$

specifies an upper limit of $t$ units of time for the optimization process, including problem generation time and solution time. The value of the TIMETYPE= option determines the type of units used. If you do not specify the MAXTIME= option, the solver does not stop based on the amount of time elapsed. The value of $t$ can be any positive number; the default value is the positive number that has the largest absolute value that can be represented in your operating environment.

## OBJLIMIT= $M$

specifies an upper limit on the magnitude of the objective value. For a minimization problem, the algorithm terminates when the objective value becomes less than $-M$; for a maximization problem, the algorithm stops when the objective value exceeds $M$. The algorithm stopping implies that either the problem is unbounded or the algorithm diverges. If optimization were allowed to continue, numerical difficulty might be encountered. The default is $M=1 \mathrm{E}+20$. The minimum acceptable value of $M$ is $1 \mathrm{E}+8$. If the specified value of $M$ is less than $1 \mathrm{E}+8$, the value is reset to the default value $1 \mathrm{E}+20$.

## OPTTOL= $\epsilon$

## RELOPTTOL= $\epsilon$

defines the measure by which you can decide whether the current iterate is an acceptable approximation of a local minimum. The value of this option is a positive real number. The NLP solver determines that the current iterate is a local minimum when the norm of the scaled vector of the optimality conditions is less than $\epsilon$ and the true constraint violation is less than FEASTOL. The default is $\epsilon=1 \mathrm{E}-6$.

## TIMETYPE=number $\mid$ string

specifies the units of time used by the MAXTIME= option and reported by the PRESOLVE_TIME and SOLUTION_TIME terms in the _OROPTMODEL_ macro variable. Table 7.3 describes the valid values of the TIMETYPE= option.

Table 7.3 Values for TIMETYPE= Option

number	string	Description
0	CPU	Specifies units of CPU time
1	REAL	Specifies units of real time

The Optimization Statistics table, an output of PROC OPTMODEL if you specify the PRINTLEVEL=2 option in the PROC OPTMODEL statement, also includes the same time units for "Presolver Time" and "Solver Time." The other times (such as "Problem Generation Time") in the Optimization Statistics table are always CPU times.

The default value of the TIMETYPE= option depends on the values of the NTHREADS= and NODES $=$ options in the PERFORMANCE statement of the OPTMODEL procedure. See the section "PERFORMANCE Statement" on page 17 for more information about the NTHREADS= option. See Chapter 3, "Shared Concepts and Topics" (SAS High-Performance Analytics Server: User's Guide), for more information about the NODES= option. (The NODES $=$ option requires SAS ${ }^{\circledR}$ HighPerformance Analytics software.)

If you specify a value greater than 1 for either the NTHREADS= or NODES= option, the default value of the TIMETYPE= option is REAL. If you specify a value of 1 for both the NTHREADS $=$ and NODES $=$ options, the default value of the TIMETYPE $=$ option is CPU.

## Details: NLP Solver

This section presents a brief discussion about the algorithmic details of the NLP solver. First, the notation is defined. Next, an introduction to the fundamental ideas in constrained optimization is presented; the main point of the second section is to present the necessary and sufficient optimality conditions, which play a central role in all optimization algorithms. The section concludes with a general overview of primal-dual interior point and active-set algorithms for nonlinear optimization. A detailed treatment of the preceding topics can be found in Nocedal and Wright (1999), Wright (1997), and Forsgren, Gill, and Wright (2002).

## Basic Definitions and Notation

The gradient of a function $f: \mathbb{R}^{n} \mapsto \mathbb{R}$ is the vector of all the first partial derivatives of $f$ and is denoted by

$$
\nabla f(x)=\left(\frac{\partial f}{\partial x_{1}}, \frac{\partial f}{\partial x_{2}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)^{\mathrm{T}}
$$

where the superscript T denotes the transpose of a vector.
The Hessian matrix of $f$, denoted by $\nabla^{2} f(x)$, or simply by $H(x)$, is an $n \times n$ symmetric matrix whose $(i, j)$ element is the second partial derivative of $f(x)$ with respect to $x_{i}$ and $x_{j}$. That is, $H_{i, j}(x)=\frac{\partial^{2} f(x)}{\partial x_{i} \partial x_{j}}$.

Consider the vector function, $c: \mathbb{R}^{n} \mapsto \mathbb{R}^{p+q}$, whose first $p$ elements are the equality constraint functions $h_{i}(x), i=1,2, \ldots, p$, and whose last $q$ elements are the inequality constraint functions $g_{i}(x), i=$ $1,2, \ldots, q$. That is,

$$
c(x)=(h(x): g(x))^{\mathrm{T}}=\left(h_{1}(x), \ldots, h_{p}(x): g_{1}(x), \ldots, g_{q}(x)\right)^{\mathrm{T}}
$$

The $(p+q) \times n$ matrix whose $i$ th row is the gradient of the $i$ th element of $c(x)$ is called the Jacobian matrix of $c(x)$ (or simply the Jacobian of the NLP problem) and is denoted by $J(x)$. You can also use $J_{h}(x)$ to denote the $p \times n$ Jacobian matrix of the equality constraints and use $J_{g}(x)$ to denote the $q \times n$ Jacobian matrix of the inequality constraints. It is easy to see that

## Constrained Optimization

A function that plays a pivotal role in establishing conditions that characterize a local minimum of an NLP problem is the Lagrangian function $\mathcal{L}(x, y, z)$, which is defined as

$$
\mathcal{L}(x, y, z)=f(x)-\sum_{i \in \mathcal{E}} y_{i} h_{i}(x)-\sum_{i \in \mathcal{I}} z_{i} g_{i}(x)
$$

Note that the Lagrangian function can be seen as a linear combination of the objective and constraint functions. The coefficients of the constraints, $y_{i}, i \in \mathcal{E}$, and $z_{i}, i \in \mathcal{I}$, are called the Lagrange multipliers or dual variables. At a feasible point $\hat{x}$, an inequality constraint is called active if it is satisfied as an equality-that is, $g_{i}(\hat{x})=0$. The set of active constraints at a feasible point $\hat{x}$ is then defined as the union of the index set of the equality constraints, $\mathcal{E}$, and the indices of those inequality constraints that are active at $\hat{x}$; that is,

$$
\mathcal{A}(\hat{x})=\mathcal{E} \cup\left\{i \in \mathcal{I}: g_{i}(\hat{x})=0\right\}
$$

An important condition that is assumed to hold in the majority of optimization algorithms is the so-called linear independence constraint qualification (LICQ). The LICQ states that at any feasible point $\hat{x}$, the gradients of all the active constraints are linearly independent. The main purpose of the LICQ is to ensure that the set of constraints is well-defined in a way that there are no redundant constraints or in a way that there are no constraints defined such that their gradients are always equal to zero.

## The First-Order Necessary Optimality Conditions

If $x^{*}$ is a local minimum of the NLP problem and the LICQ holds at $x^{*}$, then there are vectors of Lagrange multipliers $y^{*}$ and $z^{*}$, with components $y_{i}^{*}, i \in \mathcal{E}$, and $z_{i}^{*}, i \in \mathcal{I}$, respectively, such that the following conditions are satisfied:

$$
\begin{aligned}
\nabla_{x} \mathcal{L}\left(x^{*}, y^{*}, z^{*}\right) & =0 \\
h_{i}\left(x^{*}\right) & =0, \quad i \in \mathcal{E} \\
g_{i}\left(x^{*}\right) & \geq 0, \quad i \in \mathcal{I} \\
z_{i}^{*} & \geq 0, \quad i \in \mathcal{I} \\
z_{i}^{*} g_{i}\left(x^{*}\right) & =0, \quad i \in \mathcal{I}
\end{aligned}
$$

where $\nabla_{x} \mathcal{L}\left(x^{*}, y^{*}, z^{*}\right)$ is the gradient of the Lagrangian function with respect to $x$, defined as

$$
\nabla_{x} \mathcal{L}\left(x^{*}, y^{*}, z^{*}\right)=\nabla f(x)-\sum_{i \in \mathcal{E}} y_{i} \nabla h_{i}(x)-\sum_{i \in \mathcal{I}} z_{i} \nabla g_{i}(x)
$$

The preceding conditions are often called the Karush-Kuhn-Tucker (KKT) conditions. The last group of equations ( $\left.z_{i} g_{i}(x)=0, i \in I\right)$ is called the complementarity condition. Its main aim is to try to force the Lagrange multipliers, $z_{i}^{*}$, of the inactive inequalities (that is, those inequalities with $g_{i}\left(x^{*}\right)>0$ ) to zero.

The KKT conditions describe the way the first derivatives of the objective and constraints are related at a local minimum $x^{*}$. However, they are not enough to fully characterize a local minimum. The second-order optimality conditions attempt to fulfill this aim by examining the curvature of the Hessian matrix of the Lagrangian function at a point that satisfies the KKT conditions.

## The Second-Order Necessary Optimality Condition

Let $x^{*}$ be a local minimum of the NLP problem, and let $y^{*}$ and $z^{*}$ be the corresponding Lagrange multipliers that satisfy the first-order optimality conditions. Then $d^{\mathrm{T}} \nabla_{x}^{2} \mathcal{L}\left(x^{*}, y^{*}, z^{*}\right) d \geq 0$ for all nonzero vectors $d$ that satisfy the following conditions:

1. $\nabla h_{i}^{\mathrm{T}}\left(x^{*}\right) d=0, \forall i \in \mathcal{E}$
2. $\nabla g_{i}^{\mathrm{T}}\left(x^{*}\right) d=0, \forall i \in \mathcal{A}\left(x^{*}\right) \cap \mathcal{I}$, such that $z_{i}^{*}>0$
3. $\nabla g_{i}^{\mathrm{T}}\left(x^{*}\right) d \geq 0, \forall i \in \mathcal{A}\left(x^{*}\right) \cap \mathcal{I}$, such that $z_{i}^{*}=0$

The second-order necessary optimality condition states that, at a local minimum, the curvature of the Lagrangian function along the directions that satisfy the preceding conditions must be nonnegative.

## Interior Point Algorithm

Primal-dual interior point methods can be classified into two categories: feasible and infeasible. The first category requires that the starting point and all subsequent iterations of the algorithm strictly satisfy all the inequality constraints. The second category relaxes those requirements and allows the iterations to violate some or all of the inequality constraints during the course of the minimization procedure. The NLP solver implements an infeasible algorithm; this section concentrates on that type of algorithm.
To make the notation less cluttered and the fundamentals of interior point methods easier to understand, consider without loss of generality the following simpler NLP problem:

```
minimize }f(x
subject to }\mp@subsup{g}{i}{}(x)\geq0,i\in\mathcal{I}={1,2,\ldots,q
```

Note that the equality and bound constraints have been omitted from the preceding problem. Initially, slack variables are added to the inequality constraints, giving rise to the problem

$$
\begin{array}{ll}
\operatorname{minimize} & f(x) \\
\text { subject to } & g_{i}(x)-s_{i}=0, i \in \mathcal{I} \\
& s \geq 0
\end{array}
$$

where $s=\left(s_{1}, \ldots, s_{q}\right)^{\mathrm{T}}$ is the vector of slack variables, which are required to be nonnegative. Next, all the nonnegativity constraints on the slack variables are eliminated by being incorporated into the objective function, by means of a logarithmic function. This gives rise to the equality-constrained NLP problem

$$
\begin{array}{ll}
\operatorname{minimize} & B(x, s)=f(x)-\mu \sum_{i \in \mathcal{I}} \ln \left(s_{i}\right) \\
\text { subject to } & g_{i}(x)-s_{i}=0, i \in \mathcal{I}
\end{array}
$$

where $\mu$ is a positive parameter. The nonnegativity constraints on the slack variables are implicitly enforced by the logarithmic functions, since the logarithmic function prohibits $s$ from taking zero or negative values.

Next, the equality constraints can be absorbed by using a quadratic penalty function to obtain the following:

$$
\operatorname{minimize} \mathcal{M}(x, s)=f(x)+\frac{1}{2 \mu}\|g(x)-s\|_{2}^{2}-\mu \sum_{i \in \mathcal{I}} \ln \left(s_{i}\right)
$$

The preceding unconstrained problem is often called the penalty-barrier subproblem. Depending on the size of the parameter $\mu$, a local minimum of the barrier problem provides an approximation to the local minimum of the original NLP problem. The smaller the size of $\mu$, the better the approximation becomes. Infeasible primal-dual interior point algorithms repeatedly solve the penalty-barrier problem for different values of $\mu$ that progressively go to zero, in order to get as close as possible to a local minimum of the original NLP problem.

An unconstrained minimizer of the penalty-barrier problem must satisfy the equations

$$
\begin{array}{cc}
\nabla f(x)-J(x)^{\mathrm{T}} z & =0 \\
z-\mu S^{-1} e & =0
\end{array}
$$

where $z=-(g(x)-s) / \mu, J(x)$ is the Jacobian matrix of the vector function $g(x), S$ is the diagonal matrix whose elements are the elements of the vector $s$ (that is, $S=\operatorname{diag}\left\{s_{1}, \ldots, s_{q}\right\}$ ), and $e$ is a vector of all
ones. Multiplying the second equation by $S$ and adding the definition of $z$ as a third equation produces the following equivalent nonlinear system:

$$
F^{\mu}(x, s, z)=\left(\begin{array}{c}
\nabla f(x)-J(x)^{\mathrm{T}} z \\
S z-e \\
g(x)-s+\mu z
\end{array}\right)=0
$$

Note that if $\mu=0$, the preceding conditions represent the optimality conditions of the original optimization problem, after adding slack variables. One of the main aims of the algorithm is to gradually reduce the value of $\mu$ to zero, so that it converges to a local optimum of the original NLP problem. The rate by which $\mu$ approaches zero affects the overall efficiency of the algorithm. Algorithms that treat $z$ as an additional variable are considered primal-dual, while those that enforce the definition of $z=-(g(x)-s) / \mu$ at each iteration are consider purely primal approaches.

At iteration $k$, the infeasible primal-dual interior point algorithm approximately solves the preceding system by using Newton's method. The Newton system is

$$
\left[\begin{array}{ccc}
H_{\mathcal{L}}\left(x^{k}, z^{k}\right) & 0 & -J\left(x^{k}\right)^{\mathrm{T}} \\
0 & Z^{k} & S^{k} \\
J\left(x^{k}\right) & -I & \mu I
\end{array}\right]\left[\begin{array}{c}
\Delta x^{k} \\
\Delta s^{k} \\
\Delta z^{k}
\end{array}\right]=-\left[\begin{array}{c}
\nabla_{x} f\left(x^{k}\right)-J\left(x^{k}\right)^{\mathrm{T}} z \\
-\mu e+S^{k} z^{k} \\
g\left(x^{k}\right)-s^{k}+\mu z^{k}
\end{array}\right]
$$

where $H_{\mathcal{L}}$ is the Hessian matrix of the Lagrangian function $\mathcal{L}(x, z)=f(x)-z^{\mathrm{T}} g(x)$ of the original NLP problem; that is,

$$
H_{\mathcal{L}}(x, z)=\nabla^{2} f(x)-\sum_{i \in \mathcal{I}} z_{i} \nabla^{2} g_{i}(x)
$$

The solution ( $\Delta x^{k}, \Delta s^{k}, \Delta z^{k}$ ) of the Newton system provides a direction to move from the current iteration $\left(x^{k}, s^{k}, z^{k}\right)$ to the next,

$$
\left(x^{k+1}, s^{k+1}, z^{k+1}\right)=\left(x^{k}, s^{k}, z^{k}\right)+\alpha\left(\Delta x^{k}, \Delta s^{k}, \Delta z^{k}\right)
$$

where $\alpha$ is the step length along the Newton direction. The step length is determined through a line-search procedure that ensures sufficient decrease of a merit function based on the augmented Lagrangian function of the barrier problem. The role of the merit function and the line-search procedure is to ensure that the objective and the infeasibility reduce sufficiently at every iteration and that the iterations approach a local minimum of the original NLP problem.

## Active-Set Method

Active-set methods differ from interior point methods in that no barrier term is used to ensure that the algorithm remains interior with respect to the inequality constraints. Instead, attempts are made to learn the true active set. For simplicity, use the same initial slack formulation used by the interior point method description,

```
minimize f(x)
subject to }\mp@subsup{g}{i}{}(x)-\mp@subsup{s}{i}{}=0,i\in\mathcal{I
s\geq0
```

where $s=\left(s_{1}, \ldots, s_{q}\right)^{\mathrm{T}}$ is the vector of slack variables, which are required to be nonnegative. Begin by absorbing the equality constraints as before into a penalty function, but keep the slack bound constraints explicitly:

$$
\begin{array}{ll}
\operatorname{minimize} & \mathcal{M}(x, s)=f(x)+\frac{1}{2 \mu}\|g(x)-s\|_{2}^{2} \\
\text { subject to } & s \geq 0
\end{array}
$$

where $\mu$ is a positive parameter. Given a solution pair $(x(\mu), s(\mu))$ for the preceding problem, you can define the active-set projection matrix $P$ as follows:

$$
P_{i j}= \begin{cases}1 & \text { if } i=j \text { and } s_{i}(\mu)=0 \\ 0 & \text { otherwise } .\end{cases}
$$

Then $(x(\mu), s(\mu))$ is also a solution of the equality constraint subproblem:

$$
\begin{array}{ll}
\operatorname{minimize} & \mathcal{M}(x, s)=f(x)+\frac{1}{2 \mu}\|g(x)-s\|_{2}^{2} \\
\text { subject to } & P s=0 .
\end{array}
$$

The minimizer of the preceding subproblem must be a stationary point of the Lagrangian function

$$
\mathcal{L}^{\mu}(x, s, z)=f(x)+\frac{1}{2 \mu}\|g(x)-s\|_{2}^{2}-z^{T} P s
$$

which gives the optimality equations

$$
\begin{aligned}
& \nabla_{x} \mathcal{L}^{\mu}(x, s, z)=\nabla f(x)-J(x)^{T} y=0 \\
& \nabla_{s} \mathcal{L}^{\mu}(x, s, z)=y-P^{T} z=0 \\
& =P s=0
\end{aligned}
$$

where $y=-(g(x)-s) / \mu$. Using the second equation, you can simplify the preceding equations to get the following optimality conditions for the bound-constrained penalty subproblem:

$$
\begin{array}{ll}
\nabla f(x)-J(x)^{T} P^{T} z & =0 \\
P(g(x)-s)+\mu z & =0 \\
P s & =0
\end{array}
$$

Using the third equation directly, you can reduce the system further to

$$
\begin{array}{ll}
\nabla f(x)-J(x)^{T} P^{T} z & =0 \\
P g(x)+\mu z & =0
\end{array}
$$

At iteration $k$, the primal-dual active-set algorithm approximately solves the preceding system by using Newton's method. The Newton system is

$$
\left[\begin{array}{cc}
H_{\mathcal{L}}\left(x^{k}, z^{k}\right) & -J_{\mathcal{A}}^{\mathrm{T}} \\
J_{\mathcal{A}} & -\mu I
\end{array}\right]\left[\begin{array}{c}
\Delta x^{k} \\
\Delta z^{k}
\end{array}\right]=-\left[\begin{array}{c}
\nabla_{x} f\left(x^{k}\right)-J_{\mathcal{A}}^{\mathrm{T}} z \\
P g\left(x^{k}\right)+\mu z^{k}
\end{array}\right]
$$

where $J_{\mathcal{A}}=P J\left(x^{k}\right)$ and $H_{\mathcal{L}}$ denotes the Hessian of the Lagrangian function $f(x)-z^{\mathrm{T}} P g(x)$. The solution ( $\Delta x^{k}, \Delta z^{k}$ ) of the Newton system provides a direction to move from the current iteration $\left(x^{k}, s^{k}, z^{k}\right)$ to the next,

$$
\left(x^{k+1}, z^{k+1}\right)=\left(x^{k}, z^{k}\right)+\alpha\left(\Delta x^{k}, \Delta z^{k}\right)
$$

where $\alpha$ is the step length along the Newton direction. The corresponding slack variable update $s^{k+1}$ is defined as the solution to the following subproblem whose solution can be computed analytically:

$$
\begin{array}{ll}
\operatorname{minimize} & \mathcal{M}\left(x^{k+1}, s\right)=f(x)+\frac{1}{2 \mu}\left\|g\left(x^{k+1}\right)-s\right\|_{2}^{2} \\
\text { subject to } & s \geq 0
\end{array}
$$

The step length $\alpha$ is then determined in a similar manner to the preceding interior point approach. At each iteration, the definition of the active-set projection matrix $P$ is updated with respect to the new value of the constraint function $g\left(x^{k+1}\right)$. For large-scale NLP, the computational bottleneck typically arises in seeking to solve the Newton system. Thus active-set methods can achieve substantial computational savings when the size of $J_{\mathcal{A}}$ is much smaller than $J(x)$; however, convergence can be slow if the active-set estimate changes combinatorially. Further, the active-set algorithm is often the superior algorithm when only bound constraints are present. In practice, both the interior point and active-set approach incorporate more sophisticated merit functions than those described in the preceding sections; however, their description is beyond the scope of this document. See Gill and Robinson (2010) for further reading.

## Multistart

Frequently, nonlinear optimization problems contain many local minima because the objective or the constraints are nonconvex functions. The quality of different local minima is measured by the objective value achieved at those points. For example, if $x_{1}^{*}$ and $x_{2}^{*}$ are two distinct local minima and $f\left(x_{1}^{*}\right) \leq f\left(x_{2}^{*}\right)$, then $x_{1}^{*}$ is said to be of better quality than $x_{2}^{*}$. The NLP solver provides a mechanism that can locate local minima of better quality by starting the local solver multiple times from different initial points. By doing so, the local solver can converge to different local minima. The local minimum with the lowest objective value is then reported back to the user.

The multistart feature consists of two phases. In the first phase, the entire feasible region is explored by generating sample points from a uniform distribution. The aim of this phase is to place at least one sample point in the region of attraction of every local minimum. Here the region of attraction of a local minimum is defined as the set of feasible points that, when used as starting points, enable a local solver to converge to that local minimum.

During the second phase, a subset of the sample points generated in the first phase is chosen by applying a clustering technique. The goal of the clustering technique is to group the initial sample points around the local minima and allow only a single local optimization to start from each cluster or group. The clustering technique aims to reduce computation time by sparing the work of unnecessarily starting multiple local optimizations within the region of attraction of the same local minimum.

The number of starting points is critical to the time spent by the solver to find a good local minimum. You can specify the maximum number of starting points by using the MSMAXSTARTS $=$ option. If this option is not specified, the solver determines the minimum number of starting points that can provide reasonable evidence that a good local minimum will be found.

Many optimization problems contain variables with infinite upper or lower bounds. These variables can cause the sampling procedure to generate points that are not useful for locating different local minima. The efficiency of the sampling procedure can be increased by reducing the range of these variables by using the MSBNDRANGE $=$ option. This option forces the sampling procedure to generate points that are in a smaller interval, thereby increasing the efficiency of the solver to converge to a local optimum.

The multistart feature is compatible with the PERFORMANCE statement in the OPTMODEL procedure. See Chapter 3, "Shared Concepts and Topics," for more information about the PERFORMANCE statement. The multistart feature currently supports only the DETERMINISTIC value for the PARALLELMODE= option in the PERFORMANCE statement. To ensure reproducible results, specify a nonzero value for the SEED = option.

## Accessing the Starting Point That Leads to the Best Local Optimum

The starting point that leads to the best local optimum can be accessed by using the .msinit suffix in PROC OPTMODEL. In some cases, the knowledge of that starting point might be useful. For example, you can run the local solver again but this time providing as initial point the one that is stored in .msinit. This way the multistart explores a different part of the feasible region and might discover a local optimum of better quality than those found in previous runs. The use of the suffix .msinit is demonstrated in Example 7.5. For more information about suffixes in PROC OPTMODEL, see "Suffixes" on page 121 in Chapter 4, "The OPTMODEL Procedure."

## Iteration Log for the Local Solver

The iteration log for the local solver provides detailed information about progress towards a locally optimal solution. This log appears when multistart mode is disabled.

The following information is displayed in the log:

Iter indicates the iteration number.
Objective Value indicates the objective function value.
Infeasibility indicates the maximum value out of all constraint violations.
Optimality Error
indicates the relative optimality error (see the section "Solver Termination Criterion" on page 309).

## Iteration Log for Multistart

When the MULTISTART option is enabled, the iteration log differs from that of the local solver. More specifically, when a value of 2 is specified for the MSLOGLEVEL= option, the following information is displayed in the log:

Start indicates the index number of each local optimization run. The following indicators can appear beside this number to provide additional information about the run:

* indicates the local optimization started from a user-supplied point.
r indicates the local optimization converged to a previously found optimal solution.
R indicates the local optimization started from a user-supplied point and converged to a previously found optimal solution.

Best Objective indicates the value of the objective function at the best local solution found so far.

Local Objective

Infeasibility
Optimality Error
Local Iters
Local Status
indicates the value of the objective function obtained at the solution returned by the local solver.
indicates the infeasibility error at the solution returned by the local solver.
indicates the optimality error at the solution returned by the local solver.
indicates the number of iterations taken by the local solver.
indicates the solution status of the local solver. Several different values can appear in this column:

OPTIMAL indicates that the local solver found a locally optimal solution.
BESTFEASIBLE indicates that the local solver returned the best feasible point found. See the SOLTYPE= option for more information.
INFEASIBLE indicates that the local solver converged to a point that might be infeasible.

LOCALINFEAS indicates that the local solver converged to a point of minimal local infeasibility.

UNBOUNDED indicates that the local solver determined that the problem is unbounded.

ITERLIMIT indicates that the local solver reached the maximum number of iterations and could not find a locally optimal solution.
TIMELIMIT indicates that the local solver reached the maximum allowable time and could not find a locally optimal solution.

ABORTED indicates that the local solver terminated due to a user interrupt.
FUNEVALERR indicates that the local solver encountered a function evaluation error.
indicates that the local solver encountered a numerical error other than a function evaluation error.
indicates that the local solver encountered a solver system error.
indicates that the local solver ran out of memory.
indicates a general failure of the local solver in the absence of any other error.

## Solver Termination Criterion

Because badly scaled problems can lead to slow convergence, the NLP solver dynamically rescales both the objective and constraint functions adaptively as needed. The optimality conditions are always stated with respect to the rescaled NLP. However, because typically you are most interested in the constraint violation of the original NLP, and not the internal scaled variant, you always work with respect to the true constraint violation. Thus, the solver terminates when both of the following conditions are true:

- The norm of the optimality conditions of the scaled NLP is less than the user-defined or default tolerance (OPTTOL= option).
- The norm of the constraint violation of the original NLP is less than the user-defined feasibility tolerance (FEASTOL= option).

More specifically, if

$$
F(x, s, z)=\left(\nabla_{x} f(x)-J(x)^{\mathrm{T}} z, \quad S z, \quad g(x)-s\right)^{\mathrm{T}}
$$

is the vector of the optimality conditions of the rescaled NLP problem, then the solver terminates when
$\|F(x, s, z)\| \leq \operatorname{OPTTOL}(1+\|(x, s)\|)$
and the maximum constraint violation is less than FEASTOL.

## Solver Termination Messages

Upon termination, the solver produces the following messages in the log:

## Optimal

The solver has successfully found a local solution to the optimization problem.

## Conditionally optimal solution found

The solver is sufficiently close to a local solution, but it has difficulty in completely satisfying the user-defined optimality tolerance. This can happen when the line search finds very small steps that result in very slight progress of the algorithm. It can also happen when the prespecified tolerance is too strict for the optimization problem at hand.

## Maximum number of iterations reached

The solver could not find a local optimum in the prespecified number of iterations.

## Maximum specified time reached

The solver could not find a local optimum in the prespecified maximum real time for the optimization process.

## Did not converge

The solver could not satisfy the optimality conditions and failed to converge.

## Problem might be unbounded

The objective function takes arbitrarily large values, and the optimality conditions fail to be satisfied. This can happen when the problem is unconstrained or when the problem is constrained and the feasible region is not bounded.

## Problem might be infeasible

The solver cannot identify a point in the feasible region.

## Problem is infeasible

The solver detects that the problem is infeasible.

## Out of memory

The problem is so large that the solver requires more memory to solve the problem.

## Problem solved by the OPTMODEL presolver

The problem was solved by the OPTMODEL presolver.

## Macro Variable _OROPTMODEL

The OPTMODEL procedure always creates and initializes a SAS macro variable called _OROPTMODEL_, which contains a character string. After each PROC OPTMODEL run, you can examine this macro variable by specifying \%put \&_OROPTMODEL_; and check the execution of the most recently invoked solver from the value of the macro variable. After the NLP solver is called, the various terms of the variable are interpreted as follows:

## STATUS

indicates the solver status at termination. It can take one of the following values:
OK The solver terminated normally.
SYNTAX_ERROR The use of syntax is incorrect.
DATA_ERROR The input data are inconsistent.
OUT_OF_MEMORY Insufficient memory was allocated to the procedure.
IO_ERROR A problem in reading or writing of data has occurred.
SEMANTIC_ERROR An evaluation error, such as an invalid operand type, has occurred.
ERROR The status cannot be classified into any of the preceding categories.

## ALGORITHM

indicates the algorithm that produced the solution data in the macro variable. This term only appears when STATUS=OK. It can take one of the following values:

IP The interior point algorithm produced the solution data.
AS
The active-set algorithm produced the solution data.
When running algorithms concurrently (ALGORITHM=CONCURRENT), this term indicates which algorithm was the first to terminate.

## SOLUTION_STATUS

indicates the solution status at termination. It can take one of the following values:

OPTIMAL
CONDITIONAL_OPTIMAL
BEST_FEASIBLE

The solution is optimal.
The optimality of the solution cannot be proven.
The solution returned is the best feasible solution. This solution status indicates that the algorithm has converged to a local optimum but a feasible (not locally optimal) solution with a better objective value has been found and hence is returned.

INFEASIBLE
UNBOUNDED
INFEASIBLE_OR_UNBOUNDED
BAD_PROBLEM_TYPE
ITERATION_LIMIT_REACHED

TIME_LIMIT_REACHED
FAILED

The problem is infeasible.
The problem might be unbounded.
The problem is infeasible or unbounded.
The problem type is not supported by the solver.
The maximum allowable number of iterations has been reached.

The solver reached its execution time limit.
The solver failed to converge, possibly due to numerical issues.

## OBJECTIVE

indicates the objective value that is obtained by the solver at termination.

## NUMSTARTS

indicates the number of starting points. This term appears only in multistart mode.

## SAMPLE_POINTS

indicates the number of points that are evaluated in the sampling phase. This term appears only in multistart mode.

## DISTINCT_OPTIMA

indicates the number of distinct local optima that the solver finds. This term appears only in multistart mode.

## SEED

indicates the seed value that is used to initialize the solver. This term appears only in multistart mode.

## INFEASIBILITY

indicates the level of infeasibility of the constraints at the solution.

## OPTIMALITY_ERROR

indicates the norm of the optimality conditions at the solution. See the section "Solver Termination Criterion" on page 309 for details.

## ITERATIONS

indicates the number of iterations required to solve the problem.

## PRESOLVE_TIME

indicates the real time taken for preprocessing (seconds).

## SOLUTION_TIME

indicates the real time taken by the solver to perform iterations for solving the problem (seconds).
Note: The time that is reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real time. The type is determined by the TIMETYPE= option.

## Examples: NLP Solver

## Example 7.1: Solving Highly Nonlinear Optimization Problems

This example demonstrates the use of the NLP solver to solve the following highly nonlinear optimization problem, which appears in Hock and Schittkowski (1981):

```
minimize \(\quad f(x)=0.4\left(x_{1} / x_{7}\right)^{0.67}+0.4\left(x_{2} / x_{8}\right)^{0.67}+10-x_{1}-x_{2}\)
subject to \(1-0.0588 x_{5} x_{7}-0.1 x_{1} \geq 0\)
 \(1-0.0588 x_{6} x_{8}-0.1 x_{1}-0.1 x_{2} \geq 0\)
 \(1-4 x_{3} / x_{5}-2 /\left(x_{3}^{0.71} x_{5}\right)-0.0588 x_{7} / x_{3}^{1.3} \geq 0\)
 \(1-4 x_{4} / x_{6}-2 /\left(x_{4}^{0.71} x_{6}\right)-0.0588 x_{8} / x_{4}^{1.3} \geq 0\)
 \(0.1 \leq f(x) \leq 4.2\)
 \(0.1 \leq x_{i} \leq 10, i=1,2, \ldots, 8\)
```

The initial point used is $x^{0}=(6,3,0.4,0.2,6,6,1,0.5)$. You can call the NLP solver within PROC OPTMODEL to solve the problem by writing the following SAS statements:

```
proc optmodel;
 var x{1..8} >= 0.1 <= 10;
 min f = 0.4*(x[1]/x[7])^0.67 + 0.4*(x[2]/x[8])^0.67 + 10 - x[1] - x[2];
 con c1: 1 - 0.0588*x[5]*x[7] - 0.1*x[1] >= 0;
 con c2: 1 - 0.0588*x[6]*x[8] - 0.1*x[1] - 0.1*x[2] >= 0;
 con c3: 1 - 4*x[3]/x[5] - 2/(x[3]^0.71*x[5]) - 0.0588*x[7]/x[3]^1.3 >= 0;
 con c4: 1 - 4*x[4]/x[6] - 2/(x[4]^0.71*x[6]) - 0.0588*x[8]/x[4]^1.3 >= 0;
 con c5: 0.1 <= f <= 4.2;
 /* starting point */
 x[1] = 6;
 x[2] = 3;
 x[3] = 0.4;
 x[4] = 0.2;
 x[5] = 6;
 x[6] = 6;
 x[7] = 1;
 x[8] = 0.5;
 solve with nlp / algorithm=activeset;
 print x;
quit;
```

The summaries and the solution are shown in Output 7.1.1.

Output 7.1.1 Summaries and the Optimal Solution


## Example 7.2: Solving Unconstrained and Bound-Constrained Optimization Problems

Although the NLP techniques are suited for solving generally constrained nonlinear optimization problems, these techniques can also be used to solve unconstrained and bound-constrained problems efficiently. This example considers the relatively large nonlinear optimization problems

$$
\operatorname{minimize} f(x)=\sum_{i=1}^{n-1}\left(-4 x_{i}+3.0\right)+\sum_{i=1}^{n-1}\left(x_{i}^{2}+x_{n}^{2}\right)^{2}
$$

and

$$
\begin{array}{ll}
\operatorname{minimize} & f(x)=\sum_{i=1}^{n-1} \cos \left(-.5 x_{i+1}-x_{i}^{2}\right) \\
\text { subject to } & 1 \leq x_{i} \leq 2, i=1, \ldots, n
\end{array}
$$

with $n=100,000$. These problems are unconstrained and bound-constrained, respectively.
For large-scale problems, the default memory limit might be too small, which can lead to out-of-memory status. To prevent this occurrence, it is recommended that you set a larger memory size. See the section "Memory Limit" on page 20 for more information.

To solve the first problem, you can write the following statements:

```
proc optmodel;
 number N=100000;
 var x{1..N} init 1.0;
 minimize f = sum {i in 1..N - 1} (-4 * x[i] + 3.0) +
 sum {i in 1..N - 1} (x[i]^2 + x[N]^2)^2;
 solve with nlp;
quit;
```

The problem and solution summaries are shown in Output 7.2.1.
Output 7.2.1 Problem Summary and Solution Summary


Output 7.2.1 continued


To solve the second problem, you can write the following statements (here the active-set method is specifically selected):

```
proc optmodel;
 number N=100000;
 var x{1..N} >= 1 <= 2;
 minimize f = sum {i in 1..N - 1} cos(-0.5*x[i+1] - x[i]^2);
 solve with nlp / algorithm=activeset;
quit;
```

The problem and solution summaries are shown in Output 7.2.2.
Output 7.2.2 Problem Summary and Solution Summary


Output 7.2.2 continued


## Example 7.3: Solving NLP Problems with Range Constraints

Some constraints have both lower and upper bounds (that is, $a \leq g(x) \leq b$ ). These constraints are called range constraints. The NLP solver can handle range constraints in an efficient way. Consider the following NLP problem, taken from Hock and Schittkowski (1981),

```
minimize \(f(x)=5.35\left(x_{3}\right)^{2}+0.83 x_{1} x_{5}+37.29 x_{1}-40792.141\)
subject to \(0 \leq a_{1}+a_{2} x_{2} x_{5}+a_{3} x_{1} x_{4}-a_{4} x_{3} x_{5} \leq 92\)
 \(0 \leq a_{5}+a_{6} x_{2} x_{5}+a_{7} x_{1} x_{2}+a_{8} x_{3}^{2}-90 \leq 20\)
 \(0 \leq a_{9}+a_{10} x_{3} x_{5}+a_{11} x_{1} x_{3}+a_{12} x_{3} x_{4}-20 \leq 5\)
 \(78 \leq x_{1} \leq 102\)
 \(33 \leq x_{2} \leq 45\)
 \(27 \leq x_{i} \leq 45, \quad i=3,4,5\)
```

where the values of the parameters $a_{i}, i=1,2, \ldots, 12$, are shown in Table 7.4.
Table 7.4 Data for Example 3

$\mathbf{i}$	$a_{i}$	$\mathbf{i}$	$a_{i}$	$\mathbf{i}$	$a_{i}$
1	85.334407	5	80.51249	9	9.300961
2	0.0056858	6	0.0071317	10	0.0047026
3	0.0006262	7	0.0029955	11	0.0012547
4	0.0022053	8	0.0021813	12	0.0019085

The initial point used is $x^{0}=(78,33,27,27,27)$. You can call the NLP solver within PROC OPTMODEL to solve this problem by writing the following statements:

```
proc optmodel;
 number l {1..5} = [78 33 27 27 27];
 number u {1..5} = [102 45 45 45 45];
 number a {1..12} =
 [85.334407 0.0056858 0.0006262 0.0022053
 80.51249 0.0071317 0.0029955 0.0021813
 9.300961 0.0047026 0.0012547 0.0019085];
 var x {j in 1..5} >= l[j] <= u[j];
 minimize f = 5.35*x[3]^2 + 0.83*x[1]*x[5] + 37.29*x[1]
 - 40792.141;
 con constr1:
 0 <= a[1] + a[2]*x[2]*x[5] + a[3]*x[1]*x[4] -
 a[4]*x[3]*x[5] <= 92;
 con constr2:
 0<= a[5] +a[6]*x[2]*x[5] +a[7]*x[1]*x[2] +
 a[8]*x[3]^2 - 90 <= 20;
 con constr3:
 0 <= a[9] + a[10]*x[3]*x[5] + a[11]*x[1]*x[3] +
 a[12]*x[3]*x[4] - 20 <= 5;
 x[1] = 78;
 x[2] = 33;
 x[3] = 27;
 x[4] = 27;
 x[5] = 27;
 solve with nlp / algorithm=activeset;
 print x;
quit;
```

The summaries and solution are shown in Output 7.3.1.

Output 7.3.1 Summaries and the Optimal Solution


## Example 7.4: Solving Large-Scale NLP Problems

The following example is a selected large-scale problem from the CUTEr test set (Gould, Orban, and Toint, Ph. L. 2003) that has 20,400 variables, 20,400 lower bounds, and 9,996 linear equality constraints. This problem was selected to provide an idea of the size of problem that the NLP solver is capable of solving. In general, the maximum size of nonlinear optimization problems that can be solved with the NLP solver is controlled less by the number of variables and more by the density of the first and second derivatives of the nonlinear objective and constraint functions.

For large-scale problems, the default memory limit might be too small, which can lead to out-of-memory status. To prevent this occurrence, it is recommended that you set a larger memory size. See the section "Memory Limit" on page 20 for more information.

```
proc optmodel;
 num nx = 100;
 num ny = 100;
 var x {1..nx, 0..ny+1} >= 0;
 var y {0..nx+1, 1..ny} >= 0;
 min f = (
 sum {i in 1..nx-1, j in 1..ny-1} (x[i,j] - 1)^2
 + sum {i in 1..nx-1, j in 1..ny-1} (y[i,j] - 1)^2
 + sum {i in 1..nx-1} (x[i,ny] - 1)^2
 + sum {j in 1..ny-1} (y[nx,j] - 1)^2
) / 2;
 con con1 {i in 2..nx-1, j in 2..ny-1}:
 (x[i,j] - x[i-1,j]) + (y[i,j] - y[i,j-1]) = 1;
 con con2 {i in 2..nx-1}:
 x[i,0] + (x[i,1] - x[i-1,1]) + y[i,1] = 1;
 con con3 {i in 2..nx-1}:
 x[i,ny+1] + (x[i,ny] - x[i-1,ny]) - y[i,ny-1] = 1;
 con con4 {j in 2..ny-1}:
 y[0,j] + (y[1,j] - y[1,j-1]) + x[1,j] = 1;
 con con5 {j in 2..ny-1}:
 y[nx+1,j] + (y[nx,j] - y[nx,j-1]) - x[nx-1,j] = 1;
 for {i in 1..nx-1} x[i,ny].lb = 1;
 for {j in 1..ny-1} y[nx,j].lb = 1;
 solve with nlp;
quit;
```

The problem and solution summaries are shown in Output 7.4.1.

Output 7.4.1 Problem Summary and Solution Summary


## Example 7.5: Solving NLP Problems with Several Local Minima

Some NLP problems contain many local minima. By default, the NLP solver converges to a single local minimum. However, the NLP solver can search the feasible region for other local minima. After it completes the search, it returns the point where the objective function achieves its minimum value. (This point might not be a local minimum; see the SOLTYPE= option for more details.) Consider the following example, taken from Hock and Schittkowski (1981):

$$
\begin{array}{ll}
\text { minimize } & f(x)=\left(x_{1}-1\right)^{2}+\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{3}+\left(x_{3}-x_{4}\right)^{4}+\left(x_{4}-x_{5}\right)^{4} \\
\text { subject to } & x_{1}+x_{2}^{2}+x_{3}^{3}=2+3 \sqrt{2} \\
& x_{2}+x_{4}-x_{3}^{2}=-2+2 \sqrt{2} \\
& x_{1} x_{5}=2 \\
& -5 \leq x_{i} \leq 5, i=1, \ldots, 5
\end{array}
$$

The following statements call the NLP solver to search the feasible region for different local minima. The PERFORMANCE statement specifies that the multistart algorithm use multiple threads. The SEED= option is specified for reproducibility, but it is not required in running the multistart algorithm.

The PRINT statement prints the initial point that is specified in the VAR declaration (x.init), the starting point that led to the best local solution (x.msinit), and finally the best local solution (x) that is found by the NLP solver in multistart mode.

```
proc optmodel;
 var x{i in 1..5} >= -5 <= 5 init -2;
 min f=(x[1] - 1)^2 + (x[1] - x[2])^2 + (x[2] - x[3])^3 +
 (x[3] - x[4])^4 + (x[4] - x[5])^4;
 con g1: x[1] + x[2]^2 + x[3]^3 = 2 + 3*sqrt(2);
 con g2: x[2] + x[4] - x[3]^2 = - 2 + 2*sqrt(2);
 con g3: x[1]*x[5] = 2;
 performance nthreads=4;
 solve with nlp/multistart seed=42 msmaxstarts=10;
 print x.init x.msinit x;
quit;
```

The SAS $\log$ is shown in Output 7.5.1.

Output 7.5.1 Progress of the Algorithm as Shown in the Log

```
NOTE: Problem generation will use 4 threads.
NOTE: The problem has 5 variables (0 free, 0 fixed).
NOTE: The problem has 0 linear constraints (0 LE, O EQ, O GE, 0 range).
NOTE: The problem has 3 nonlinear constraints (O LE, 3 EQ, O GE, O range).
NOTE: The OPTMODEL presolver removed O variables, O linear constraints, and 0
 nonlinear constraints.
NOTE: Using analytic derivatives for objective.
NOTE: Using analytic derivatives for nonlinear constraints.
NOTE: The NLP solver is called.
NOTE: The Interior Point algorithm is used.
NOTE: The MULTISTART option is enabled.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Multistart algorithm is using up to 4 threads.
NOTE: Random number seed 42 is used.
 Best
\begin{tabular}{rrrrrrr}
& Best & Local & Optimality & Infeasi- & Local & Local \\
Start & Objective & Objective & Error & bility & Iters & Status \\
1 & 52.9026035 & 52.9026035 & \(5.14505 \mathrm{E}-7\) & \(5.14505 \mathrm{E}-7\) & 7 & Optimal \\
2 & 52.9026035 & 64.8739911 & \(7.36148 \mathrm{E}-7\) & \(7.36148 \mathrm{E}-7\) & 8 & Optimal \\
3 & 52.9025196 & 52.9025196 & \(5.89505 \mathrm{E}-7\) & \(5.89505 \mathrm{E}-7\) & 8 & Optimal \\
4 & 52.9025196 & 607.035514 & \(2.99434 \mathrm{E}-7\) & \(1.12976 \mathrm{E}-8\) & 9 & Optimal \\
5 & 52.9025196 & 52.9026252 & \(5 \mathrm{E}-7\) & \(4.85479 \mathrm{E}-7\) & 32 & Optimal \\
6 & 27.8719052 & 27.8719052 & \(5 \mathrm{E}-9\) & \(8.2816 \mathrm{E}-10\) & 6 & Optimal \\
7 & 27.8719052 & 27.8719077 & \(5 \mathrm{E}-7\) & \(3.08785 \mathrm{E}-7\) & 6 & Optimal \\
8 & 0.02931089 & 0.02931089 & \(8.37861 \mathrm{E}-7\) & \(8.37861 \mathrm{E}-7\) & 6 & Optimal \\
9 & 0.02931089 & 0.02931107 & \(6.40157 \mathrm{E}-7\) & \(3.79703 \mathrm{E}-7\) & 13 & Optimal
\end{tabular}
NOTE: The Multistart algorithm generated 800 sample points.
NOTE: 8 distinct local optima were found.
NOTE: The best objective value found by local solver = 0.0293108946.
```

The first column in the log indicates the index of the current starting point. An additional indicator ${ }^{*}, \mathrm{r}$, or R$)$ can appear after the index to provide more information about the optimization run starting from the current point. See the section "Iteration Log for Multistart" on page 308 for more information. The second column records the best objective that has been found so far. Columns 3 to 6 report the objective value, infeasibility, optimality error, and number of iterations of the local solver when it was started from the current starting point. Finally, the last column records the status of the local solver-namely, whether it was able to converge to a local optimum from the current starting point.

The summaries and solution are shown in Output 7.5.2. Note that the best solution was found by starting the local solver from a starting point (x.msinit) that is different from the point specified in the VAR declaration (x.init).

Output 7.5.2 Summaries and the Optimal Solution


## References

Akrotirianakis, I. and Rustem, B. (2005), "Globally Convergent Interior-Point Algorithm for Nonlinear Programming," Journal of Optimization Theory and Applications, 125(3), 497-521.

Armand, P., Gilbert, J. C., and Jan-Jégou, S. (2002), "A BFGS-IP Algorithm for Solving Strongly Convex Optimization Problems with Feasibility Enforced by an Exact Penalty Approach," Mathematical Programming, 92(3), 393-424.

Erway, J., Gill, P. E., and Griffin, J. D. (2007), "Iterative Solution of Augmented Systems Arising in Interior Point Methods," SIAM Journal on Optimization, 18, 666-690.

Forsgren, A. and Gill, P. E. (1998), "Primal-Dual Interior Methods for Nonconvex Nonlinear Programming," SIAM Journal on Optimization, 8, 1132-1152.

Forsgren, A., Gill, P. E., and Wright, M. H. (2002), "Interior Methods for Nonlinear Optimization," SIAM Review, 44, 525-597.

Gill, P. E. and Robinson, D. P. (2010), "A Primal-Dual Augmented Lagrangian," Computational Optimization and Applications, 47, 1-25.

Gould, N. I. M., Orban, D., and Toint, Ph. L. (2003), "CUTEr and SifDec: A Constrained and Unconstrained Testing Environment, Revised," ACM Transactions on Mathematical Software, 29(4), 373-394.

Hock, W. and Schittkowski, K. (1981), Lecture Notes in Economics and Mathematical Systems: Test Examples for Nonlinear Programming Codes, Berlin: Springer-Verlag.

Nocedal, J. and Wright, S. J. (1999), Numerical Optimization, New York: Springer-Verlag.
Vanderbei, R. J. and Shanno, D. (1999), "An Interior-Point Algorithm for Nonconvex Nonlinear Programming," Computational Optimization and Applications, 13, 231-252.

Wächter, A. and Biegler, L. T. (2006), "On the Implementation of an Interior-Point Filter Line-Search Algorithm for Large-Scale Nonlinear Programming," Mathematical Programming, 106 (No. 1), 25-57.

Wright, S. J. (1997), Primal-Dual Interior-Point Methods, SIAM Publications.
Yamashita, H. (1998), "A Globally Convergent Primal-Dual Interior Point Method for Constrained Optimization," Optimization Methods and Software, 10, 443-469.

## Chapter 8 <br> The Quadratic Programming Solver

## Contents

Overview: QP Solver ..... 327
Getting Started: QP Solver ..... 329
Syntax: QP Solver ..... 332
Functional Summary ..... 332
QP Solver Options ..... 332
Details: QP Solver ..... 334
Interior Point Algorithm: Overview ..... 334
Iteration Log ..... 336
Problem Statistics ..... 336
Macro Variable _OROPTMODEL ..... 337
Examples: QP Solver ..... 339
Example 8.1: Linear Least Squares Problem ..... 339
Example 8.2: Portfolio Optimization ..... 342
Example 8.3: Portfolio Selection with Transactions ..... 345
References ..... 347

## Overview: QP Solver

The OPTMODEL procedure provides a framework for specifying and solving quadratic programs.
Mathematically, a quadratic programming (QP) problem can be stated as follows:

$$
\begin{array}{cc}
\min & \frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x}+\mathbf{c}^{\mathrm{T}} \mathbf{x} \\
\text { subject to } & \mathbf{A} \mathbf{x}\{\geq,=, \leq\} \mathbf{b} \\
& \mathbf{l} \leq \mathbf{x} \leq \mathbf{u}
\end{array}
$$

where

$\mathbf{Q}$	$\in$	$\mathbb{R}^{n \times n}$	is the quadratic (also known as Hessian) matrix
$\mathbf{A}$	$\in$	$\mathbb{R}^{m \times n}$	is the constraints matrix
$\mathbf{x}$	$\in \mathbb{R}^{n}$	is the vector of decision variables	
$\mathbf{c}$	$\in \mathbb{R}^{n}$	is the vector of linear objective function coefficients	
$\mathbf{b}$	$\in \mathbb{R}^{m}$	is the vector of constraints right-hand sides (RHS)	
$\mathbf{l}$	$\in \mathbb{R}^{n}$	is the vector of lower bounds on the decision variables	
$\mathbf{u}$	$\in \mathbb{R}^{n}$	is the vector of upper bounds on the decision variables	

The quadratic matrix $\mathbf{Q}$ is assumed to be symmetric; that is,

$$
q_{i j}=q_{j i}, \quad \forall i, j=1, \ldots, n
$$

Indeed, it is easy to show that even if $\mathbf{Q} \neq \mathbf{Q}^{\mathrm{T}}$, then the simple modification

$$
\tilde{\mathbf{Q}}=\frac{1}{2}\left(\mathbf{Q}+\mathbf{Q}^{\mathrm{T}}\right)
$$

produces an equivalent formulation $\mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x} \equiv \mathbf{x}^{\mathrm{T}} \tilde{\mathbf{Q}} \mathbf{x}$; hence symmetry is assumed. When you specify a quadratic matrix, it suffices to list only lower triangular coefficients.

In addition to being symmetric, $\mathbf{Q}$ is also required to be positive semidefinite for minimization type of models:

$$
\mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x} \geq 0, \quad \forall \mathrm{x} \in \mathbb{R}^{n}
$$

Q is required to be negative semidefinite for maximization type of models. Convexity can come as a result of a matrix-matrix multiplication

$$
\mathbf{Q}=\mathbf{L L}^{\mathrm{T}}
$$

or as a consequence of physical laws, and so on. See Figure 8.1 for examples of convex, concave, and nonconvex objective functions.

Figure 8.1 Examples of Convex, Concave, and Nonconvex Objective Functions


The order of constraints is insignificant. Some or all components of $\mathbf{l}$ or $\mathbf{u}$ (lower and upper bounds, respectively) can be omitted.

## Getting Started: QP Solver

Consider a small illustrative example. Suppose you want to minimize a two-variable quadratic function $f\left(x_{1}, x_{2}\right)$ on the nonnegative quadrant, subject to two constraints:

$$
\begin{array}{rcccc}
\min & 2 x_{1}+3 x_{2} & +x_{1}^{2}+10 x_{2}^{2}+2.5 x_{1} x_{2} \\
\text { subject to } & x_{1}-x_{2} & \leq 1 \\
& x_{1}+2 x_{2} & \geq 100 \\
& x_{1} & \geq 0 \\
& x_{2} & \geq 0
\end{array}
$$

To use the OPTMODEL procedure, it is not necessary to fit this problem into the general QP formulation mentioned in the section "Overview: QP Solver" on page 327 and to compute the corresponding parameters. However, since these parameters are closely related to the data set that is used by the OPTQP procedure and has a quadratic programming system (QPS) format, you can compute these parameters as follows. The linear objective function coefficients, vector of right-hand sides, and lower and upper bounds are identified immediately as

$$
\mathbf{c}=\left[\begin{array}{l}
2 \\
3
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
1 \\
100
\end{array}\right], \quad \mathbf{l}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad \mathbf{u}=\left[\begin{array}{l}
+\infty \\
+\infty
\end{array}\right]
$$

Carefully construct the quadratic matrix $\mathbf{Q}$. Observe that you can use symmetry to separate the maindiagonal and off-diagonal elements:

$$
\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x} \equiv \frac{1}{2} \sum_{i, j=1}^{n} x_{i} q_{i j} x_{j}=\frac{1}{2} \sum_{i=1}^{n} q_{i i} x_{i}^{2}+\sum_{i>j} x_{i} q_{i j} x_{j}
$$

The first expression

$$
\frac{1}{2} \sum_{i=1}^{n} q_{i i} x_{i}^{2}
$$

sums the main-diagonal elements. Thus, in this case you have

$$
q_{11}=2, \quad q_{22}=20
$$

Notice that the main-diagonal values are doubled in order to accommodate the $1 / 2$ factor. Now the second term

$$
\sum_{i>j} x_{i} q_{i j} x_{j}
$$

sums the off-diagonal elements in the strict lower triangular part of the matrix. The only off-diagonal ( $x_{i} x_{j}, i \neq j$ ) term in the objective function is $2.5 x_{1} x_{2}$, so you have

$$
q_{21}=2.5
$$

Notice that you do not need to specify the upper triangular part of the quadratic matrix.
Finally, the matrix of constraints is as follows:

$$
\mathbf{A}=\left[\begin{array}{rr}
1 & -1 \\
1 & 2
\end{array}\right]
$$

The following OPTMODEL program formulates the preceding problem in a manner that is very close to the mathematical specification of the given problem:

```
/* getting started */
proc optmodel;
 var x1 >= 0; /* declare nonnegative variable x1 */
 var x2 >= 0; /* declare nonnegative variable x2 */
 /* objective: quadratic function f(x1, x2) */
 minimize f =
 /* the linear objective function coefficients */
 2 * x1 + 3 * x2 +
 /* quadratic <x, Qx> */
 x1 * x1 + 2.5 * x1 * x2 + 10 * x2 * x2;
 /* subject to the following constraints */
 con r1: x1 - x2 <= 1;
 con r2: x1 + 2 * x2 >= 100;
 /* specify iterative interior point algorithm (QP)
 * in the SOLVE statement */
 solve with qP;
 /* print the optimal solution */
 print x1 x2;
 save qps qpsdata;
quit;
```

The "with qp" clause in the SOLVE statement invokes the QP solver to solve the problem. The output is shown in Figure 8.2.

Figure 8.2 Summaries and Optimal Solution


Figure 8.2 continued


In this example, the SAVE QPS statement is used to save the QP problem in the QPS-format data set qpsdata, shown in Figure 8.3. The data set is consistent with the parameters of general quadratic programming previously computed. Also, the data set can be used as input to the OPTQP procedure.

Figure 8.3 QPS-Format Data Set

Obs	FIELD1	FIELD2	FIELD3	FIELD4	FIELD5	FIELD6
1	NAME		qpsdata	.		.
2	ROWS			.		.
3	N	f		-		-
4	L	r1		.		.
5	G	r2		.		.
6	COLUMNS			.		.
7		x1	f	2.0	r1	1
8		x1	r2	1.0		.
9		x2	f	3.0	r1	-1
10		x2	r2	2.0		.
11	RHS			.		.
12		. RHS .	r1	1.0		.
13		. RHS .	r2	100.0		.
14	QSECTION			.		.
15		x1	x1	2.0		.
16		x1	x2	2.5		.
17		x2	x2	20.0		.
18	ENDATA			.		-

## Syntax: QP Solver

The following statement is available in the OPTMODEL procedure:

```
SOLVE WITH QP </ options> ;
```


## Functional Summary

Table 8.1 summarizes the list of options available for the SOLVE WITH QP statement, classified by function.

Table 8.1 Options for the QP Solver

Description	Option
Control Options	
Specifies the frequency of printing solution progress	LOGFREQ=
Specifies the maximum number of iterations	MAXITER=
Specifies the time limit for the optimization process	MAXTIME=
Specifies the type of presolve	PRESOLVER=
Interior Point Algorithm Options	
Specifies the stopping criterion based on duality gap STOP_DG=   Specifies the stopping criterion based on dual infeasi- STOP_DI=   bility	
Specifies the stopping criterion based on primal infea-   sibility	STOP_PI=
Specifies units of CPU time or real time	TIMETYPE=

## QP Solver Options

This section describes the options recognized by the QP solver. These options can be specified after a forward slash (/) in the SOLVE statement, provided that the QP solver is explicitly specified using a WITH clause.

The QP solver does not provide an intermediate solution if the solver terminates before reaching optimality.

## Control Options

## LOGFREQ=k

PRINTFREQ $=k$
specifies that the printing of the solution progress to the iteration $\log$ is to occur after every $k$ iterations. The print frequency, $k$, is an integer between zero and the largest four-byte signed integer, which is $2^{31}-1$.

The value $k=0$ disables the printing of the progress of the solution. The default value of this option is 1 .

## MAXITER=k

specifies the maximum number of iterations. The value $k$ can be any integer between one and the largest four-byte signed integer, which is $2^{31}-1$. If you do not specify this option, the procedure does not stop based on the number of iterations performed.

## MAXTIME $=t$

specifies an upper limit of $t$ units of time for the optimization process, including problem generation time and solution time. The value of the TIMETYPE= option determines the type of units used. If you do not specify the MAXTIME= option, the solver does not stop based on the amount of time elapsed. The value of $t$ can be any positive number; the default value is the positive number that has the largest absolute value that can be represented in your operating environment.

## PRESOLVER=number | string

PRESOL=number | string
specifies one of the following presolve options:

number	string	Description
0	NONE	Disables presolver.
-1	AUTOMATIC	Applies presolver by using default setting.

You can specify the PRESOLVER= value either by a character-valued option or by an integer. The default option is AUTOMATIC.

## Interior Point Algorithm Options

## STOP_DG= $\delta$

specifies the desired relative duality gap, $\delta \in[1 \mathrm{E}-9,1 \mathrm{E}-4]$. This is the relative difference between the primal and dual objective function values and is the primary solution quality parameter. The default value is $1 \mathrm{E}-6$. See the section "Interior Point Algorithm: Overview" on page 334 for details.

## STOP_DI= $\beta$

specifies the maximum allowed relative dual constraints violation, $\beta \in[1 \mathrm{E}-9,1 \mathrm{E}-4]$. The default value is $1 \mathrm{E}-6$. See the section "Interior Point Algorithm: Overview" on page 334 for details.

## STOP_Pl= $\alpha$

specifies the maximum allowed relative bound and primal constraints violation, $\alpha \in[1 \mathrm{E}-9,1 \mathrm{E}-4]$. The default value is $1 \mathrm{E}-6$. See the section "Interior Point Algorithm: Overview" on page 334 for details.

TIMETYPE=number $\mid$ string
specifies the units of time used by the MAXTIME= option and reported by the PRESOLVE_TIME and SOLUTION_TIME terms in the _OROPTMODEL_ macro variable. Table 8.3 describes the valid values of the TIMETYPE= option.

Table 8.3 Values for TIMETYPE= Option

number	string	Description
0	CPU	Specifies units of CPU time.
1	REAL	Specifies units of real time.

The Optimization Statistics table, an output of PROC OPTMODEL if option PRINTLEVEL=2 is specified in the PROC OPTMODEL statement, also includes the same time units for "Presolver Time" and "Solver Time." The other times (such as "Problem Generation Time") in the Optimization Statistics table are always CPU times.
The default value of the TIMETYPE= option depends on the values of the NTHREADS= and NODES $=$ options in the PERFORMANCE statement of the OPTMODEL procedure. See the section "PERFORMANCE Statement" on page 17 for more information about the NTHREADS= option. See Chapter 3, "Shared Concepts and Topics" (SAS High-Performance Analytics Server: User's Guide), for more information about the NODES= option. (The NODES $=$ option requires SAS ${ }^{\circledR}$ HighPerformance Analytics software.)
If you specify a value greater than 1 for either the NTHREADS $=$ or NODES $=$ option, the default value of the TIMETYPE $=$ option is REAL. If you specify a value of 1 for both the NTHREADS $=$ and NODES $=$ options, the default value of the TIMETYPE $=$ option is CPU.

## Details: QP Solver

## Interior Point Algorithm: Overview

The QP solver implements an infeasible primal-dual predictor-corrector interior point algorithm. To illustrate the algorithm and the concepts of duality and dual infeasibility, consider the following QP formulation (the primal):

$$
\begin{aligned}
\min & \frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x}+\mathbf{c}^{\mathrm{T}} \mathbf{x} \\
\text { subject to } & \mathbf{A x} \geq \mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

The corresponding dual formulation is

$$
\begin{aligned}
& \max -\frac{1}{2} \mathrm{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x}+\mathbf{b}^{\mathrm{T}} \mathbf{y} \\
& \text { subject to }-\mathbf{Q x}+\mathbf{A}^{\mathrm{T}} \mathbf{y}+\mathbf{w}=\mathbf{c} \\
& \mathrm{y} \geq 0 \\
& \mathbf{w} \geq \mathbf{0}
\end{aligned}
$$

where $\mathbf{y} \in \mathbb{R}^{m}$ refers to the vector of dual variables and $\mathbf{w} \in \mathbb{R}^{n}$ refers to the vector of dual slack variables.
The dual makes an important contribution to the certificate of optimality for the primal. The primal and dual constraints combined with complementarity conditions define the first-order optimality conditions, also known as KKT (Karush-Kuhn-Tucker) conditions, which can be stated as follows where $\mathbf{e} \equiv(1, \ldots, 1)^{\mathrm{T}}$ of appropriate dimension and $\mathrm{s} \in \mathbb{R}^{m}$ is the vector of primal slack variables:

$$
\begin{array}{rlr}
\mathbf{A x}-\mathbf{s} & =\mathbf{b} & \text { (primal feasibility) } \\
-\mathbf{Q} \mathbf{x}+\mathbf{A}^{\mathrm{T}} \mathbf{y}+\mathbf{w} & =\mathbf{c} \\
\mathbf{W X e} & =\mathbf{0} \\
\mathbf{S Y e} & =\mathbf{0} & \text { (complementarity) } \\
\mathbf{x}, \mathbf{y}, \mathbf{w}, \mathbf{s} & \geq \mathbf{0}
\end{array}
$$

NOTE: Slack variables (the $s$ vector) are automatically introduced by the solver when necessary; it is therefore recommended that you not introduce any slack variables explicitly. This enables the solver to handle slack variables much more efficiently.

The letters $\mathbf{X}, \mathbf{Y}, \mathbf{W}$, and $\mathbf{S}$ denote matrices with corresponding $x, y, w$, and $s$ on the main diagonal and zero elsewhere, as in the following example:

$$
\mathbf{X} \equiv\left[\begin{array}{cccc}
x_{1} & 0 & \cdots & 0 \\
0 & x_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & x_{n}
\end{array}\right]
$$

If $\left(\mathrm{x}^{*}, \mathbf{y}^{*}, \mathbf{w}^{*}, \mathrm{~s}^{*}\right)$ is a solution of the previously defined system of equations that represent the KKT conditions, then $\mathrm{x}^{*}$ is also an optimal solution to the original QP model.

At each iteration the interior point algorithm solves a large, sparse system of linear equations,

$$
\left[\begin{array}{cc}
\mathbf{Y}^{-1} \mathbf{S} & \mathbf{A} \\
\mathbf{A}^{\mathrm{T}} & -\mathbf{Q}-\mathbf{X}^{-1} \mathbf{W}
\end{array}\right]\left[\begin{array}{c}
\Delta \mathbf{y} \\
\Delta \mathrm{x}
\end{array}\right]=\left[\begin{array}{l}
\Xi \\
\Theta
\end{array}\right]
$$

where $\Delta \mathbf{x}$ and $\Delta \mathbf{y}$ denote the vector of search directions in the primal and dual spaces, respectively, and $\Theta$ and $\Xi$ constitute the vector of the right-hand sides.

The preceding system is known as the reduced KKT system. The QP solver uses a preconditioned quasiminimum residual algorithm to solve this system of equations efficiently.

An important feature of the interior point algorithm is that it takes full advantage of the sparsity in the constraint and quadratic matrices, thereby enabling it to efficiently solve large-scale quadratic programs.

The interior point algorithm works simultaneously in the primal and dual spaces. It attains optimality when both primal and dual feasibility are achieved and when complementarity conditions hold. Therefore, it is of interest to observe the following four measures where $\|v\|_{2}$ is the Euclidean norm of the vector $v$ :

- relative primal infeasibility measure $\alpha$ :

$$
\alpha=\frac{\|\mathbf{A x}-\mathbf{b}-\mathbf{s}\|_{2}}{\|\mathbf{b}\|_{2}+1}
$$

- relative dual infeasibility measure $\beta$ :

$$
\beta=\frac{\left\|\mathbf{Q x}+\mathbf{c}-\mathbf{A}^{\mathrm{T}} \mathbf{y}-\mathbf{w}\right\|_{2}}{\|\mathbf{c}\|_{2}+1}
$$

- relative duality gap $\delta$ :

$$
\delta=\frac{\left|\mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x}+\mathbf{c}^{\mathrm{T}} \mathbf{x}-\mathbf{b}^{\mathrm{T}} \mathbf{y}\right|}{\left|\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{Q x}+\mathbf{c}^{\mathrm{T}} \mathbf{x}\right|+1}
$$

- absolute complementarity $\gamma$ :

$$
\gamma=\sum_{i=1}^{n} x_{i} w_{i}+\sum_{i=1}^{m} y_{i} s_{i}
$$

These measures are displayed in the iteration log.

## Iteration Log

The following information is displayed in the iteration log:

Iter	indicates the iteration number.
Complement	indicates the (absolute) complementarity.
Duality Gap	indicates the (relative) duality gap.
Primal Infeas	indicates the (relative) primal infeasibility measure.
Bound Infeas	indicates the (relative) bound infeasibility measure.
Dual Infeas	indicates the (relative) dual infeasibility measure.

If the sequence of solutions converges to an optimal solution of the problem, you should see all columns in the iteration log converge to zero or very close to zero. If they do not, it can be the result of insufficient iterations being performed to reach optimality. In this case, you might need to increase the value specified in the option MAXITER= or MAXTIME=. If the complementarity or the duality gap does not converge, the problem might be infeasible or unbounded. If the infeasibility columns do not converge, the problem might be infeasible.

## Problem Statistics

Optimizers can encounter difficulty when solving poorly formulated models. Information about data magnitude provides a simple gauge to determine how well a model is formulated. For example, a model whose constraint matrix contains one very large entry (on the order of $10^{9}$ ) can cause difficulty when the remaining entries are single-digit numbers. The PRINTLEVEL $=2$ option in the OPTMODEL procedure causes the ODS table ProblemStatistics to be generated when the QP solver is called. This table provides basic data magnitude information that enables you to improve the formulation of your models.

The example output in Figure 8.4 demonstrates the contents of the ODS table ProblemStatistics.

Figure 8.4 ODS Table ProblemStatistics

The OPTMODEL Procedure	
Problem Statistics	
Number of Constraint Matrix Nonzeros	4
Maximum Constraint Matrix Coefficient	2
Minimum Constraint Matrix Coefficient	1
Average Constraint Matrix Coefficient	1.25
Number of Linear Objective Nonzeros	2
Maximum Linear Objective Coefficient	3
Minimum Linear Objective Coefficient	2
Average Linear Objective Coefficient	2.5
Number of Lower Triangular Hessian Nonzeros	1
Number of Diagonal Hessian Nonzeros	2
Maximum Hessian Coefficient	20
Minimum Hessian Coefficient	2
Average Hessian Coefficient	6.75
Number of RHS Nonzeros	2
Maximum RHS	100
Minimum RHS	1
Average RHS	50.5
Maximum Number of Nonzeros per Column	2
Minimum Number of Nonzeros per Column	2
Average Number of Nonzeros per Column	2
Maximum Number of Nonzeros per Row	2
Minimum Number of Nonzeros per Row	2
Average Number of Nonzeros per Row	2

## Macro Variable _OROPTMODEL_

The OPTMODEL procedure always creates and initializes a SAS macro called _OROPTMODEL_. This variable contains a character string. After each PROC OROPTMODEL run, you can examine this macro by specifying \%put \&_OROPTMODEL_; and check the execution of the most recently invoked solver from the value of the macro variable. The various terms of the variable after the QP solver is called are interpreted as follows.

## STATUS

indicates the solver status at termination. It can take one of the following values:
OK The solver terminated normally.
SYNTAX_ERROR Incorrect syntax was used.
DATA_ERROR
The input data were inconsistent.
OUT_OF_MEMORY
Insufficient memory was allocated to the procedure.

SEMANTIC_ERROR
ERROR

IO_ERROR A problem occurred in reading or writing data.
An evaluation error, such as an invalid operand type, occurred.
The status cannot be classified into any of the preceding categories.

## ALGORITHM

indicates the algorithm that produced the solution data in the macro variable. This term only appears when STATUS=OK. It can take the following value:

IP The interior point algorithm produced the solution data.

## SOLUTION_STATUS

indicates the solution status at termination. It can take one of the following values:

OPTIMAL
CONDITIONAL_OPTIMAL
INFEASIBLE
UNBOUNDED
INFEASIBLE_OR_UNBOUNDED
BAD_PROBLEM_TYPE
ITERATION_LIMIT_REACHED

TIME_LIMIT_REACHED
FUNCTION_CALL_LIMIT_REACHED
INTERRUPTED
FAILED

The solution is optimal.
The optimality of the solution cannot be proven.
The problem is infeasible.
The problem is unbounded.
The problem is infeasible or unbounded.
The problem type is unsupported by the solver.
The maximum allowable number of iterations was reached.

The solver reached its execution time limit.
The solver reached its limit on function evaluations.
The solver was interrupted externally.
The solver failed to converge, possibly due to numerical issues.

## OBJECTIVE

indicates the objective value obtained by the solver at termination.

## PRIMAL_INFEASIBILITY

indicates the (relative) infeasibility of the primal constraints at the solution. See the section "Interior Point Algorithm: Overview" on page 334 for details.

## DUAL_INFEASIBILITY

indicates the (relative) infeasibility of the dual constraints at the solution. See the section "Interior Point Algorithm: Overview" on page 334 for details.

## BOUND_INFEASIBILITY

indicates the (relative) violation by the solution of the lower or upper bounds (or both). See the section "Interior Point Algorithm: Overview" on page 334 for details.

## DUALITY_GAP

indicates the (relative) duality gap. See the section "Interior Point Algorithm: Overview" on page 334 for details.

## COMPLEMENTARITY

indicates the (absolute) complementarity at the solution. See the section "Interior Point Algorithm: Overview" on page 334 for details.

## ITERATIONS

indicates the number of iterations required to solve the problem.

## PRESOLVE_TIME

indicates the time taken for preprocessing (seconds).

## SOLUTION_TIME

indicates the time (in seconds) taken to solve the problem, including preprocessing time.
Note: The time that is reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real time. The type is determined by the TIMETYPE= option.

## Examples: QP Solver

This section presents examples that illustrate the use of the OPTMODEL procedure to solve quadratic programming problems. Example 8.1 illustrates how to model a linear least squares problem and solve it by using PROC OPTMODEL. Example 8.2 and Example 8.3 show in detail how to model the portfolio optimization and selection problems.

## Example 8.1: Linear Least Squares Problem

The linear least squares problem arises in the context of determining a solution to an overdetermined set of linear equations. In practice, these equations could arise in data fitting and estimation problems. An overdetermined system of linear equations can be defined as

$$
A x=b
$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{x} \in \mathbb{R}^{n}, \mathbf{b} \in \mathbb{R}^{m}$, and $m>n$. Since this system usually does not have a solution, you need to be satisfied with some sort of approximate solution. The most widely used approximation is the least squares solution, which minimizes $\|\mathbf{A x}-\mathbf{b}\|_{2}^{2}$.

This problem is called a least squares problem for the following reason. Let $\mathbf{A}, \mathbf{x}$, and $\mathbf{b}$ be defined as previously. Let $k_{i}(x)$ be the $k$ th component of the vector $\mathbf{A x}-\mathbf{b}$ :

$$
k_{i}(x)=a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}-b_{i}, i=1,2, \ldots, m
$$

By definition of the Euclidean norm, the objective function can be expressed as follows:

$$
\|\mathbf{A x}-\mathbf{b}\|_{2}^{2}=\sum_{i=1}^{m} k_{i}(x)^{2}
$$

Therefore, the function you minimize is the sum of squares of $m$ terms $k_{i}(x)$; hence the term least squares. The following example is an illustration of the linear least squares problem; that is, each of the terms $k_{i}$ is a linear function of $x$.

Consider the following least squares problem defined by

$$
\mathbf{A}=\left[\begin{array}{rr}
4 & 0 \\
-1 & 1 \\
3 & 2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

This translates to the following set of linear equations:

$$
4 x_{1}=1, \quad-x_{1}+x_{2}=0, \quad 3 x_{1}+2 x_{2}=1
$$

The corresponding least squares problem is:

$$
\text { minimize }\left(4 x_{1}-1\right)^{2}+\left(-x_{1}+x_{2}\right)^{2}+\left(3 x_{1}+2 x_{2}-1\right)^{2}
$$

The preceding objective function can be expanded to:

$$
\text { minimize } 26 x_{1}^{2}+5 x_{2}^{2}+10 x_{1} x_{2}-14 x_{1}-4 x_{2}+2
$$

In addition, you impose the following constraint so that the equation $3 x_{1}+2 x_{2}=1$ is satisfied within a tolerance of 0.1:

$$
0.9 \leq 3 x_{1}+2 x_{2} \leq 1.1
$$

You can use the following SAS statements to solve the least squares problem:

```
/* example 1: linear least-squares problem */
proc optmodel;
 var x1; /* declare free (no explicit bounds) variable x1 */
 var x2; /* declare free (no explicit bounds) variable x2 */
 /* declare slack variable for ranged constraint */
 var w >= 0 <= 0.2;
 /* objective function: minimize is the sum of squares */
 minimize f = 26 * x1 * x1 + 5 * x2 * x2 + 10 * x1 * x2
 - 14 * x1 - 4 * x2 + 2;
 /* subject to the following constraint */
 con L: 3 * x1 + 2 * x2 - w = 0.9;
 solve with qP;
 /* print the optimal solution */
 print x1 x2;
quit;
```

The output is shown in Output 8.1.1.

Output 8.1.1 Summaries and Optimal Solution


## Example 8.2: Portfolio Optimization

Consider a portfolio optimization example. The two competing goals of investment are (1) long-term growth of capital and (2) low risk. A good portfolio grows steadily without wild fluctuations in value. The Markowitz model is an optimization model for balancing the return and risk of a portfolio. The decision variables are the amounts invested in each asset. The objective is to minimize the variance of the portfolio's total return, subject to the constraints that (1) the expected growth of the portfolio reaches at least some target level and (2) you do not invest more capital than you have.

Let $x_{1}, \ldots, x_{n}$ be the amount invested in each asset, $\mathcal{B}$ be the amount of capital you have, $\mathbf{R}$ be the random vector of asset returns over some period, and $\mathbf{r}$ be the expected value of $\mathbf{R}$. Let $G$ be the minimum growth you hope to obtain, and $\mathcal{C}$ be the covariance matrix of $\mathbf{R}$. The objective function is $\operatorname{Var}\left(\sum_{i=1}^{n} x_{i} R_{i}\right)$, which can be equivalently denoted as $\mathbf{x}^{\mathrm{T}} \mathcal{C} \mathbf{x}$.

Assume, for example, $n=4$. Let $\mathcal{B}=10,000, G=1,000, \mathbf{r}=[0.05,-0.2,0.15,0.30]$, and

$$
\mathcal{C}=\left[\begin{array}{cccc}
0.08 & -0.05 & -0.05 & -0.05 \\
-0.05 & 0.16 & -0.02 & -0.02 \\
-0.05 & -0.02 & 0.35 & 0.06 \\
-0.05 & -0.02 & 0.06 & 0.35
\end{array}\right]
$$

The QP formulation can be written as:

$$
\begin{array}{rlllll}
\min & 0.08 x_{1}^{2} & -0.1 x_{1} x_{2} & -0.1 x_{1} x_{3} & -0.1 x_{1} x_{4} & + \\
& 0.16 x_{2}^{2} & -0.04 x_{2} x_{3} & -0.02 x_{2} x_{4} & +0.35 x_{3}^{2} & + \\
& 0.12 x_{3} x_{4} & +0.35 x_{4}^{2}
\end{array}
$$

subject to
$\begin{array}{ccccccccc}\text { (budget) } & x_{1} & + & x_{2} & + & x_{3} & + & x_{4} & \leq \\ \text { (growth) } & 0.05 x_{1} & - & 0.2 x_{2} & + & 0.15 x_{3} & + & 0.3000 \\ \text { (gow } & & \geq & 1000\end{array}$
$\begin{aligned} \text { (growth) } 0.05 x_{1} & -0.2 x_{2} \\ & +0.15 x_{3}+0.30 x_{4}\end{aligned} \begin{aligned} & \geq \\ x_{1}, x_{2}, x_{3}, x_{4} & \geq 000\end{aligned}$

Use the following SAS statements to solve the problem:

```
/* example 2: portfolio optimization */
proc optmodel;
 /* let x1, x2, x3, x4 be the amount invested in each asset */
 var x{1..4} >= 0;
 num coeff{1..4, 1..4} = [0.08 -. .05 -. 05 -. .05
 -.05 0. . 16 -. . 02 -. .02
 -.05 -. .02 0. 35 0.06
 -.05 -. 02 0.06 0.35];
 num r{1..4}=[0.05 -. 20 0.15 0.30];
 /* minimize the variance of the portfolio's total return */
 minimize f = sum{i in 1..4, j in 1..4}coeff[i,j]*x[i]*x[j];
 /* subject to the following constraints */
 con BUDGET: sum{i in 1..4}x[i] <= 10000;
 con GROWTH: sum{i in 1..4}r[i]*x[i] >= 1000;
```

```
solve with qp;
/* print the optimal solution */
print x;
```

The summaries and the optimal solution are shown in Output 8.2.1.

## Output 8.2.1 Portfolio Optimization



Output 8.2.1 continued

$[1]$	$\mathbf{x}$
1	3452.9
2	0.0
3	1068.8
4	2223.5

Thus, the minimum variance portfolio that earns an expected return of at least $10 \%$ is $x_{1}=3,452, x_{2}=0$, $x_{3}=1,068, x_{4}=2,223$. Asset 2 gets nothing because its expected return is $-20 \%$ and its covariance with the other assets is not sufficiently negative for it to bring any diversification benefits. What if you drop the nonnegativity assumption?

Financially, that means you are allowed to short-sell-that is, sell low-mean-return assets and use the proceeds to invest in high-mean-return assets. In other words, you put a negative portfolio weight in low-mean assets and "more than $100 \%$ " in high-mean assets.

To solve the portfolio optimization problem with the short-sale option, continue to submit the following SAS statements:

```
 /* example 2: portfolio optimization with short-sale option */
 /* dropping nonnegativity assumption */
 for {i in 1..4} x[i].lb=-x[i].ub;
 solve with qP;
 /* print the optimal solution */
 print x;
quit;
```

You can see in the optimal solution displayed in Output 8.2.2 that the decision variable $x_{2}$, denoting Asset 2 , is equal to $-1,563.61$, which means short sale of that asset.

Output 8.2.2 Portfolio Optimization with Short-Sale Option


Output 8.2.2 continued

$[1]$	$\mathbf{x}$
1	1684.35
2	-1563.61
3	682.51
4	1668.95

## Example 8.3: Portfolio Selection with Transactions

Consider a portfolio selection problem with a slight modification. You are now required to take into account the current position and transaction costs associated with buying and selling assets. The objective is to find the minimum variance portfolio. In order to understand the scenario better, consider the following data.

You are given three assets. The current holding of the three assets is denoted by the vector $\mathbf{c}=[200,300$, 500], the amount of asset bought and sold is denoted by $b_{i}$ and $s_{i}$, respectively, and the net investment in each asset is denoted by $x_{i}$ and is defined by the following relation:

$$
x_{i}-b_{i}+s_{i}=c_{i}, \quad i=1,2,3
$$

Suppose that you pay a transaction fee of 0.01 every time you buy or sell. Let the covariance matrix $\mathcal{C}$ be defined as

$$
\mathcal{C}=\left[\begin{array}{ccc}
0.027489 & -0.00874 & -0.00015 \\
-0.00874 & 0.109449 & -0.00012 \\
-0.00015 & -0.00012 & 0.000766
\end{array}\right]
$$

Assume that you hope to obtain at least $12 \%$ growth. Let $\mathbf{r}=[1.109048,1.169048,1.074286]$ be the vector of expected return on the three assets, and let $\mathcal{B}=1000$ be the available funds. Mathematically, this problem can be written in the following manner:

$$
\begin{aligned}
\min & 0.027489 x_{1}^{2}-0.01748 x_{1} x_{2}-0.0003 x_{1} x_{3}+0.109449 x_{2}^{2} \\
& -0.00024 x_{2} x_{3}+0.000766 x_{3}^{2}
\end{aligned}
$$

subject to

$$
\begin{aligned}
& \text { (return) } \quad \sum_{i=1}^{3} r_{i} x_{i} \geq 1.12 \mathcal{B} \\
& \text { (budget) } \sum_{i=1}^{3} x_{i}+\sum_{i=1}^{3} 0.01\left(b_{i}+s_{i}\right)=\mathcal{B} \\
& \text { (balance) } \quad x_{i}-b_{i}+s_{i}=c_{i}, \quad i=1,2,3 \\
& x_{i}, b_{i}, s_{i} \geq \quad 0, \quad i=1,2,3
\end{aligned}
$$

The problem can be solved by the following SAS statements:

```
/* example 3: portfolio selection with transactions */
proc optmodel;
 /* let x1, x2, x3 be the amount invested in each asset */
 var x{1..3} >= 0;
 /* let b1, b2, b3 be the amount of asset bought */
 var b{1..3} >= 0;
```

```
 /* let s1, s2, s3 be the amount of asset sold */
 var s{1..3} >= 0;
 /* current holdings */
 num c{1..3}=[200 300 500];
 /* covariance matrix */
 num coeff{1..3, 1..3} = [0.027489 -.008740 -.000150
 -.008740 0.109449 -.000120
 -.000150 -.000120 0.000766];
 /* returns */
 num r{1..3}=[1.109048 1.169048 1.074286];
 /* minimize the variance of the portfolio's total return */
 minimize f = sum{i in 1..3, j in 1..3}coeff[i,j]*x[i]*x[j];
 /* subject to the following constraints */
 con BUDGET: sum{i in 1..3}(x[i]+.01*b[i]+.01*s[i]) <= 1000;
 con RETURN: sum{i in 1..3}r[i]*x[i] >= 1120;
 con BALANC{i in 1..3}: x[i]-b[i]+s[i]=c[i];
 solve with qp;
 /* print the optimal solution */
 print x;
quit;
```

The output is displayed in Output 8.3.1.
Output 8.3.1 Portfolio Selection with Transactions


Output 8.3.1 continued


## References

Freund, R. W. (1991), "On Polynomial Preconditioning and Asymptotic Convergence Factors for Indefinite Hermitian Matrices," Linear Algebra and Its Applications, 154-156, 259-288.

Freund, R. W. and Jarre, F. (1997), "A QMR-Based Interior Point Algorithm for Solving Linear Programs," Mathematical Programming, 76, 183-210.

Freund, R. W. and Nachtigal, N. M. (1996), "QMRPACK: A Package of QMR Algorithms," ACM Transactions on Mathematical Software, 22, 46-77.

Vanderbei, R. J. (1999), "LOQO: An Interior Point Code for Quadratic Programming," Optimization Methods and Software, 11, 451-484.

Wright, S. J. (1996), Primal-Dual Interior Point Algorithms, Philadelphia: SIAM.

## Chapter 9 The OPTLP Procedure

Contents
Overview: OPTLP Procedure ..... 350
Getting Started: OPTLP Procedure ..... 350
Syntax: OPTLP Procedure ..... 353
Functional Summary ..... 353
PROC OPTLP Statement ..... 354
Decomposition Algorithm Statements ..... 360
PERFORMANCE Statement ..... 360
Details: OPTLP Procedure ..... 361
Data Input and Output ..... 361
Presolve ..... 364
Pricing Strategies for the Primal and Dual Simplex Solvers ..... 365
Warm Start for the Primal and Dual Simplex Solvers ..... 365
The Network Simplex Algorithm ..... 366
The Interior Point Algorithm ..... 366
Iteration Log for the Primal and Dual Simplex Solvers ..... 368
Iteration Log for the Network Simplex Solver ..... 369
Iteration Log for the Interior Point Solver ..... 370
Iteration Log for the Crossover Algorithm ..... 370
Concurrent LP (Experimental) ..... 371
ODS Tables ..... 371
Irreducible Infeasible Set ..... 375
Macro Variable _OROPTLP ..... 376
Examples: OPTLP Procedure ..... 379
Example 9.1: Oil Refinery Problem ..... 379
Example 9.2: Using the Interior Point Solver ..... 383
Example 9.3: The Diet Problem ..... 384
Example 9.4: Reoptimizing after Modifying the Objective Function ..... 387
Example 9.5: Reoptimizing after Modifying the Right-Hand Side ..... 389
Example 9.6: Reoptimizing after Adding a New Constraint ..... 391
Example 9.7: Finding an Irreducible Infeasible Set ..... 395
Example 9.8: Using the Network Simplex Solver ..... 400
References ..... 404

## Overview: OPTLP Procedure

The OPTLP procedure provides four methods of solving linear programs (LPs). A linear program has the following formulation:

$$
\begin{aligned}
\min & \mathbf{c}^{\mathrm{T}} \mathbf{x} \\
\text { subject to } & \mathbf{A x}\{\geq,=, \leq\} \mathbf{b} \\
& \mathbf{l} \leq \mathbf{x} \leq \mathbf{u}
\end{aligned}
$$

where			
$\mathbf{x}$	$\in$	$\mathbb{R}^{n}$	is the vector of decision variables
$\mathbf{A}$	$\in$	$\mathbb{R}^{m \times n}$	is the matrix of constraints
$\mathbf{c}$	$\in$	$\mathbb{R}^{n}$	is the vector of objective function coefficients
$\mathbf{b}$	$\in$	$\mathbb{R}^{m}$	is the vector of constraints right-hand sides (RHS)
$\mathbf{l}$	$\in \mathbb{R}^{n}$	is the vector of lower bounds on variables	
$\mathbf{u}$	$\in \mathbb{R}^{n}$	is the vector of upper bounds on variables	

The following LP solvers are available in the OPTLP procedure:

- primal simplex solver
- dual simplex solver
- network simplex solver
- interior point solver

The primal and dual simplex solvers implement the two-phase simplex method. In phase I, the solver tries to find a feasible solution. If no feasible solution is found, the LP is infeasible; otherwise, the solver enters phase II to solve the original LP. The network simplex solver extracts a network substructure, solves this using network simplex, and then constructs an advanced basis to feed to either primal or dual simplex. The interior point solver implements a primal-dual predictor-corrector interior point algorithm.

PROC OPTLP requires a linear program to be specified using a SAS data set that adheres to the MPS format, a widely accepted format in the optimization community. For details about the MPS format see Chapter 14, "The MPS-Format SAS Data Set."

You can use the MPSOUT= option to convert typical PROC LP format data sets into MPS-format SAS data sets. The option is available in the LP, INTPOINT, and NETFLOW procedures. For details about this option, see Chapter 6, "The LP Procedure" (SAS/OR User's Guide: Mathematical Programming Legacy Procedures), Chapter 5, "The INTPOINT Procedure" (SAS/OR User's Guide: Mathematical Programming Legacy Procedures), and Chapter 7, "The NETFLOW Procedure" (SAS/OR User's Guide: Mathematical Programming Legacy Procedures).

## Getting Started: OPTLP Procedure

The following example illustrates how you can use the OPTLP procedure to solve linear programs. Suppose you want to solve the following problem:

$$
\begin{array}{rlllllll}
\min & 2 x_{1} & -3 x_{2} & -4 x_{3} \\
\text { subject to } & & -2 x_{2} & -3 x_{3} & \geq & -5 & (\mathrm{R} 1) \\
& x_{1} & +x_{2} & + & 2 x_{3} & \leq & (\mathrm{R} 2) \\
& x_{1} & +2 x_{2}+3 x_{3} \leq & 7 & (\mathrm{R} 3) \\
& & & x_{1}, & x_{2}, & x_{3} & \geq & 0
\end{array}
$$

The corresponding MPS-format SAS data set is as follows:


You can also create this data set from an MPS-format flat file (examp.mps) by using the following SAS macro:

```
%mps2sasd(mpsfile = "examp.mps", outdata = example);
```

Note: The SAS macro \%MPS2SASD is provided in SAS/OR software. See "Converting an MPS/QPSFormat File: \%MPS2SASD" on page 590 for details.

You can use the following statement to call the OPTLP procedure:

```
title1 'The OPTLP Procedure';
proc optlp data = example
 objsense = min
 presolver = automatic
 algorithm = primal
 primalout = expout
 dualout = exdout;
run;
```

NOTE: The " N " designation for "COST" in the rows section of the data set example also specifies a minimization problem. See the section "ROWS Section" on page 583 for details.

The optimal primal and dual solutions are stored in the data sets expout and exdout, respectively, and are displayed in Figure 9.1.

```
title2 'Primal Solution';
proc print data=expout label;
run;
title2 'Dual Solution';
proc print data=exdout label;
run;
```

Figure 9.1 Primal and Dual Solution Output


For details about the type and status codes displayed for variables and constraints, see the section "Data Input and Output" on page 361.

## Syntax: OPTLP Procedure

The following statements are available in the OPTLP procedure:

```
PROC OPTLP < options>;
 DECOMP <options> ;
 DECOMP_MASTER < options> ;
 DECOMP_SUBPROB <options> ;
 PERFORMANCE < performance-options > ;
```


## Functional Summary

Table 9.1 summarizes the list of options available for the OPTLP procedure, classified by function.
Table 9.1 Options for the OPTLP Procedure

Description	Option
Data Set Options	
Specifies the input data set	DATA=
Specifies the dual input data set for warm start	DUALIN=
Specifies the dual solution output data set	DUALOUT=
Specifies whether the LP model is a maximization or	OBJSENSE=
minimization problem	
Specifies the primal input data set for warm start   Specifies the primal solution output data set	PRIMALIN=
Saves output data sets only if optimal	PRIMALOUT=
Solver Options	SAVE_ONLY_IF_OPTIMAL
Enables or disables IIS detection	IIS=
Specifies the type of solver   Specifies the type of solver called after network sim-   plex	ALGORITHM=
Presolve Option	
Specifies the type of presolve	
Control Options	PRESOLVER=
Specifies the feasibility tolerance	FEASTOL=
Specifies the frequency of printing solution progress	LOGFREQ=
Specifies the detail of solution progress printed in log	LOGLEVEL=
Specifies the maximum number of iterations	MAXITER=
Specifies the time limit for the optimization process	MAXTIME=
Specifies the optimality tolerance	OPTTOL=
Enables or disables printing summary	PRINTLEVEL=
Specifies units of CPU time or real time	TIMETYPE=
Simplex Algorithm Options	
Specifies the type of initial basis	BASIS=

Table 9.1 (continued)

Description	Option
Specifies the type of pricing strategy   Specifies the queue size for determining entering vari-   able	PRICETYPE=
Enables or disables scaling of the problem	
Interior Point Algorithm Options	SCALE=
Enables or disables interior crossover	CROSSOVER=
Specifies the stopping criterion based on duality gap   bility	STOP_DG= $=$
Specifies the stopping criterion based on dual infeasi-   sibility	STOP_DI=

## PROC OPTLP Statement

PROC OPTLP < options > ;
You can specify the following options in the PROC OPTLP statement.

## Data Set Options

DATA=SAS-data-set
specifies the input data set corresponding to the LP model. If this option is not specified, PROC OPTLP will use the most recently created SAS data set. See Chapter 14, "The MPS-Format SAS Data Set," for more details about the input data set.

DUALIN=SAS-data-set
DIN=SAS-data-set
specifies the input data set corresponding to the dual solution that is required for warm starting the primal and dual simplex solvers. See the section "Data Input and Output" on page 361 for details.

## DUALOUT=SAS-data-set

DOUT=SAS-data-set
specifies the output data set for the dual solution. This data set contains the dual solution information. See the section "Data Input and Output" on page 361 for details.

## OBJSENSE=option

specifies whether the LP model is a minimization or a maximization problem. You specify OBJSENSE=MIN for a minimization problem and OBJSENSE=MAX for a maximization problem. Alternatively, you can specify the objective sense in the input data set; see the section "ROWS Section" on page 583 for details. If for some reason the objective sense is specified differently in these two places, this option supersedes the objective sense specified in the input data set. If the objective sense is not specified anywhere, then PROC OPTLP interprets and solves the linear program as a minimization problem.

PRIMALIN=SAS-data-set
PIN=SAS-data-set
specifies the input data set corresponding to the primal solution that is required for warm starting the primal and dual simplex solvers. See the section "Data Input and Output" on page 361 for details.

## PRIMALOUT=SAS-data-set

POUT=SAS-data-set
specifies the output data set for the primal solution. This data set contains the primal solution information. See the section "Data Input and Output" on page 361 for details.

## SAVE_ONLY_IF_OPTIMAL

specifies that the PRIMALOUT= and DUALOUT= data sets be saved only if the final solution obtained by the solver at termination is optimal. If the PRIMALOUT= and DUALOUT= options are specified, then by default (that is, omitting the SAVE_ONLY_IF_OPTIMAL option), PROC OPTLP always saves the solutions obtained at termination, regardless of the final status. If the SAVE_ONLY_IF_OPTIMAL option is not specified, the output data sets can contain an intermediate solution, if one is available.

## Solver Options

## IIS=number | string

specifies whether PROC OPTLP attempts to identify a set of constraints and variables that form an irreducible infeasible set (IIS). Table 9.2 describes the valid values of the IIS= option.

Table 9.2 Values for IIS= Option

number	string	Description
0	OFF	Disables IIS detection.
1	ON	Enables IIS detection.

If an IIS is found, information about infeasible constraints or variable bounds can be found in the DUALOUT $=$ and PRIMALOUT= data sets. The default value of this option is OFF. See the section "Irreducible Infeasible Set" on page 375 for details.

## ALGORITHM=option

SOLVER=option
SOL=option
specifies one of the following LP solvers:

Option	Description
PRIMAL (PS)	Uses primal simplex solver.
DUAL (DS)	Uses dual simplex solver.
NETWORK (NS)	Uses network simplex solver.
INTERIORPOINT (IP)	Uses interior point solver.
CONCURRENT (CON) (experimental)	Uses several different algorithms
	in parallel.

The valid abbreviated value for each option is indicated in parentheses. By default, the dual simplex solver is used.

## ALGORITHM2=option

## SOLVER2=option

specifies one of the following LP solvers if ALGORITHM=NS:

Option	Description
PRIMAL (PS)	Uses primal simplex solver (after network simplex).
DUAL (DS)	Uses dual simplex solver (after network simplex).

The valid abbreviated value for each option is indicated in parentheses. By default, the OPTLP procedure decides which algorithm is best to use after calling the network simplex solver on the extracted network.

## Presolve Options

## PRESOLVER=number | string

PRESOL=number | string
specifies one of the following presolve options:

number	string	Description
0	NONE	Disables presolver.
-1	AUTOMATIC	Applies presolver by using default setting.   1
BASIC	Performs basic presolve like removing empty rows,   columns, and fixed variables.	
2	MODERATE	Performs basic presolve and apply other inexpensive   presolve techniques.
3	AGGRESSIVE	Performs moderate presolve and apply other aggres-   sive (but expensive) presolve techniques.

The default option is AUTOMATIC (-1). See the section "Presolve" on page 364 for details.

## Control Options

## FEASTOL= $\epsilon$

specifies the feasibility tolerance $\epsilon \in[1 \mathrm{E}-9,1 \mathrm{E}-4]$ for determining the feasibility of a variable value. The default value is $1 \mathrm{E}-6$.

## LOGFREQ=k

PRINTFREQ $=k$
specifies that the printing of the solution progress to the iteration $\log$ is to occur after every $k$ iterations. The print frequency, $k$, is an integer between zero and the largest four-byte signed integer, which is $2^{31}-1$.

The value $k=0$ disables the printing of the progress of the solution.

If the LOGFREQ= option is not specified, then PROC OPTLP displays the iteration log with a dynamic frequency according to the problem size if the primal or dual simplex solver is used, with frequency 10,000 if the network simplex solver is used, or with frequency 1 if the interior point solver is used.

## LOGLEVEL=number | string

PRINTLEVEL2=number | string
controls the amount of information displayed in the SAS log by the LP solver, from a short description of presolve information and summary to details at each iteration. Table 9.6 describes the valid values for this option.

Table 9.6 Values for LOGLEVEL= Option

number	string	Description
0	NONE	Turn off all solver-related messages in SAS log.
1	BASIC	Display a solver summary after stopping.   2
MODERATE	Print a solver summary and an iteration log by us-   ing the interval dictated by the LOGFREQ= op-   tion.	
3	AGGRESSIVE	Print a detailed solver summary and an itera-   tion log by using the interval dictated by the   LOGFREQ= option.

The default value is MODERATE.

## MAXITER=k

specifies the maximum number of iterations. The value $k$ can be any integer between one and the largest four-byte signed integer, which is $2^{31}-1$. If you do not specify this option, the procedure does not stop based on the number of iterations performed. For network simplex, this iteration limit corresponds to the solver called after network simplex (either primal or dual simplex).

## MAXTIME $=t$

specifies an upper limit of $t$ seconds of time for reading in the data and performing the optimization process. The value of the TIMETYPE= option determines the type of units used. If you do not specify this option, the procedure does not stop based on the amount of time elapsed. The value of $t$ can be any positive number; the default value is the positive number that has the largest absolute value that can be represented in your operating environment.

## OPTTOL= $\epsilon$

specifies the optimality tolerance $\epsilon \in[1 \mathrm{E}-9,1 \mathrm{E}-4]$ for declaring optimality. The default value is 1E-6.

## PRINTLEVEL=0| $\mathbf{1 |} \mathbf{2}$

specifies whether a summary of the problem and solution should be printed. If PRINTLEVEL=1, then the ODS (Output Delivery System) tables ProblemSummary, SolutionSummary, and PerformanceInfo are produced and printed. If PRINTLEVEL=2, then these tables are produced and printed along with an additional table called ProblemStatistics. If PRINTLEVEL $=0$, then no ODS tables are produced or printed. The default value is 1 .

For details about the ODS tables created by PROC OPTLP, see the section "ODS Tables" on page 371.

## TIMETYPE=number | string

specifies whether CPU time or real time is used for the MAXTIME= option and the _OROPTLP_ macro variable in a PROC OPTLP call. Table 9.7 describes the valid values of the TIMETYPE= option.

Table 9.7 Values for TIMETYPE= Option

number	string	Description
0	CPU	Specifies units of CPU time.
1	REAL	Specifies units of real time.

The default value of the TIMETYPE= option depends on the values of the NTHREADS= and NODES = options in the PERFORMANCE statement. See the section "PERFORMANCE Statement" on page 17 for more information about the NTHREADS= option. See Chapter 3, "Shared Concepts and Topics" (SAS High-Performance Analytics Server: User's Guide), for more information about the NODES $=$ option. (The NODES $=$ option requires SAS ${ }^{\circledR}$ High-Performance Analytics software.)

If you specify a value greater than 1 for either the NTHREADS= or the NODES= option, the default value of the TIMETYPE= option is REAL. If you specify a value of 1 for both the NTHREADS= and NODES $=$ options, the default value of the TIMETYPE $=$ option is CPU.

## Simplex Algorithm Options

BASIS=number | string
specifies the following options for generating an initial basis:

number	string	Description
0	CRASH	Generate an initial basis by using crash techniques (Maros   2003). The procedure creates a triangular basic matrix   consisting of both decision variables and slack variables.
1	SLACK	Generate an initial basis by using all slack variables.
2	WARMSTART	Start the primal and dual simplex solvers with a user-   specified initial basis. The PRIMALIN= and DUALIN=   data sets are required to specify an initial basis.

The default option for the primal simplex solver is CRASH ( 0 ). The default option for the dual simplex solver is SLACK(1). For network simplex, this option has no effect.

## PRICETYPE=number | string

specifies one of the following pricing strategies for the primal and dual simplex solvers:

number	string	Description
0	HYBRID	Use a hybrid of Devex and steepest-edge pricing   strategies. Available for the primal simplex solver   only.
1	PARTIAL	Use Dantzig's rule on a queue of decision variables.   Optionally, you can specify QUEUESIZE=. Available   for the primal simplex solver only.


number	string	Description
2	FULL	Use Dantzig's rule on all decision variables.
3	DEVEX	Use Devex pricing strategy.
4	STEEPESTEDGE	Use steepest-edge pricing strategy.

The default pricing strategy for the primal simplex solver is HYBRID (0) and for the dual simplex solver is STEEPESTEDGE (4). For the network simplex solver, this option applies only to the solver specified by the ALGORITHM2= option. See the section "Pricing Strategies for the Primal and Dual Simplex Solvers" on page 365 for details.

## QUEUESIZE=k

specifies the queue size $k \in[1, n]$, where $n$ is the number of decision variables. This queue is used for finding an entering variable in the simplex iteration. The default value is chosen adaptively based on the number of decision variables. This option is used only when PRICETYPE=PARTIAL.

## SCALE=number | string

specifies one of the following scaling options:

number	string	Description
0	NONE	Disable scaling.
-1	AUTOMATIC	Automatically apply scaling procedure if necessary.

The default option is AUTOMATIC ( -1 ).

## Interior Point Algorithm Options

## CROSSOVER=number | string

specifies whether to convert the interior point solution to a basic simplex solution. If the interior point algorithm terminates with a solution, the crossover algorithm uses the interior point solution to create an initial basic solution. After performing primal fixing and dual fixing, the crossover algorithm calls a simplex algorithm to locate an optimal basic solution.

number	string	Description
0	OFF	Do not convert the interior point solution to a basic sim-   plex solution.   1
ON	Convert the interior point solution to a basic simplex   solution.	

The default value of the CROSSOVER= option is OFF.

## STOP_DG= $\delta$

specifies the desired relative duality gap $\delta \in[1 \mathrm{E}-9,1 \mathrm{E}-4]$. This is the relative difference between the primal and dual objective function values and is the primary solution quality parameter. The default value is 1E-6. See the section "The Interior Point Algorithm" on page 366 for details.

STOP_DI= $\beta$
specifies the maximum allowed relative dual constraints violation $\beta \in[1 \mathrm{E}-9,1 \mathrm{E}-4]$. The default value is $1 \mathrm{E}-6$. See the section "The Interior Point Algorithm" on page 366 for details.

STOP_PI= $\alpha$
specifies the maximum allowed relative bound and primal constraints violation $\alpha \in[1 \mathrm{E}-9,1 \mathrm{E}-4]$. The default value is $1 \mathrm{E}-6$. See the section "The Interior Point Algorithm" on page 366 for details.

## Decomposition Algorithm Statements

The following statements are available for the decomposition algorithm in the OPTLP procedure:
DECOMP < options > ;
DECOMP_MASTER < options > ;
DECOMP_SUBPROB < options > ;
For more information about these statements, see Chapter 12, "The Decomposition Algorithm."

## PERFORMANCE Statement

## PERFORMANCE < performance-options > ;

The PERFORMANCE statement specifies performance-options for multithreaded (SMP) and distributed (MPP) computing, passes variables around the distributed computing environment, and requests detailed performance results of the OPTLP procedure.

With the PERFORMANCE statement, you can also control whether the OPTLP procedure executes in SMP or MPP mode. Only the decomposition algorithm, interior point algorithm, and concurrent LP algorithm can be run in SMP mode. Only the decomposition algorithm can be run in MPP mode.

The PERFORMANCE statement for multithreaded computing mode is documented in the section "PERFORMANCE Statement" on page 17 in Chapter 3, "Shared Concepts and Topics." The OPTLP procedure supports the deterministic and nondeterministic modes of the PARALLELMODE= option in the PERFORMANCE statement.

The PERFORMANCE statement for distributed computing mode is documented in Chapter 3, "Shared Concepts and Topics" (SAS High-Performance Analytics Server: User's Guide).

NOTE: Distributed computing mode requires SAS ${ }^{\circledR}$ High-Performance Analytics software.

## Details: OPTLP Procedure

## Data Input and Output

This subsection describes the PRIMALIN= and DUALIN= data sets required to warm start the primal and dual simplex solvers, and the PRIMALOUT $=$ and DUALOUT $=$ output data sets.

## Definitions of Variables in the PRIMALIN= Data Set

The PRIMALIN = data set has two required variables defined as follows:

## _VAR_

specifies the name of the decision variable.

## _STATUS_

specifies the status of the decision variable. It can take one of the following values:
B basic variable
L nonbasic variable at its lower bound
U nonbasic variable at its upper bound
F free variable
A newly added variable in the modified LP model when using the BASIS=WARMSTART option
Note: The PRIMALIN= data set is created from the PRIMALOUT= data set obtained from a previous "normal" run of PROC OPTLP-i.e., using only the DATA= data set as the input.

## Definitions of Variables in the DUALIN= Data Set

The DUALIN= data set also has two required variables defined as follows:

## _ROW

specifies the name of the constraint.

## _STATUS

specifies the status of the slack variable for a given constraint. It can take one of the following values:
B basic variable
L nonbasic variable at its lower bound
U nonbasic variable at its upper bound
F free variable
A newly added variable in the modified LP model when using the BASIS=WARMSTART option
Note: The DUALIN= data set is created from the DUALOUT= data set obtained from a previous "normal" run of PROC OPTLP-i.e., using only the DATA= data set as the input.

## Definitions of Variables in the PRIMALOUT= Data Set

The PRIMALOUT= data set contains the primal solution to the LP model; each observation corresponds to a variable of the LP problem. If the SAVE_ONLY_IF_OPTIMAL option is not specified, the PRIMALOUT= data set can contain an intermediate solution, if one is available. See Example 9.1 for an example of the PRIMALOUT= data set. The variables in the data set have the following names and meanings.

## _OBJ_ID_

specifies the name of the objective function. This is particularly useful when there are multiple objective functions, in which case each objective function has a unique name.

NOTE: PROC OPTLP does not support simultaneous optimization of multiple objective functions in this release.

## _RHS_ID_

specifies the name of the variable that contains the right-hand-side value of each constraint.

## VAR

specifies the name of the decision variable.

## _TYPE_

specifies the type of the decision variable. _TYPE_ can take one of the following values:
N nonnegative
D bounded (with both lower and upper bound)
F free
X fixed
O other (with either lower or upper bound)

## _OBJCOEF_

specifies the coefficient of the decision variable in the objective function.

## _LBOUND_

specifies the lower bound on the decision variable.

## _UBOUND

specifies the upper bound on the decision variable.

## _VALUE_

specifies the value of the decision variable.

## _STATUS_

specifies the status of the decision variable. _STATUS_can take one of the following values:
B basic variable
L nonbasic variable at its lower bound
U nonbasic variable at its upper bound
F free variable
S superbasic variable (a nonbasic variable with a value strictly between its bounds)

I LP model infeasible (all decision variables have _STATUS_ equal to I)
For the interior point solver with IIS= OFF, _STATUS_ is blank.
The following values can appear only if IIS= ON. See the section "Irreducible Infeasible Set" on page 375 for details.

I_L the lower bound of the variable is violated
I_U the upper bound of the variable is violated
I_F the fixed bound of the variable is violated

## _R_COST_

specifies the reduced cost of the decision variable, which is the amount by which the objective function is increased per unit increase in the decision variable. The reduced cost associated with the $i$ th variable is the $i$ th entry of the following vector:

$$
\left(\mathbf{c}^{\mathrm{T}}-\mathbf{c}_{\boldsymbol{B}}^{\mathrm{T}} \mathbf{B}^{-1} \mathbf{A}\right)
$$

where $\mathbf{B} \in \mathbb{R}^{m \times m}$ denotes the basis (matrix composed of basic columns of the constraints matrix $\left.\mathbf{A} \in \mathbb{R}^{m \times n}\right), \mathbf{c} \in \mathbb{R}^{n}$ is the vector of objective function coefficients, and $\mathbf{c}_{B} \in \mathbb{R}^{m}$ is the vector of objective coefficients of the variables in the basis.

## Definitions of Variables in the DUALOUT= Data Set

The DUALOUT = data set contains the dual solution to the LP model; each observation corresponds to a constraint of the LP problem. If the SAVE_ONLY_IF_OPTIMAL option is not specified, the PRIMALOUT= data set can contain an intermediate solution, if one is available. Information about the objective rows of the LP problems is not included. See Example 9.1 for an example of the DUALOUT= data set. The variables in the data set have the following names and meanings.

## _OBJ_ID_

specifies the name of the objective function. This is particularly useful when there are multiple objective functions, in which case each objective function has a unique name.
Note: PROC OPTLP does not support simultaneous optimization of multiple objective functions in this release.
_RHS_ID_
specifies the name of the variable that contains the right-hand-side value of each constraint.
_ROW_
specifies the name of the constraint.
_TYPE_
specifies the type of the constraint. _TYPE_can take one of the following values:
L "less than or equals" constraint
E equality constraint
G "greater than or equals" constraint
R ranged constraint (both "less than or equals" and "greater than or equals")

## RHS

specifies the value of the right-hand side of the constraint. It takes a missing value for a ranged constraint.

## _L_RHS_

specifies the lower bound of a ranged constraint. It takes a missing value for a non-ranged constraint.

## _U_RHS_

specifies the upper bound of a ranged constraint. It takes a missing value for a non-ranged constraint.

## _VALUE

specifies the value of the dual variable associated with the constraint.

## _STATUS

specifies the status of the slack variable for the constraint. _STATUS_ can take one of the following values:

B basic variable
L nonbasic variable at its lower bound
U nonbasic variable at its upper bound
F free variable
S superbasic variable (a nonbasic variable with a value strictly between its bounds)
I LP model infeasible (all decision variables have _STATUS_ equal to I)
The following values can appear only if option IIS= ON. See the section "Irreducible Infeasible Set" on page 375 for details.

I_L the "GE" $(\geq)$ condition of the constraint is violated
I_U the "LE" $(\leq)$ condition of the constraint is violated
I_F the "EQ" (=) condition of the constraint is violated

## _ACTIVITY_

specifies the left-hand-side value of a constraint. In other words, the value of _ACTIVITY_ for the $i$ th constraint would be equal to $\mathbf{a}_{i}^{\mathrm{T}} \mathbf{x}$, where $\mathbf{a}_{i}$ refers to the $i$ th row of the constraints matrix and $\mathbf{x}$ denotes the vector of current decision variable values.

## Presolve

Presolve in PROC OPTLP uses a variety of techniques to reduce the problem size, improve numerical stability, and detect infeasibility or unboundedness (Andersen and Andersen 1995; Gondzio 1997). During presolve, redundant constraints and variables are identified and removed. Presolve can further reduce the problem size by substituting variables. Variable substitution is a very effective technique, but it might occasionally increase the number of nonzero entries in the constraint matrix.

In most cases, using presolve is very helpful in reducing solution times. You can enable presolve at different levels or disable it by specifying the PRESOLVER= option.

## Pricing Strategies for the Primal and Dual Simplex Solvers

Several pricing strategies for the primal and dual simplex solvers are available. Pricing strategies determine which variable enters the basis at each simplex pivot. They can be controlled by specifying the PRICETYPE $=$ option.

The primal simplex solver has the following five pricing strategies:
PARTIAL uses Dantzig's most violated reduced cost rule (Dantzig 1963). It scans a queue of decision variables and selects the variable with the most violated reduced cost as the entering variable. You can optionally specify the QUEUESIZE= option to control the length of this queue.

FULL uses Dantzig's most violated reduced cost rule. It compares the reduced costs of all decision variables and selects the variable with the most violated reduced cost as the entering variable.

DEVEX
STEEPESTEDGE
HYBRID
implements the Devex pricing strategy developed by Harris (1973).
uses the steepest-edge pricing strategy developed by Forrest and Goldfarb (1992). uses a hybrid of the Devex and steepest-edge pricing strategies.

The dual simplex solver has only three pricing strategies available: FULL, DEVEX, and STEEPESTEDGE.

## Warm Start for the Primal and Dual Simplex Solvers

You can warm start the primal and dual simplex solvers by specifying the option BASIS=WARMSTART. Additionally you need to specify the PRIMALIN= and DUALIN= data sets. The primal and dual simplex solvers start with the basis thus provided. If the given basis cannot form a valid basis, the solvers use the basis generated using their crash techniques.

After an LP model is solved using the primal and dual simplex solvers, the BASIS=WARMSTART option enables you to perform sensitivity analysis such as modifying the objective function, changing the righthand sides of the constraints, adding or deleting constraints or decision variables, and combinations of these cases. A faster solution to such a modified LP model can be obtained by starting with the basis in the optimal solution to the original LP model. This can be done by using the BASIS=WARMSTART option, modifying the DATA= input data set, and specifying the PRIMALIN= and DUALIN= data sets. Example 9.4 and Example 9.5 illustrate how to reoptimize an LP problem with a modified objective function and a modified right-hand side by using this technique. Example 9.6 shows how to reoptimize an LP problem after adding a new constraint.

The network simplex solver ignores the option BASIS=WARMSTART.
Caution: Since the presolver uses the objective function and/or right-hand-side information, the basis provided by you might not be valid for the presolved model. It is therefore recommended that you turn the PRESOLVER= option off when using BASIS=WARMSTART.

## The Network Simplex Algorithm

The network simplex solver in PROC OPTLP attempts to leverage the speed of the network simplex algorithm to more efficiently solve linear programs by using the following process:

1. It heuristically extracts the largest possible network substructure from the original problem.
2. It uses the network simplex algorithm to solve for an optimal solution to this substructure.
3. It uses this solution to construct an advanced basis to warm-start either the primal or dual simplex solver on the original linear programming problem.

The network simplex algorithm is a specialized version of the simplex algorithm that uses spanning-tree bases to more efficiently solve linear programming problems that have a pure network form. Such LPs can be modeled using a formulation over a directed graph, as a minimum-cost flow problem. Let $G=(N, A)$ be a directed graph, where $N$ denotes the nodes and $A$ denotes the arcs of the graph. The decision variable $x_{i j}$ denotes the amount of flow sent between node $i$ and node $j$. The cost per unit of flow on the arcs is designated by $c_{i j}$, and the amount of flow sent across each arc is bounded to be within $\left[l_{i j}, u_{i j}\right]$. The demand (or supply) at each node is designated as $b_{i}$, where $b_{i}>0$ denotes a supply node and $b_{i}<0$ denotes a demand node. The corresponding linear programming problem is as follows:

$$
\begin{array}{rcl}
\min & \sum_{(i, j) \in A} c_{i j} x_{i j} & \\
\text { subject to } & \sum_{(i, j) \in A} x_{i j}-\sum_{(j, i) \in A} x_{j i} & =b_{i} \quad \forall i \in N \\
& x_{i j} & \leq u_{i j} \quad \forall(i, j) \in A \\
x_{i j} & \geq l_{i j} \quad \forall(i, j) \in A
\end{array}
$$

The network simplex algorithm used in PROC OPTLP is the primal network simplex algorithm. This algorithm finds the optimal primal feasible solution and a dual solution that satisfies complementary slackness. Sometimes the directed graph $G$ is disconnected. In this case, the problem can be decomposed into its weakly connected components and each minimum-cost flow problem can be solved separately. After solving each component, the optimal basis for the network substructure is augmented with the non-network variables and constraints from the original problem. This advanced basis is then used as a starting point for the primal or dual simplex method. The solver automatically selects the solver to use after network simplex. However, you can override this selection with the ALGORITHM2= option.

The network simplex algorithm can be more efficient than the other solvers on problems with a large network substructure. You can view the size of the network structure in the log.

## The Interior Point Algorithm

The interior point solver in PROC OPTLP implements an infeasible primal-dual predictor-corrector interior point algorithm. To illustrate the algorithm and the concepts of duality and dual infeasibility, consider the following LP formulation (the primal):

$$
\begin{aligned}
\min & \mathbf{c}^{\mathrm{T}} \mathbf{x} \\
\text { subject to } & \mathbf{A x} \geq \mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

The corresponding dual formulation is as follows:

$$
\begin{aligned}
\max & \mathbf{b}^{\mathrm{T}} \mathbf{y} \\
\text { subject to } & \mathbf{A}^{\mathrm{T}} \mathbf{y}+\mathbf{w}
\end{aligned} \quad \begin{aligned}
& \mathbf{c} \\
&
\end{aligned}
$$

where $\mathbf{y} \in \mathbb{R}^{m}$ refers to the vector of dual variables and $\mathbf{w} \in \mathbb{R}^{n}$ refers to the vector of dual slack variables.
The dual formulation makes an important contribution to the certificate of optimality for the primal formulation. The primal and dual constraints combined with complementarity conditions define the first-order optimality conditions, also known as KKT (Karush-Kuhn-Tucker) conditions, which can be stated as follows:

$$
\begin{aligned}
& \mathbf{A x}-\mathbf{s}=\mathbf{b} \quad \text { (primal feasibility) } \\
& \mathbf{A}^{\mathrm{T}} \mathbf{y}+\mathbf{w}=\mathbf{c} \\
& \mathbf{W X e}=\mathbf{0} \quad \text { (complementarity) } \\
& \mathbf{S Y e}=\mathbf{0} \\
& \mathbf{( c o m p l e m e n t a r i t y )} \\
& \mathbf{x}, \mathbf{y}, \mathbf{w}, \mathbf{s} \geq \mathbf{0}
\end{aligned}
$$

where $\mathbf{e} \equiv(1, \ldots, 1)^{\mathrm{T}}$ of appropriate dimension and $\mathrm{s} \in \mathbb{R}^{m}$ is the vector of primal slack variables.
Note: Slack variables (the $s$ vector) are automatically introduced by the solver when necessary; it is therefore recommended that you not introduce any slack variables explicitly. This enables the solver to handle slack variables much more efficiently.

The letters $\mathbf{X}, \mathbf{Y}, \mathbf{W}$, and $\mathbf{S}$ denote matrices with corresponding $x, y, w$, and $s$ on the main diagonal and zero elsewhere, as in the following example:

$$
\mathbf{X} \equiv\left[\begin{array}{cccc}
x_{1} & 0 & \cdots & 0 \\
0 & x_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & x_{n}
\end{array}\right]
$$

If $\left(x^{*}, \mathbf{y}^{*}, \mathbf{w}^{*}, s^{*}\right)$ is a solution of the previously defined system of equations that represent the KKT conditions, then $\mathrm{x}^{*}$ is also an optimal solution to the original LP model.

At each iteration the interior point algorithm solves a large, sparse system of linear equations,

$$
\left[\begin{array}{cc}
\mathbf{Y}^{-1} \mathbf{S} & \mathbf{A} \\
\mathbf{A}^{\mathrm{T}} & -\mathbf{X}^{-1} \mathbf{W}
\end{array}\right]\left[\begin{array}{c}
\Delta \mathbf{y} \\
\Delta \mathrm{x}
\end{array}\right]=\left[\begin{array}{c}
\Xi \\
\Theta
\end{array}\right]
$$

where $\Delta \mathbf{x}$ and $\Delta \mathbf{y}$ denote the vector of search directions in the primal and dual spaces, respectively, and $\Theta$ and $\Xi$ constitute the vector of the right-hand sides.

The preceding system is known as the reduced KKT system. PROC OPTLP uses a preconditioned quasiminimum residual algorithm to solve this system of equations efficiently.

An important feature of the interior point solver is that it takes full advantage of the sparsity in the constraint matrix, thereby enabling it to efficiently solve large-scale linear programs.

The interior point algorithm works simultaneously in the primal and dual spaces. It attains optimality when both primal and dual feasibility are achieved and when complementarity conditions hold. Therefore, it is of interest to observe the following four measures where $\|v\|_{2}$ is the Euclidean norm of the vector $v$ :

- relative primal infeasibility measure $\alpha$ :

$$
\alpha=\frac{\|\mathbf{A x}-\mathbf{b}-\mathbf{s}\|_{2}}{\|\mathbf{b}\|_{2}+1}
$$

- relative dual infeasibility measure $\beta$ :

$$
\beta=\frac{\left\|\mathbf{c}-\mathbf{A}^{\mathrm{T}} \mathbf{y}-\mathbf{w}\right\|_{2}}{\|\mathbf{c}\|_{2}+1}
$$

- relative duality gap $\delta$ :

$$
\delta=\frac{\left|\mathbf{c}^{\mathrm{T}} \mathbf{x}-\mathbf{b}^{\mathrm{T}} \mathbf{y}\right|}{\left|\mathbf{c}^{\mathrm{T}} \mathbf{x}\right|+1}
$$

- absolute complementarity $\gamma$ :

$$
\gamma=\sum_{i=1}^{n} x_{i} w_{i}+\sum_{i=1}^{m} y_{i} s_{i}
$$

These measures are displayed in the iteration log.

## Iteration Log for the Primal and Dual Simplex Solvers

The primal and dual simplex solvers implement a two-phase simplex algorithm. Phase I finds a feasible solution, which phase II improves to an optimal solution.

When the LOGFREQ= option has a value of 1 , the following information is printed in the iteration log:
Algorithm indicates which simplex method is running by printing the letter P (primal) or D (dual).
Phase indicates whether the solver is in phase I or phase II of the simplex method.
Iteration indicates the iteration number.
Objective Value indicates the current amount of infeasibility in phase I and the primal objective value of the current solution in phase II.

Time
Entering Variable indicates the entering pivot variable. A slack variable that enters the basis is indicated by the corresponding row name followed by "(S)". If the entering nonbasic variable has distinct, finite lower and upper bounds, then a "bound swap" can take place in the primal simplex method.
Leaving Variable indicates the leaving pivot variable. A slack variable that leaves the basis is indicated by the corresponding row name followed by "(S)". The leaving variable is the same as the entering variable if a bound swap has taken place.

When you omit the LOGFREQ= option or specify a value greater than 1 , only the algorithm, phase, iteration, objective value, and time information is printed in the iteration log.

The behavior of objective values in the iteration log depends on both the current phase and the chosen solver. In phase I, both simplex methods have artificial objective values that decrease to 0 when a feasible solution is
found. For the dual simplex method, phase II maintains a dual feasible solution, so a minimization problem has increasing objective values in the iteration log. For the primal simplex method, phase II maintains a primal feasible solution, so a minimization problem has decreasing objective values in the iteration log.

During the solution process, some elements of the LP model might be perturbed to improve performance. In this case the objective values that are printed correspond to the perturbed problem. After reaching optimality for the perturbed problem, PROC OPTLP solves the original problem by switching from the primal simplex method to the dual simplex method (or from the dual to the primal simplex method). Because the problem might be perturbed again, this process can result in several changes between the two algorithms.

## Iteration Log for the Network Simplex Solver

After finding the embedded network and formulating the appropriate relaxation, the network simplex solver uses a primal network simplex algorithm. In the case of a connected network, with one (weakly connected) component, the log shows the progress of the simplex algorithm. The following information is displayed in the iteration log:

Iteration indicates the iteration number.
PrimalObj indicates the primal objective value of the current solution.
Primal Infeas indicates the maximum primal infeasibility of the current solution.
Time indicates the time spent on the current component by network simplex.
The frequency of the simplex iteration $\log$ is controlled by the LOGFREQ=option. The default value of the LOGFREQ $=$ option is 10,000 .

If the network relaxation is disconnected, the information in the iteration log shows progress at the component level. The following information is displayed in the iteration log:

Component indicates the component number being processed.
Nodes indicates the number of nodes in this component.
Arcs indicates the number of arcs in this component.
Iterations indicates the number of simplex iterations needed to solve this component.
Time indicates the time spent so far in network simplex.
The frequency of the component iteration log is controlled by the LOGFREQ= option. In this case, the default value of the LOGFREQ= option is determined by the size of the network.
The LOGLEVEL= option adjusts the amount of detail shown. By default, LOGLEVEL= is set to MODERATE and reports as described previously. If set to NONE, no information is shown. If set to BASIC, the only information shown is a summary of the network relaxation and the time spent solving the relaxation. If set to AGGRESSIVE, in the case of one component, the log displays as described previously; in the case of multiple components, for each component, a separate simplex iteration $\log$ is displayed.

## Iteration Log for the Interior Point Solver

The interior point solver implements an infeasible primal-dual predictor-corrector interior point algorithm. The following information is displayed in the iteration log:

Iter indicates the iteration number.
Complement indicates the (absolute) complementarity.
Duality Gap indicates the (relative) duality gap.
Primal Infeas indicates the (relative) primal infeasibility measure.
Bound Infeas indicates the (relative) bound infeasibility measure.
Dual Infeas indicates the (relative) dual infeasibility measure.
If the sequence of solutions converges to an optimal solution of the problem, you should see all columns in the iteration log converge to zero or very close to zero. If they do not, it can be the result of insufficient iterations being performed to reach optimality. In this case, you might need to increase the value specified in the MAXITER= or MAXTIME= options. If the complementarity or the duality gap do not converge, the problem might be infeasible or unbounded. If the infeasibility columns do not converge, the problem might be infeasible.

## Iteration Log for the Crossover Algorithm

The crossover algorithm takes an optimal solution from the interior point solver and transforms it into an optimal basic solution. The iterations of the crossover algorithm are similar to simplex iterations; this similarity is reflected in the format of the iteration logs.

When LOGFREQ $=1$, the following information is printed in the iteration log:
Phase indicates whether the primal crossover (PC) or dual crossover (DC) technique is used.
Iteration indicates the iteration number.

Objective Value
indicates the total amount by which the superbasic variables are off their bound. This value decreases to 0 as the crossover algorithm progresses.

Time indicates the time elapsed (in seconds) since the beginning of the crossover algorithm.
Entering Variable indicates the entering pivot variable. A slack variable that enters the basis is indicated by the corresponding row name followed by "(S)."
Leaving Variable indicates the leaving pivot variable. A slack variable that leaves the basis is indicated by the corresponding row name followed by "(S)."

When you omit the LOGFREQ= option or specify a value greater than 1 , only the phase, iteration, objective value, and time information is printed in the iteration log.

After all the superbasic variables have been eliminated, the crossover algorithm continues with regular primal or dual simplex iterations.

## Concurrent LP (Experimental)

The ALGORITHM=CON option starts several different linear optimization algorithms in parallel in a shared-memory environment. The OPTLP procedure automatically determines which algorithms to run and how many threads to assign to each algorithm. If sufficient resources are available, the procedure runs all four standard algorithms. When the first algorithm ends, the procedure returns the results from that algorithm and terminates any other algorithms that are still running. If you specify a value of DETERMINISTIC for the PARALLELMODE= option in the PERFORMANCE statement, the algorithm for which the results are returned is not necessarily the one that finished first. The OPTLP procedure deterministically selects the algorithm for which the results are returned. Regardless of which mode (deterministic or nondeterministic) is in effect, terminating algorithms that are still running might take a significant amount of time.

During concurrent optimization, the procedure displays the iteration log for the dual simplex algorithm. See the section "Iteration Log for the Primal and Dual Simplex Solvers" on page 368 for more information about this iteration log. Upon termination, the procedure displays the iteration log for the algorithm that finishes first, unless the dual simplex algorithm finishes first. If you specify LOGLEVEL=AGGRESSIVE, the OPTLP procedure displays the iteration logs for all algorithms that are run concurrently.

If you specify PRINTLEVEL=2 and ALGORITHM=CON, the OPTLP procedure produces an ODS table called ConcurrentSummary. This table contains a summary of the solution statuses of all algorithms that are run concurrently.

## ODS Tables

PROC OPTLP creates three Output Delivery System (ODS) tables by default. The first table, ProblemSummary, is a summary of the input LP problem. The second table, SolutionSummary, is a brief summary of the solution status. The third table, PerformanceInfo, is a summary of performance options. You can use ODS table names to select tables and create output data sets. For more information about ODS, see SAS Output Delivery System: Procedures Guide.

If you specify a value of 2 for the PRINTLEVEL= option, then the ProblemStatistics table is produced. This table contains information about the problem data. For more information, see the section "Problem Statistics" on page 374. If you specify PRINTLEVEL=2 and ALGORITHM=CON, the ConcurrentSummary table is produced. This table contains solution status information for all algorithms that are run concurrently. For more information, see the section "Concurrent LP (Experimental)" on page 371.

If you specify the DETAILS option in the PERFORMANCE statement, then the Timing table is produced.
Table 9.12 lists all the ODS tables that can be produced by the OPTLP procedure, along with the statement and option specifications required to produce each table.

Table 9.12 ODS Tables Produced by PROC OPTLP

ODS Table Name	Description	Statement	Option
ProblemSummary	Summary of the input LP problem	PROC OPTLP	PRINTLEVEL=1   (default)
SolutionSummary	Summary of the solution status	PROC OPTLP	PRINTLEVEL=1   (default)
ProblemStatistics	Description of input problem data	PROC OPTLP	PRINTLEVEL=2

Table 9.12 (continued)

ODS Table Name	Description	Statement	Option
ConcurrentSummary	Summary of the solution status for   all algorithms run concurrently	PROC OPTLP	PRINTLEVEL=2,
PerformanceInfo	List of performance options and   their values	PROC OPTLP	ALGORITHM=CON   PRINTLEVEL=1   (default)
Timing	Detailed solution timing	PERFORMANCE	DETAILS

A typical output of PROC OPTLP is shown in Figure 9.2.
Figure 9.2 Typical OPTLP Output

The OPTLP Procedure	
Problem Name   Objective Sense   Objective Function   RHS	ADLITTLE   Minimization   .z....   ZZZZ0001
Number of Variables	97
Bounded Above	0
Bounded Below	97
Bounded Above and Below	0
Free	0
Fixed	0
Number of Constraints	56
LE (<=)	40
EQ (=)	15
GE ( $>=$ )	1
Range	0
Constraint Coefficients	383
Performance Information	
Execution Mode On Client   Number of Threads 4	

Figure 9.2 continued

Solution Summary	
Solver	LP
Algorithm	Dual Simplex
Objective Function	, Z .
Solution Status	Optimal
Objective Value	225494.96316
Primal Infeasibility	$2.273737 \mathrm{E}-13$
Dual Infeasibility	$2.573323 \mathrm{E}-13$
Bound Infeasibility	0
Iterations	92
Presolve Time	0.00
Solution Time	0.00

You can create output data sets from these tables by using the ODS OUTPUT statement. This can be useful, for example, when you want to create a report to summarize multiple PROC OPTLP runs. The output data sets corresponding to the preceding output are shown in Figure 9.3, where you can also find (at the row following the heading of each data set in display) the variable names that are used in the table definition (template) of each table.

Figure 9.3 ODS Output Data Sets

Problem Summary			
Obs	Label1	cValue1	nValue1
1	Problem Name	ADLITTLE	-
2	Objective Sense	Minimization	.
3	Objective Function	. Z . . .	-
4	RHS	ZZZZ0001	.
5			.
6	Number of Variables	97	97.000000
7	Bounded Above	0	0
8	Bounded Below	97	97.000000
9	Bounded Above and Below	0	0
10	Free	0	0
11	Fixed	0	0
12			.
13	Number of Constraints	56	56.000000
14	LE (<=)	40	40.000000
15	EQ (=)	15	15.000000
16	GE (>=)	1	1.000000
17	Range	0	0
18			.
19	Constraint Coefficients	383	383.000000

Figure 9.3 continued

Solution Summary			
Obs	Label1	cValue1	nValue1
1	Solver	LP	-
2	Algorithm	Dual Simplex	.
3	Objective Function	. Z . . .	.
4	Solution Status	Optimal	.
5	Objective Value	225494.96316	225495
6			.
7	Primal Infeasibility	2.273737E-13	$2.273737 \mathrm{E}-13$
8	Dual Infeasibility	2.573323E-13	$2.573323 \mathrm{E}-13$
9	Bound Infeasibility	0	0
10			.
11	Iterations	92	92.000000
12	Presolve Time	0.00	0
13	Solution Time	0.00	0

## Problem Statistics

Optimizers can encounter difficulty when solving poorly formulated models. Information about data magnitude provides a simple gauge to determine how well a model is formulated. For example, a model whose constraint matrix contains one very large entry (on the order of $10^{9}$ ) can cause difficulty when the remaining entries are single-digit numbers. The PRINTLEVEL $=2$ option in the OPTLP procedure causes the ODS table ProblemStatistics to be generated. This table provides basic data magnitude information that enables you to improve the formulation of your models.

The example output in Figure 9.4 demonstrates the contents of the ODS table ProblemStatistics.

Figure 9.4 ODS Table ProblemStatistics


## Irreducible Infeasible Set

For a linear programming problem, an irreducible infeasible set (IIS) is an infeasible subset of constraints and variable bounds that will become feasible if any single constraint or variable bound is removed. It is possible to have more than one IIS in an infeasible LP. Identifying an IIS can help to isolate the structural infeasibility in an LP.

The presolver in the OPTLP procedure can detect infeasibility, but it only identifies the variable bound or constraint that triggers the infeasibility.

The IIS=ON option directs the OPTLP procedure to search for an IIS in a given LP. The presolver is not applied to the problem during the IIS search. If the OPTLP procedure detects an IIS, it first outputs the IIS to the data sets specified by the PRIMALOUT $=$ and DUALOUT $=$ options, and then it stops. The number of iterations that are reported in the macro variable and the ODS table is the total number of simplex iterations. This includes the initial LP solve and all subsequent iterations during the constraint deletion phase.

The IIS= option can add special values to the _STATUS_ variables in the output data sets. (See the section "Data Input and Output" on page 361 for more information.) For constraints, a status of "I_L", "I_U", or "I_F" indicates, respectively, the "GE" $(\geq)$, "LE" $(\leq)$, or "EQ" $(=)$ condition is violated. For range constraints, a status of "I_L" or "I_U" indicates, respectively, that the lower or upper bound of the constraint is violated. For variables, a status of "I_L", "I_U", or "I_F" indicates, respectively, the lower, upper, or fixed bound of the variable is violated. From this information, you can identify names of the constraints (variables) in the IIS as well as the corresponding bound where infeasibility occurs.

Making any one of the constraints or variable bounds in the IIS nonbinding removes the infeasibility from the IIS. In some cases, changing a right-hand side or bound by a finite amount removes the infeasibility; however, the only way to guarantee removal of the infeasibility is to set the appropriate right-hand side or bound to $\infty$ or $-\infty$. Because it is possible for an LP to have multiple irreducible infeasible sets, simply removing the infeasibility from one set might not make the entire problem feasible. To make the entire problem feasible, you can rerun the LP solver with IIS=ON specified after removing the infeasibility from an IIS. Repeat this process until the LP solver no longer detects an IIS. The resulting problem is feasible. This approach to infeasibility repair can produce different end problems depending on which right-hand sides and bounds you choose to relax.

Changing different constraints and bounds can require considerably different changes to the MPS-format SAS data set. For example, if you used the default lower bound of 0 for a variable but you want to relax the lower bound to $-\infty$, you might need to add a LB row to the BOUNDS section of the data set. For more information about changing variable and constraint bounds, see Chapter 14, "The MPS-Format SAS Data Set."

The IIS = option in PROC OPTLP uses two different methods to identify an IIS. Based on the result of the initial solve, the sensitivity filter removes several constraints and variable bounds at once while still maintaining infeasibility. This phase is quick and dramatically reduces the size of the IIS. Following that, the deletion filter removes each remaining constraint and variable bound one by one to check which of them are needed to get an infeasible system. This second phase is more time consuming, but it ensures that the IIS set returned by PROC OPTLP is indeed irreducible. The progress of the deletion filter is reported at regular intervals. Occasionally, the sensitivity filter might be called again during the deletion filter to improve performance.

See Example 9.7 for an example demonstrating the use of the IIS= option in locating and removing infeasibilities.

## Macro Variable _OROPTLP_

The OPTLP procedure defines a macro variable named _OROPTLP_. This variable contains a character string that indicates the status of the OPTLP procedure upon termination. The various terms of the variable are interpreted as follows.

## STATUS

indicates the solver status at termination. It can take one of the following values:

OK
SYNTAX_ERROR
DATA_ERROR
OUT_OF_MEMORY
IO_ERROR
ERROR

The procedure terminated normally.
Incorrect syntax was used.
The input data were inconsistent.
Insufficient memory was allocated to the procedure.
A problem occurred in reading or writing data.
The status cannot be classified into any of the preceding categories.

## ALGORITHM

indicates the algorithm that produces the solution data in the macro variable. This term appears only when STATUS=OK. It can take one of the following values:

PS The primal simplex algorithm produced the solution data.
DS The dual simplex algorithm produced the solution data.
NS The network simplex algorithm produced the solution data.
IP The interior point algorithm produced the solution data.
DECOMP The decomposition algorithm produced the solution data.
When you run algorithms concurrently (ALGORITHM=CON), this term indicates which algorithm is the first to terminate.

## SOLUTION_STATUS

indicates the solution status at termination. It can take one of the following values:

OPTIMAL
CONDITIONAL OPTIMAL

FEASIBLE
INFEASIBLE
UNBOUNDED
INFEASIBLE_OR_UNBOUNDED
ITERATION LIMIT REACHED TIME_LIMIT_REACHED

FAILED

The solution is optimal.
The solution is optimal, but some infeasibilities (primal, dual or bound) exceed tolerances due to scaling or preprocessing.
The problem is feasible.
The problem is infeasible.
The problem is unbounded.
The problem is infeasible or unbounded.
The maximum allowable number of iterations was reached.
The solver reached its execution time limit.
The solver failed to converge, possibly due to numerical issues.

## OBJECTIVE

indicates the objective value obtained by the solver at termination.

## PRIMAL_INFEASIBILITY

indicates, for the primal simplex and dual simplex solvers, the maximum (absolute) violation of the primal constraints by the primal solution. For the interior point solver, this term indicates the relative violation of the primal constraints by the primal solution.

## DUAL_INFEASIBILITY

indicates, for the primal simplex and dual simplex solvers, the maximum (absolute) violation of the dual constraints by the dual solution. For the interior point solver, this term indicates the relative violation of the dual constraints by the dual solution.

## BOUND_INFEASIBILITY

indicates, for the primal simplex and dual simplex solvers, the maximum (absolute) violation of the lower or upper bounds (or both) by the primal solution. For the interior point solver, this term indicates the relative violation of the lower or upper bounds (or both) by the primal solution.

## DUALITY_GAP

 indicates the (relative) duality gap. This term appears only if the interior point algorithm is used.
## COMPLEMENTARITY

indicates the (absolute) complementarity. This term appears only if the interior point algorithm is used.

## ITERATIONS

indicates the number of iterations taken to solve the problem. When the network simplex algorithm is used, this term indicates the number of network simplex iterations taken to solve the network relaxation. When crossover is enabled, this term indicates the number of interior point iterations taken to solve the problem.

## ITERATIONS2

indicates the number of simplex iterations performed by the secondary solver. In network simplex, the secondary solver is selected automatically, unless a value has been specified for the ALGORITHM2= option. When crossover is enabled, the secondary solver is selected automatically. This term appears only if the network simplex solver is used or if crossover is enabled.

## PRESOLVE_TIME

indicates the time (in seconds) used in preprocessing.

## SOLUTION_TIME

indicates the time (in seconds) taken to solve the problem, including preprocessing time.
Note: The time reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real time. The type is determined by the TIMETYPE= option.
When SOLUTION_STATUS has a value of OPTIMAL, CONDITIONAL_OPTIMAL, ITERATION_LIMIT_REACHED, or TIME_LIMIT_REACHED, all terms of the _OROPTLP_ macro variable are present; for other values of SOLUTION_STATUS, some terms do not appear.

## Examples: OPTLP Procedure

## Example 9.1: Oil Refinery Problem

Consider an oil refinery scenario. A step in refining crude oil into finished oil products involves a distillation process that splits crude into various streams. Suppose there are three types of crude available: Arabian light (a_l), Arabian heavy (a_h), and Brega (br). These crudes are distilled into light naphtha (na_l), intermediate naphtha (na_i), and heating oil (h_o). These in turn are blended into two types of jet fuel. Jet fuel j_1 is made up of $30 \%$ intermediate naphtha and $70 \%$ heating oil, and jet fuel $j_{-} 2$ is made up of $20 \%$ light naphtha and $80 \%$ heating oil. What amounts of the three crudes maximize the profit from producing jet fuel (j_1, $\mathrm{j}_{-}$)? This problem can be formulated as the following linear program:


The constraints "blend1" and "blend2" ensure that $\mathrm{j}_{-} 1$ and $\mathrm{j}_{-} 2$ are made with the specified amounts of na_i and na_l, respectively. The constraint "blend3" is actually the reduced form of the following constraints:

$$
\begin{aligned}
\text { h_o1 } & \geq 0.7 \mathrm{j}_{-} 1 \\
\text { h_o2 } & \geq 0.8 \mathrm{j} 2 \\
\text { h_o1 }+ \text { h_o2 } & \leq \text { h_o }
\end{aligned}
$$

where h_o1 and h_o2 are dummy variables.
You can use the following SAS code to create the input data set ex1:

```
data ex1;
 input field1 $ field2 $ field3 $ field4 field5 $ field6;
 datalines;
NAME EX1 llll
 N profit
E napha_1
E napha_i
E htg_oil
L blend1
```



You can use the following call to PROC OPTLP to solve the LP problem:

```
proc optlp data=ex1
 objsense = max
 algorithm = primal
 primalout = exlpout
 dualout = ex1dout
 logfreq = 1;
run;
%put &_OROPTLP_;
```

Note that the OBJSENSE=MAX option is used to indicate that the objective function is to be maximized.
The primal and dual solutions are displayed in Output 9.1.1.

Output 9.1.1 Example 1: Primal and Dual Solution Output


The progress of the solution is printed to the log as follows.
Output 9.1.2 Log: Solution Progress

```
NOTE: The problem EX1 has }8\mathrm{ variables (0 free, O fixed).
NOTE: The problem has 6 constraints (}3\textrm{LE},3\textrm{EQ},\textrm{O}\textrm{GE},0\mathrm{ range).
NOTE: The problem has 19 constraint coefficients.
WARNING: The objective sense has been changed to maximization.
NOTE: The LP presolver value AUTOMATIC is applied.
NOTE: The LP presolver removed 3 variables and 3 constraints.
NOTE: The LP presolver removed 6 constraint coefficients.
NOTE: The presolved problem has 5 variables, 3 constraints, and 13 constraint
 coefficients.
NOTE: The LP solver is called.
NOTE: The Primal Simplex algorithm is used.
\begin{tabular}{|c|c|c|c|c|c|}
\hline Phase & Iteration & \begin{tabular}{l}
Objective \\
Value
\end{tabular} & Time & \begin{tabular}{l}
Entering \\
Variable
\end{tabular} & \begin{tabular}{l}
Leaving \\
Variable
\end{tabular} \\
\hline P 1 & 1 & \(0.000000 \mathrm{e}+00\) & 0 & & \\
\hline P 2 & 2 & \(0.000000 \mathrm{e}+00\) & 0 & j_1 & blend1 (S) \\
\hline P 2 & 3 & \(1.405640 \mathrm{e}-01\) & 0 & j_2 & blend3 (S) \\
\hline P 2 & 4 & \(1.454487 \mathrm{e}-01\) & 0 & a_1 & blend2 (S) \\
\hline P 2 & 5 & \(2.379819 \mathrm{e}-01\) & 0 & br & a_1 \\
\hline P 2 & 6 & \(1.202394 \mathrm{e}+03\) & 0 & blend2 (S) & br \\
\hline P 2 & 7 & \(1.348074 \mathrm{e}+03\) & 0 & & \\
\hline D 2 & 8 & \(1.347917 \mathrm{e}+03\) & 0 & & \\
\hline D 2 & 9 & \(1.347917 \mathrm{e}+03\) & 0 & & \\
\hline
\end{tabular}
NOTE: Optimal.
NOTE: Objective = 1347.91667.
NOTE: The Primal Simplex solve time is 0.00 seconds.
NOTE: The data set WORK.EX1POUT has }8\mathrm{ observations and 10 variables.
NOTE: The data set WORK.EX1DOUT has }6\mathrm{ observations and 10 variables.
```

Note that the \%put statement immediately after the OPTLP procedure prints value of the macro variable _OROPTLP_ to the log as follows.

Output 9.1.3 Log: Value of the Macro Variable _OROPTLP_

```
STATUS=OK ALGORITHM=PS SOLUTION_STATUS=OPTIMAL OBJECTIVE=1347.9166667
PRIMAL_INFEASIBILITY=2.888315E-15 DUAL_INFEASIBILITY=0
BOUND_INFEASIBILITY=0 ITERATIONS=9 PRESOLVE_TIME=0.00 SOLUTION_TIME=0.00
```

The value briefly summarizes the status of the OPTLP procedure upon termination.

## Example 9.2: Using the Interior Point Solver

You can also solve the oil refinery problem described in Example 9.1 by using the interior point solver. You can create the input data set from an external MPS-format flat file by using the SAS macro \%MPS2SASD or SAS DATA step code, both of which are described in "Getting Started: OPTLP Procedure" on page 350. You can use the following SAS code to solve the problem:

```
proc optlp data=ex1
 objsense \(=\) max
 algorithm = ip
 primalout = ex1ipout
 dualout = ex1idout
 logfreq \(=1\);
run;
```

The optimal solution is displayed in Output 9.2.1.
Output 9.2.1 Interior Point Solver: Primal Solution Output

Obs	The OPTLP Procedure Primal Solution				
	Objective Function ID	RHS   ID	Variable Name	Variable Type	Objective Coefficient
1	profit		a_1	D	-175
2	profit		$a _h$	D	-165
3	profit		br	D	-205
4	profit		na_l	N	0
5	profit		na_i	N	0
6	profit		h_o	N	0
7	profit		j_1	N	350
8	profit		j_2	N	350
	Lower	Upper	Variable	Variable	Reduced
Obs	Bound	Bound	Value	Status	Cost
1	0	110	110.000		.
2	0	165	0.000		.
3	0	80	80.000		.
4	$0 \quad 1$	1.7977E308	7.450		.
5	01	1.7977 E 308	21.800		.
6	01	1.7977 E 308	77.300		.
7	$0 \quad 1$	1.7977 E 308	72.667		-
8	01	1.7977E308	33.042		-

The iteration $\log$ is displayed in Output 9.2.2

## Output 9.2.2 Log: Solution Progress

```
NOTE: The problem EX1 has 8 variables (0 free, O fixed).
NOTE: The problem has 6 constraints (3 LE, 3 EQ, O GE, 0 range).
NOTE: The problem has 19 constraint coefficients.
WARNING: The objective sense has been changed to maximization.
NOTE: The LP presolver value AUTOMATIC is applied.
NOTE: The LP presolver removed 3 variables and 3 constraints.
NOTE: The LP presolver removed 6 constraint coefficients.
NOTE: The presolved problem has 5 variables, 3 constraints, and 13 constraint
 coefficients.
NOTE: The LP solver is called.
NOTE: The Interior Point algorithm is used.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Interior Point algorithm is using up to 4 threads.
\begin{tabular}{rrrrrrr}
Iter & Complement & Duality Gap & Primal & Bound & Dual \\
0 & \(6.20283 e+03\) & \(5.78876 \mathrm{e}+02\) & \(5.68712 \mathrm{e}-15\) & \(0.00000 \mathrm{e}+00\) & \(3.17241 \mathrm{e}+01\) \\
1 & \(2.09898 \mathrm{e}+03\) & \(1.31204 \mathrm{e}+02\) & \(1.46482 \mathrm{e}-14\) & \(2.87422 \mathrm{e}-17\) & \(1.00841 \mathrm{e}+01\) \\
2 & \(5.67772 \mathrm{e}+01\) & \(3.75090 \mathrm{e}+01\) & \(1.79424 \mathrm{e}-14\) & \(6.40072 \mathrm{e}-17\) & \(3.01831 \mathrm{e}-01\) \\
3 & \(1.65558 \mathrm{e}+00\) & \(2.91985 \mathrm{e}-01\) & \(2.62897 \mathrm{e}-14\) & \(2.99468 \mathrm{e}-17\) & \(4.53328 \mathrm{e}-02\) \\
4 & \(5.90964 \mathrm{e}-01\) & \(1.08785 \mathrm{e}-01\) & \(1.56135 \mathrm{e}-14\) & \(2.02409 \mathrm{e}-17\) & \(4.53328 \mathrm{e}-04\) \\
5 & \(6.05069 \mathrm{e}-03\) & \(1.01179 \mathrm{e}-03\) & \(1.87802 \mathrm{e}-14\) & \(2.50428 \mathrm{e}-17\) & \(4.57642 \mathrm{e}-06\) \\
6 & \(6.05112 \mathrm{e}-05\) & \(1.01093 \mathrm{e}-05\) & \(1.68631 \mathrm{e}-14\) & \(1.84100 \mathrm{e}-17\) & \(4.57643 \mathrm{e}-08\) \\
7 & \(6.05112 \mathrm{e}-07\) & \(1.01092 \mathrm{e}-07\) & \(1.74638 \mathrm{e}-14\) & \(4.48274 \mathrm{e}-17\) & \(4.57643 \mathrm{e}-10\)
\end{tabular}
NOTE: Optimal.
NOTE: Objective = 1347.91653.
NOTE: The Interior Point solve time is 0.00 seconds.
NOTE: The data set WORK.EX1IPOUT has }8\mathrm{ observations and 10 variables.
NOTE: The data set WORK.EX1IDOUT has }6\mathrm{ observations and 10 variables.
```


## Example 9.3: The Diet Problem

Consider the problem of diet optimization. There are six different foods: bread, milk, cheese, potato, fish, and yogurt. The cost and nutrition values per unit are displayed in Table 9.13.

Table 9.13 Cost and Nutrition Values

	Bread	Milk	Cheese	Potato	Fish	Yogurt
Cost	2.0	3.5	8.0	1.5	11.0	1.0
Protein, $\mathbf{g}$	4.0	8.0	7.0	1.3	8.0	9.2
Fat, $\mathbf{g}$	1.0	5.0	9.0	0.1	7.0	1.0
Carbohydrates, $\mathbf{g}$	15.0	11.7	0.4	22.6	0.0	17.0
Calories	90	120	106	97	130	180

The objective is to find a minimum-cost diet that contains at least 300 calories, not more than 10 grams of protein, not less than 10 grams of carbohydrates, and not less than 8 grams of fat. In addition, the diet should contain at least 0.5 unit of fish and no more than 1 unit of milk.

You can use the following SAS code to create the MPS-format input data set:

```
data ex3;
 input field1 $ field2 $ field3 $ field4 field5 $ field6;
 datalines;
\begin{tabular}{|c|c|c|c|c|c|}
\hline NAME & . & EX3 & - & - & - \\
\hline ROWS & . & . & - & - & - \\
\hline N & diet & - & - & . & . \\
\hline G & calories & - & - & - & - \\
\hline L & protein & - & - & - & - \\
\hline G & fat & - & - & - & - \\
\hline G & carbs & - & - & - & - \\
\hline COLUMNS & . & . & - & - & . \\
\hline . & br & diet & 2 & calories & 90 \\
\hline - & br & protein & 4 & fat & 1 \\
\hline - & br & carbs & 15 & - & . \\
\hline - & mi & diet & 3.5 & calories & 120 \\
\hline & mi & protein & 8 & fat & 5 \\
\hline
\end{tabular}
. mi carbs 11.7
. ch diet 8 calories 106
. ch protein 7 fat 9
\begin{tabular}{llllll}
. ch & po & Carbs & .4 & diet & 1.5 \\
. calories & 97
\end{tabular}
. po protein 1.3 fat . 1
. po carbs 22.6
fi diet 11 calories 130
fi protein 8 fat 7
fi carbs 0 . \(\quad\) calories \(\quad 180\)
yo diet 1 calories 180
yo protein 9.2 fat 1
yo carbs 17 .
\begin{tabular}{lll}
carbs & 17 &. \\
. &. &
\end{tabular}
calories 300 protein 10
fat 8 carbs 10
BOUNDS
\begin{tabular}{llllll}
UP & LO & mi & 1 &. & . \\
LO & fi & .5 &. & .
\end{tabular}
ENDATA
;
```

You can solve the diet problem by using PROC OPTLP as follows:

```
proc optlp data=ex3
 presolver = none
 algorithm = ps
 primalout = ex3pout
 dualout = ex3dout
 logfreq = 1;
run;
```

The solution summary and the optimal primal solution are displayed in Output 9.3.1.

Output 9.3.1 Diet Problem: Solution Summary and Optimal Primal Solution


The cost of the optimal diet is 12.08 units.

## Example 9.4: Reoptimizing after Modifying the Objective Function

Using the diet problem described in Example 9.3, this example illustrates how to reoptimize an LP problem after modifying the objective function.

Assume that the optimal solution of the diet problem is found and the optimal solutions are stored in the data sets ex3pout and ex3dout.

Suppose the cost of cheese increases from 8 to 10 per unit and the cost of fish decreases from 11 to 7 per serving unit. The COLUMNS section in the input data set ex3 is updated (and the data set is saved as ex4) as follows:


```
RHS
ENDATA
;
```

You can use the following DATA step to create the data set ex4:

```
data ex4;
 input field1 $ field2 $ field3 $ field4 field5 $ field6;
 datalines;
NAME Ellll
 N diet
 calories
 protein
 fat
 carbs
 br diet 2 calories 90
 br protein 4 fat 1
 br carbs 15 .
 mi diet 3.5 calories 120
 mi protein 8 fat 5
 mi carbs 11.7
 ch diet 10 calories }10
 ch protein 7 fat 9
 ch carbs . 4 .
 po diet 1.5 calories 97
 po protein 1.3 fat .1
 po carbs 22.6 .
 fi diet 7 calories }13
 fi protein 8 fat 7
```

-	fi	carbs	0	.	.
.	yo	diet	1	calories	180
-	yo	protein	9.2	fat	1
-	yo	carbs	17	-	.
RHS	.	-	.	-	.
-	-	calories	300	protein	10
.	.	fat	8	carbs	10
BOUNDS	-	.	-	-	.
UP	-	mi	1	-	-
LO	-	fi	. 5	-	-
ENDATA	-	-	-	-	-
;					

You can use the BASIS=WARMSTART option (and the ex3pout and ex3dout data sets from Example 9.3) in the following call to PROC OPTLP to solve the modified problem:

```
proc optlp data=ex4
 presolver = none
 basis = warmstart
 primalin = ex3pout
 dualin = ex3dout
 algorithm = primal
 primalout = ex4pout
 dualout = ex4dout
 logfreq = 1;
run;
```

The following iteration log indicates that it takes the primal simplex solver no extra iterations to solve the modified problem by using BASIS=WARMSTART, since the optimal solution to the LP problem in Example 9.3 remains optimal after the objective function is changed.

Output 9.4.1 Iteration Log

```
NOTE: The problem EX4 has 6 variables (0 free, O fixed).
NOTE: The problem has 4 constraints (1 LE, O EQ, 3 GE, 0 range).
NOTE: The problem has 23 constraint coefficients.
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Primal Simplex algorithm is used.
\begin{tabular}{cccrcr}
& Objective & & Entering & Leaving \\
Phase & Iteration & Value & Time & Variable & Variable \\
P 2 & 1 & \(1.098034 e+01\) & 0 & &
\end{tabular}
NOTE: Optimal.
NOTE: Objective = 10.9803355.
NOTE: The Primal Simplex solve time is 0.00 seconds.
NOTE: The data set WORK.EX4POUT has }6\mathrm{ observations and 10 variables.
NOTE: The data set WORK.EX4DOUT has 4 observations and 10 variables.
```

Note that the primal simplex solver is preferred because the primal solution to the original LP is still feasible for the modified problem in this case.

## Example 9.5: Reoptimizing after Modifying the Right-Hand Side

You can also modify the right-hand side of your problem and use the BASIS=WARMSTART option to obtain an optimal solution more quickly. Since the dual solution to the original LP is still feasible for the modified problem in this case, the dual simplex solver is preferred. This case is illustrated by using the same diet problem as in Example 9.3. Assume that you now need a diet that supplies at least 150 calories. The RHS section in the input data set ex3 is updated (and the data set is saved as ex5) as follows:

RHS			.	.	
.		calories	150	protein	10
.		fat	8	carbs	10
BOUNDS		-	-	.	

You can use the following DATA step to create the data set ex5:


```
LO . fi
ENDATA
;
```

You can use the BASIS=WARMSTART option in the following call to PROC OPTLP to solve the modified problem:

```
proc optlp data=ex5
 presolver = none
 basis = warmstart
 primalin = ex3pout
 dualin = ex3dout
 algorithm = dual
 primalout = ex5pout
 dualout = ex5dout
 logfreq = 1;
run;
```

Note that the dual simplex solver is preferred because the dual solution to the last solved LP is still feasible for the modified problem in this case.

The following iteration log indicates that it takes the dual simplex solver just one more phase II iteration to solve the modified problem by using BASIS=WARMSTART.

Output 9.5.1 Iteration Log

```
NOTE: The problem EX5 has 6 variables (0 free, O fixed).
NOTE: The problem has 4 constraints (1 LE, O EQ, 3 GE, 0 range).
NOTE: The problem has 23 constraint coefficients.
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Dual Simplex algorithm is used.
\begin{tabular}{cccccc}
& & & Ebjective & Entering & Leaving \\
Phase Iteration & Value & Time & Variable & Variable \\
D 2 & 1 & \(8.813205 e+00\) & 0 & calories (S) & carbs (S) \\
D 2 & 2 & \(9.174413 e+00\) & 0 & &
\end{tabular}
NOTE: Optimal.
NOTE: Objective = 9.1744132.
NOTE: The Dual Simplex solve time is 0.00 seconds.
NOTE: The data set WORK.EX5POUT has }6\mathrm{ observations and 10 variables.
NOTE: The data set WORK.EX5DOUT has 4 observations and 10 variables.
```

Compare this with the following call to PROC OPTLP:

```
proc optlp data=ex5
 presolver = none
 algorithm = dual
 logfreq = 1;
run;
```

This call to PROC OPTLP solves the modified problem "from scratch" (without using the BASIS=WARMSTART option) and produces the following iteration log.

Output 9.5.2 Iteration Log

```
NOTE: The problem EX5 has 6 variables (0 free, O fixed).
NOTE: The problem has 4 constraints (1 LE, O EQ, 3 GE, 0 range).
NOTE: The problem has 23 constraint coefficients.
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Dual Simplex algorithm is used.
\begin{tabular}{crcrcrl}
Phase Iteration & \begin{tabular}{c}
Objective \\
Value
\end{tabular} & Time & \begin{tabular}{c}
Entering \\
Variable
\end{tabular} & \begin{tabular}{c}
Leaving \\
Variable
\end{tabular} \\
D 1 & 1 & \(0.000000 \mathrm{e}+00\) & 0 & & \\
D 2 & 2 & \(5.500000 e+00\) & 0 & mi & fat (S) \\
D 2 & 3 & \(8.650000 e+00\) & 0 & ch & protein (S) \\
D 2 & 4 & \(8.925676 e+00\) & 0 & po & carbs (S) \\
D 2 & 5 & \(9.174413 e+00\) & 0 & & \\
D 2 & 6 & \(9.174413 e+00\) & 0 & &
\end{tabular}
```

NOTE: Optimal.
NOTE: Objective $=9.1744132$.
NOTE: The Dual Simplex solve time is 0.00 seconds.

It is clear that using the BASIS=WARMSTART option saves computation time. For larger or more complex examples, the benefits of using this option are more pronounced.

## Example 9.6: Reoptimizing after Adding a New Constraint

Assume that after solving the diet problem in Example 9.3 you need to add a new constraint on sodium intake of no more than $550 \mathrm{mg} /$ day for adults. The updated nutrition data are given in Table 9.14.

Table 9.14 Updated Cost and Nutrition Values

	Bread	Milk	Cheese	Potato	Fish	Yogurt
Cost	2.0	3.5	8.0	1.5	11.0	1.0
Protein, $\mathbf{g}$	4.0	8.0	7.0	1.3	8.0	9.2
Fat, $\mathbf{g}$	1.0	5.0	9.0	0.1	7.0	1.0
Carbohydrates, $\mathbf{g}$	15.0	11.7	0.4	22.6	0.0	17.0
Calories, Cal	90	120	106	97	130	180
sodium, $\mathbf{m g}$	148	122	337	186	56	132

The input data set ex3 is updated (and the data set is saved as ex6) as follows:

```
/* added a new constraint to the diet problem */
data ex6;
 input field1 $ field2 $ field3 $ field4 field5 $ field6;
 datalines;
NAME . EX6
ROWS
 N diet
 G calories
 L protein
 G fat
```

G	carbs	.	.	.	.
L	sodium	.	.	.	.
COLUMNS	.	.	.	.	.
.	br	diet	2	calories	90
.	br	protein	4	fat	1
.	br	carbs	15	sodium	148
.	mi	diet	3.5	calories	120
-	mi	protein	8	fat	5
.	mi	carbs	11.7	sodium	122
.	ch	diet	8	calories	106
-	ch	protein	7	fat	9
.	ch	carbs	. 4	sodium	337
.	po	diet	1.5	calories	97
.	po	protein	1.3	fat	. 1
.	po	carbs	22.6	sodium	186
-	fi	diet	11	calories	130
-	fi	protein	8	fat	7
-	fi	carbs	0	sodium	56
.	yo	diet	1	calories	180
.	yo	protein	9.2	fat	1
-	yo	carbs	17	sodium	132
RHS	.	.	.	.	.
.	-	calories	300	protein	10
-	-	fat	8	carbs	10
.	-	sodium	550	-	.
BOUNDS	.	.	.	.	.
UP	.	mi	1	.	.
LO	.	fi	. 5	-	-
ENDATA	-	-	.	-	-

For the modified problem you can warm start the primal and dual simplex solvers to get a solution faster. The dual simplex solver is preferred because a dual feasible solution can be readily constructed from the optimal solution to the diet optimization problem.

Since there is a new constraint in the modified problem, you can use the following SAS code to create a new DUALIN= data set ex6din with this information:

```
data ex6newcon;
 ROW='sodium '; _STATUS_='A';
 output;
run;
/* create a new DUALIN= data set to include the new constraint */
data ex6din;
 set ex3dout ex6newcon;
run;
```

Note that this step is optional. In this example, you can still use the data set ex3dout as the DUALIN= data set to solve the modified LP problem by using the BASIS=WARMSTART option. PROC OPTLP validates the PRIMALIN= and DUALIN= data sets against the input model. Any new variable (or constraint) in the model is added to the PRIMALIN= (or DUALIN=) data set, and its status is assigned to be ' $A$ '. The primal and dual simplex solvers decide its corresponding status internally. Any variable in the PRIMALIN= and DUALIN= data sets but not in the input model is removed.

The _ROW_ and _STATUS_ columns of the DUALIN= data set ex6din are shown in Output 9.6.1.
Output 9.6.1 DUALIN= Data Set with a Newly Added Constraint

	Obs	_ROW_	_STATUS_
1	calories	U	
2	protein	L	
3	fat	U	
4	carbs	B	
	5	sodium	A

The dual simplex solver is called to solve the modified diet optimization problem more quickly with the following SAS code:

```
proc optlp data=ex6
 objsense=min
 presolver=none
 algorithm=ds
 primalout=ex6pout
 dualout=ex6dout
 scale=none
 logfreq=1
 basis=warmstart
 primalin=ex3pout
 dualin=ex6din;
run;
```

The optimal primal and dual solutions of the modified problem are displayed in Output 9.6.2.

Output 9.6.2 Primal and Dual Solution Output


The iteration log shown in Output 9.6.3 indicates that it takes the dual simplex solver no more iterations to solve the modified problem by using the BASIS=WARMSTART option, since the optimal solution to the original problem remains optimal after one more constraint is added.

Output 9.6.3 Iteration Log

```
NOTE: The problem EX6 has 6 variables (0 free, O fixed).
NOTE: The problem has 5 constraints (2 LE, O EQ, 3 GE, O range).
NOTE: The problem has 29 constraint coefficients.
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Dual Simplex algorithm is used.
\begin{tabular}{ccccc}
& Objective & & Entering & Leaving \\
Phase Iteration & Value & Time & Variable & Variable
\end{tabular}
NOTE: Optimal.
NOTE: Objective = 12.0813379.
NOTE: The Dual Simplex solve time is 0.00 seconds.
NOTE: The data set WORK.EX6POUT has }6\mathrm{ observations and 10 variables.
NOTE: The data set WORK.EX6DOUT has 5 observations and 10 variables.
```

Both this example and Example 9.4 illustrate the situation in which the optimal solution does not change after some perturbation of the parameters of the LP problem. The simplex solver starts from an optimal solution and quickly verifies the optimality. Usually the optimal solution of the slightly perturbed problem can be obtained after performing relatively small number of iterations if starting with the optimal solution of the original problem. In such cases you can expect a dramatic reduction of computation time, for instance, if you want to solve a large LP problem and a slightly perturbed version of this problem by using the BASIS=WARMSTART option rather than solving both problems from scratch.

## Example 9.7: Finding an Irreducible Infeasible Set

This example demonstrates the use of the IIS= option to locate an irreducible infeasible set. Suppose you want to solve a linear program that has the following simple formulation:

min		$x_{1}$	$+$	$x_{2}$	$+$	$x_{3}$			(cost)
subject to		$x_{1}$	$+$	$x_{2}$			$\geq$	10	(con1)
		$x_{1}$			+	$x_{3}$	$\leq$	4	(con2)
	$4 \leq$			$x_{2}$	$+$	$x_{3}$	$\leq$	5	(con3)
					$x_{1}$	$x_{2}$	$\geq$	0	
				0	$\leq$	$x_{3}$	$\leq$	3	

The corresponding MPS-format SAS data set is as follows:

```
/* infeasible */
data exiis;
 input field1 $ field2 $ field3 $ field4 field5 $ field6;
datalines;
NAME
ROWS
 N cost
 G con1
 L con2
 G con3
```

COLUMNS	.	.	.	.	.
.	x1	cost	1	con1	1
-	x1	con2	1	.	.
.	x 2	cost	1	con1	1
.	x2	con 3	1	.	.
.	x3	cost	1	con2	1
.	x3	con3	1	.	.
RHS	.	.	.	-	.
.	rhs	con1	10	con2	4
	rhs	con3	4	.	.
RANGES	.	.	.	.	.
.	r1	con3	1	.	.
BOUNDS	.	.	.	.	-
UP	b1	x3	3	.	.
ENDATA	.	.	.	.	-

It is easy to verify that the following three constraints (or rows) and one variable (or column) bound form an IIS for this problem.

$x$	$+x_{2}$			$\geq$	10	(con1)
$x_{1}$		$+$	$x_{3}$	$\leq$	4	(con2)
	$x_{2}$	+	$x_{3}$	$\leq$	5	(con3)
			$x_{3}$	$\geq$	0	

You can use the IIS=ON option to detect this IIS by using the following statements:

```
proc optlp data=exiis
 iis=on
 primalout=iis_vars
 dualout=iis_cons
 logfreq=1;
run;
```

The OPTLP procedure outputs the detected IIS to the data sets specified by the PRIMALOUT= and DUALOUT $=$ options, then stops. The notes shown in Output 9.7.1 are printed to the log.

Output 9.7.1 The IIS= Option: Log

```
NOTE: The problem has 3 variables (0 free, 0 fixed).
NOTE: The problem has 3 constraints (1 LE, O EQ, 1 GE, 1 range).
NOTE: The problem has 6 constraint coefficients.
NOTE: The IIS option is enabled.
\begin{tabular}{cccccc}
& & Objective & & Entering & Leaving \\
Phase Iteration & Value & Time & Variable & Variable \\
P 1 & 1 & \(1.400000 e+01\) & 0 & \(\mathbf{x 2}\) & con3 (S) \\
P 1 & 2 & \(5.000000 e+00\) & 0 & \(\mathbf{x 1}\) & con2 (S) \\
P 1 & 3 & \(1.000000 e+00\) & 0 & & \\
P 1 & 4 & \(1.000000 e+00\) & 0 & &
\end{tabular}
NOTE: The IIS option found the problem to be infeasible.
NOTE: Applying the IIS sensitivity filter.
NOTE: The sensitivity filter removed 1 constraints and 3 variable bounds.
NOTE: Applying the IIS deletion filter.
NOTE: Processing constraints.
Processed Removed Time
000
 1 0
200
NOTE: Processing variable bounds.
 Processed Removed Time
\begin{tabular}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
2 & 0 & 0 \\
3 & 0 & 0
\end{tabular}
NOTE: The deletion filter removed O constraints and O variable bounds.
NOTE: The IIS option found the problem to be infeasible.
NOTE: The IIS option found an irreducible infeasible set with 1 variables and 3
 constraints.
NOTE: The IIS solve time is 0.00 seconds.
NOTE: The data set WORK.IIS_VARS has 3 observations and 10 variables.
NOTE: The data set WORK.IIS_CONS has 3 observations and 10 variables.
```

The data sets iis_cons and iis_vars are shown in Output 9.7.2.

Output 9.7.2 Identify Rows and Columns in the IIS


The constraint $x_{2}+x_{3} \leq 5$, which is an element of the IIS, is created by the RANGES section. The original constraint is con $3, \mathrm{a}$ " $\geq$ " constraint with an RHS value of 4 . If you choose to remove the constraint $x_{2}+x_{3} \leq 5$, you can accomplish this by removing con3 from the RANGES section in the MPS-format SAS data set exiis. Since con3 is the only observation in the section, the identifier observation can also be removed. The modified LP problem is specified in the following SAS statements:

```
 /* dropping con3, feasible */
data exiisf;
 input field1 $ field2 $ field3 $ field4 field5 $ field6;
datalines;
NAME
ROWS
 N cost
 G con1
 L con2
```



Since one element of the IIS has been removed, the modified LP problem should no longer contain the infeasible set. Due to the size of this problem, there should be no additional irreducible infeasible sets. You can confirm this by submitting the following SAS statements:

```
proc optlp data=exiisf
 pout=po
 iis=on;
run;
```

The notes shown in Output 9.7.3 are printed to the log.
Output 9.7.3 The IIS= Option: Log

```
NOTE: The problem has 3 variables (0 free, O fixed).
NOTE: The problem has 3 constraints (1 LE, O EQ, 2 GE, 0 range).
NOTE: The problem has }6\mathrm{ constraint coefficients.
NOTE: The IIS option is enabled.
 Objective
\begin{tabular}{rrrr}
Phase & Iteration & Value & Time \\
P 1 & 1 & \(1.400000 \mathrm{e}+01\) & 0 \\
P 1 & 3 & \(0.000000 \mathrm{e}+00\) & 0
\end{tabular}
NOTE: The IIS option found the problem to be feasible.
NOTE: The IIS solve time is 0.00 seconds.
NOTE: The data set WORK.EXSS has }8\mathrm{ observations and 3 variables.
NOTE: The data set WORK.PO has 3 observations and 10 variables.
```

The solution summary and the primal solution are displayed in Output 9.7.4.

Output 9.7.4 Infeasibility Removed

Solution Summary					
Obs	Label1	cValue1			nValue1
1	Solver		LP		-
2	Algorithm		Primal Simplex		-
3	Objective Function		cost		-
4	Solution Status		Feasible		-
5					.
6	Iterations		3		3.000000
7	Presolve Time		0.00		0
8	Solution Time		0.00		0
	Primal Solution				
	Objective				
	Function	RHS	Variable	Variable	Objective
Obs	ID	ID	Name	Type	Coefficient
1	cost	rhs	x1	N	1
2	cost	rhs	x2	N	1
3	cost	rhs	x3	D	1
	Lower	Upper	Variable	VariableStatus	Reduced
Obs	Bound	Bound	Value		Cost
1	$0 \quad 1$	1.7977 E 308	-		-
2	$0 \quad 1$	1.7977 E 308	.		-
3	0	3	-		-

## Example 9.8: Using the Network Simplex Solver

This example demonstrates how to use the network simplex solver to find the minimum-cost flow in a directed graph. Consider the directed graph in Figure 9.5, which appears in Ahuja, Magnanti, and Orlin (1993).

Figure 9.5 Minimum Cost Network Flow Problem: Data


You can use the following SAS statements to create the input data set ex8:

input field1 \$8. field2 \$13. @25 field3 \$13. field4 @53 field5 \$13. field6; datalines;					
NAME		.	.	.	-
ROWS		-	.	-	
N	obj	-	.	.	-
E	balance['1']	-	.	.	-
E	balance['2']	-	.	.	-
E	balance['3']	.	.	.	-
E	balance['4']	.	.	.	-
E	balance['5']	.	-	.	-
E	balance['6']	.	-	.	.
E	balance['7']	.	.	.	.
E	balance['8']	.	.	.	.
COLUMNS		.	.	.	.
-	x['1', ${ }^{\text {c }}$ ]	obj	2	balance['1']	1
-	x['1', ${ }^{\text {c }}$ ] $]$	balance['4']	-1	.	.
-	x['2', '1']	obj	1	balance['1']	-1
-	x['2', '1']	balance['2']	1	.	.
.	x['2', '3']	balance['2']	1	balance['3']	-1
.	x['2', '6']	obj	6	balance['2']	1
-	x['2', '6']	balance['6']	-1	.	.
-	x['3', '4']	obj	1	balance['3']	1
-	x['3', '4']	balance['4']	-1	.	.
-	x['3', '5']	obj	4	balance['3']	1
-	x['3', '5']	balance['5']	-1	.	.
-	x['4', '7']	obj	5	balance['4']	1
-	x['4', '7']	balance['7']	-1	.	.
-	x['5', '6']	obj	2	balance['5']	1
-	x['5', '6']	balance['6']	-1	.	.
-	x['5', '7']	obj	7	balance['5']	1
-	x['5', '7']	balance['7']	-1	.	.
-	x['6', '8']	obj	8	balance['6']	1
.	x['6','8']	balance['8']	-1	.	.


.	x['7', '8']	obj	9	balance['7']	1
-	x['7', $\mathbf{8 ' ]}^{\prime}$	balance['8']	-1	.	.
RHS	.	.	.	-	
.	. RHS .	balance['1']	10	-	
-	. RHS .	balance['2']	20	-	
-	. RHS .	balance['4']	-5	-	
-	. RHS .	balance['7']	-15	-	
.	. RHS .	balance['8']	-10	.	
BOUNDS	.	.	.	.	
UP	. BOUNDS .	x['1', ${ }^{\text {c }}$ ]	15	-	
UP	. BOUNDS .	x['2', '1']	10	-	
UP	. BOUNDS .	x['2', '3']	10	-	
UP	. BOUNDS .	x['2', '6']	10	.	
UP	. BOUNDS .	x['3', '4']	5	-	
UP	. BOUNDS .	x['3', '5']	10	-	
UP	. BOUNDS .	x['4', '7']	10	.	
UP	. BOUNDS .	x['5', '6']	20	.	
UP	. BOUNDS .	x['5', '7']	15	-	.
UP	. BOUNDS .	x['6', '8']	10	.	.
UP	. BOUNDS .	x['7', '8']	15	-	.
ENDATA	.	.	.	-	-

You can use the following call to PROC OPTLP to find the minimum-cost flow:

```
proc optlp
 presolver = none
 printlevel = 2
 logfreq = 1
 data = ex8
 primalout = ex8out
 algorithm = ns;
run;
```

The optimal solution is displayed in Output 9.8.1.

Output 9.8.1 Network Simplex Solver: Primal Solution Output


The optimal solution is represented graphically in Figure 9.6.
Figure 9.6 Minimum Cost Network Flow Problem: Optimal Solution


The iteration $\log$ is displayed in Output 9.8.2.

## Output 9.8.2 Log: Solution Progress

```
NOTE: The problem has 11 variables (0 free, O fixed).
NOTE: The problem has }8\mathrm{ constraints (0 LE, 8 EQ, O GE, O range).
NOTE: The problem has 22 constraint coefficients.
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Network Simplex algorithm is used.
NOTE: The network has }8\mathrm{ rows (100.00%), 11 columns (100.00%), and 1 component.
NOTE: The network extraction and setup time is 0.00 seconds.
 Primal Primal Dual
 Iteration Objective Infeasibility Infeasibility Time
\begin{tabular}{rrrrr}
1 & 0 & 20.0000000 & 109.0000000 & 0.00 \\
2 & 0 & 20.0000000 & 109.0000000 & 0.00 \\
3 & 5.0000000 & 15.0000000 & 104.0000000 & 0.00 \\
4 & 5.0000000 & 15.0000000 & 103.0000000 & 0.00 \\
5 & 75.0000000 & 15.0000000 & 103.0000000 & 0.00 \\
6 & 75.0000000 & 15.0000000 & 99.0000000 & 0.00 \\
7 & 130.0000000 & 10.0000000 & 96.0000000 & 0.00 \\
8 & 270.0000000 & 0 & 0 & 0.00
\end{tabular}
```

NOTE: The Network Simplex solve time is 0.00 seconds.
NOTE: The total Network Simplex solve time is 0.00 seconds.
NOTE: Optimal.
NOTE: Objective $=270$.
NOTE: The data set WORK.EX8OUT has 11 observations and 10 variables.

## References

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993), Network Flows, Prentice-Hall, New Jersey.
Andersen, E. D. and Andersen, K. D. (1995), "Presolving in Linear Programming," Mathematical Programming, 71(2), 221-245.

Chinneck, J. W. (2008), Feasibility and Infeasibility in Optimization: Algorithms and Computational Methods, volume 118 of International Series in Operations Research and Management Sciences, New York: Springer.

Dantzig, G. B. (1963), Linear Programming and Extensions, Princeton, NJ: Princeton University Press.
Forrest, J. J. and Goldfarb, D. (1992), "Steepest-Edge Simplex Algorithms for Linear Programming," Mathematical Programming, 5, 1-28.

Gondzio, J. (1997), "Presolve Analysis of Linear Programs prior to Applying an Interior Point Method," INFORMS Journal on Computing, 9 (1), 73-91.

Harris, P. M. J. (1973), "Pivot Selection Methods in the Devex LP Code," Mathematical Programming, 57, 341-374.

Maros, I. (2003), Computational Techniques of the Simplex Method, Kluwer Academic.

## Chapter 10 <br> The OPTMILP Procedure

## Contents

Overview: OPTMILP Procedure ..... 405
Getting Started: OPTMILP Procedure ..... 406
Syntax: OPTMILP Procedure ..... 409
Functional Summary ..... 409
PROC OPTMILP Statement ..... 410
Decomposition Algorithm Statements ..... 419
PERFORMANCE Statement ..... 419
TUNER Statement ..... 419
Details: OPTMILP Procedure ..... 420
Data Input and Output ..... 420
Warm Start ..... 422
Branch-and-Bound Algorithm ..... 422
Controlling the Branch-and-Bound Algorithm ..... 423
Presolve and Probing ..... 425
Cutting Planes ..... 425
Primal Heuristics ..... 427
Node Log ..... 427
ODS Tables ..... 428
Macro Variable _OROPTMILP ..... 432
Examples: OPTMILP Procedure ..... 435
Example 10.1: Simple Integer Linear Program ..... 435
Example 10.2: MIPLIB Benchmark Instance ..... 440
Example 10.3: Facility Location ..... 444
Example 10.4: Scheduling ..... 451
References ..... 461

## Overview: OPTMILP Procedure

The OPTMILP procedure is a solver for general mixed integer linear programs (MILPs).
A standard mixed integer linear program has the formulation

$$
\begin{aligned}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & \mathbf{A x}\{\geq,=, \leq\} \mathbf{b} \\
& \mathbf{l} \leq \mathbf{x} \leq \mathbf{u} \\
& \mathbf{x}_{i} \in \mathbb{Z} \quad \forall i \in \mathcal{S}
\end{aligned}
$$

where
$\mathbf{x} \in \mathbb{R}^{n} \quad$ is the vector of structural variables
$\mathbf{A} \in \mathbb{R}^{m \times n} \quad$ is the matrix of technological coefficients
c $\in \mathbb{R}^{n} \quad$ is the vector of objective function coefficients
$\mathbf{b} \in \mathbb{R}^{m} \quad$ is the vector of constraints right-hand sides (RHS)
$\mathbf{l} \in \mathbb{R}^{n} \quad$ is the vector of lower bounds on variables
$\mathbf{u} \in \mathbb{R}^{n} \quad$ is the vector of upper bounds on variables
$\mathcal{S} \quad$ is a nonempty subset of the set $\{1 \ldots, n\}$ of indices
The OPTMILP procedure implements a linear-programming-based branch-and-bound algorithm. This divide-and-conquer approach attempts to solve the original problem by solving linear programming relaxations of a sequence of smaller subproblems. The OPTMILP procedure also implements advanced techniques such as presolving, generating cutting planes, and applying primal heuristics to improve the efficiency of the overall algorithm.

The OPTMILP procedure requires a mixed integer linear program to be specified using a SAS data set that adheres to the mathematical programming system (MPS) format, a widely accepted format in the optimization community. Chapter 14 discusses the MPS format in detail. It is also possible to input an incumbent solution in MPS format; see the section "Warm Start" on page 422 for details.

You can use the MPSOUT= option to convert data sets that are formatted for the LP procedure into MPSformat SAS data sets. The option is available in the LP, INTPOINT, and NETFLOW procedures. For details about this option, see Chapter 6, "The LP Procedure" (SAS/OR User's Guide: Mathematical Programming Legacy Procedures), Chapter 5, "The INTPOINT Procedure" (SAS/OR User's Guide: Mathematical Programming Legacy Procedures), and Chapter 7, "The NETFLOW Procedure" (SAS/OR User's Guide: Mathematical Programming Legacy Procedures).

The OPTMILP procedure provides various control options and solution strategies. In particular, you can enable, disable, or set levels for the advanced techniques previously mentioned.

The OPTMILP procedure outputs an optimal solution or the best feasible solution found, if any, in SAS data sets. This enables you to generate solution reports and perform additional analyses by using SAS software.

## Getting Started: OPTMILP Procedure

The following example illustrates the use of the OPTMILP procedure to solve mixed integer linear programs. For more examples, see the section "Examples: OPTMILP Procedure" on page 435. Suppose you want to solve the following problem:

$$
\begin{array}{rlllllll}
\min & 2 x_{1} & -3 x_{2} & -4 x_{3} & & & \\
\text { s.t. } & & -2 x_{2} & -3 x_{3} & \geq & -5 & (\mathrm{R} 1) \\
& x_{1} & +x_{2} & + & 2 x_{3} & \leq & 4 & (\mathrm{R} 2) \\
& x_{1} & + & 2 x_{2} & + & 3 x_{3} & \leq & 7 \\
& & & x_{1}, \quad x_{2}, & x_{3} & \geq & 0 & \\
& & & x_{1}, \quad x_{2}, & x_{3} & \in \mathbb{Z} & &
\end{array}
$$

The corresponding MPS-format SAS data set follows:

```
data ex_mip;
 input field1 $ field2 $ field3 $ field4 field5 $ field6;
 datalines;
```



```
N R C
G R1
L R2
L R3
COLUMNS
\begin{tabular}{llllll}
. & MARK00 & 'MARKER' & . & 'INTORG' & . \\
. & X1 & COST & 2 & R2 & 1 \\
. & X1 & R3 & 1 & . & .
\end{tabular}
\begin{tabular}{rlrlr}
. & X2 & COST & -3 & R1 \\
. & X2 & R2 & 1 & R3
\end{tabular}
. \begin{tabular}{lllll}
X 3 & \(\operatorname{COST}\) & -4 & R1 & -3
\end{tabular}
- X 3 R R 2 R3 3
MHS MARK01 'MARKER' . INTEND'
RHS
\begin{tabular}{lllrll}
& RHS & R1 & -5 & R2 & 4 \\
. & RHS & R3 & 7 &. & . \\
ENDATA & . & . & . & . & .
\end{tabular}
;
```

You can also create this SAS data set from an MPS-format flat file (ex_mip.mps) by using the following SAS macro:

```
%mps2sasd(mpsfile = "ex_mip.mps", outdata = ex_mip);
```

This problem can be solved by using the following statement to call the OPTMILP procedure:

```
proc optmilp data = ex_mip
 objsense = min
 primalout = primal_out
 dualout = dual_out
 presolver = automatic
 heuristics = automatic;
run;
```

The DATA= option names the MPS-format SAS data set that contains the problem data. The OBJSENSE= option specifies whether to maximize or minimize the objective function. The PRIMALOUT= option names the SAS data set to contain the optimal solution or the best feasible solution found by the solver. The DUALOUT $=$ option names the SAS data set to contain the constraint activities. The PRESOLVER= and HEURISTICS = options specify the levels for presolving and applying heuristics, respectively. In this example, each option is set to its default value AUTOMATIC, meaning that the solver automatically determines the appropriate levels for presolve and heuristics.

The optimal integer solution and its corresponding constraint activities, stored in the data sets primal_out and dual_out, respectively, are displayed in Figure 10.1 and Figure 10.2.

Figure 10.1 Optimal Solution


Figure 10.2 Constraint Activities


The solution summary stored in the macro variable _OROPTMILP_can be viewed by issuing the following statement:

```
%put &_OROPTMILP_;
```

This produces the output shown in Figure 10.3.
Figure 10.3 Macro Output

```
STATUS=OK ALGORITHM=BAC SOLUTION_STATUS=OPTIMAL OBJECTIVE=-7
RELATIVE_GAP=0 ABSOLUTE_GAP=0 PRIMAL_INFEASIBILITY=0
BOUND_INFEASIBILITY=0 INTEGER_INFEASIBILITY=0 BEST_BOUND= . NODES=0
ITERATIONS=0 PRESOLVE_TIME=0.00 SOLUTION_TIME=0.00
```

See the section "Data Input and Output" on page 420 for details about the type and status codes displayed for variables and constraints.

## Syntax: OPTMILP Procedure

The following statements are available in the OPTMILP procedure:

```
PROC OPTMILP < options> ;
 DECOMP < options> ;
 DECOMP_MASTER < options> ;
 DECOMP_MASTER_IP < options> ;
 DECOMP_SUBPROB < options> ;
 PERFORMANCE < performance-options> ;
 TUNER < tuner-options> ;
```


## Functional Summary

Table 10.1 summarizes the options available for the OPTMILP procedure, classified by function.
Table 10.1 Options for the OPTMILP Procedure

Description	Option
Data Set Options	
Specifies the input data set	DATA=
Specifies the constraint activities output data set	DUALOUT=
Specifies whether the MILP model is a maximization or minimization problem	OBJSENSE=
Specifies the primal solution input data set (warm start)	PRIMALIN=
Specifies the primal solution output data set	PRIMALOUT=
Presolve Option	
Specifies the type of presolve	PRESOLVER=
Control Options	
Specifies the stopping criterion based on absolute objective gap	ABSOBJGAP=
Specifies the cutoff value for node removal	CUTOFF=
Emphasizes feasibility or optimality	EMPHASIS=
Specifies the maximum violation on variables and constraints	FEASTOL=
Specifies the maximum allowed difference between an integer variable's value and an integer	INTTOL=
Specifies the frequency of printing the node log	LOGFREQ=
Specifies the detail of solution progress printed in log	LOGLEVEL=
Specifies the maximum number of nodes to be processed	MAXNODES=
Specifies the maximum number of solutions to be found	MAXSOLS $=$

Table 10.1 (continued)

Description	Option
Specifies the time limit for the optimization process	MAXTIME=
Specifies the tolerance used in determining the optimality of nodes in the branch-and-bound tree	OPTTOL=
Toggles ODS output	PRINTLEVEL=
Specifies the probing level	PROBE=
Specifies the stopping criterion based on relative objective gap	RELOBJGAP=
Specifies the scale of the problem matrix	SCALE=
Specifies the stopping criterion based on target objective value	TARGET=
Specifies whether time units are CPU time or real time	TIMETYPE=
Heuristics Option	
Specifies the primal heuristics level	HEURISTICS=
Search Options	
Specifies the level of conflict search	CONFLICTSEARCH=
Specifies the node selection strategy	NODESEL=
Enables use of variable priorities	PRIORITY=
Specifies the number of simplex iterations performed on each variable in strong branching strategy	STRONGITER=
Specifies the number of candidates for strong branching	STRONGLEN=
Specifies the rule for selecting branching variable	VARSEL=
Cut Options	
Specifies the cut level for all cuts	ALLCUTS=
Specifies the clique cut level	CUTCLIQUE=
Specifies the flow cover cut level	CUTFLOWCOVER=
Specifies the flow path cut level	CUTFLOWPATH=
Specifies the Gomory cut level	CUTGOMORY=
Specifies the generalized upper bound (GUB) cover cut level	CUTGUB=
Specifies the implied bounds cut level	CUTIMPLIED=
Specifies the knapsack cover cut level	CUTKNAPSACK=
Specifies the lift-and-project cut level	CUTLAP=
Specifies the mixed lifted 0-1 cut level	CUTMILIFTED=
Specifies the mixed integer rounding (MIR) cut level	CUTMIR=
Specifies the row multiplier factor for cuts	CUTSFACTOR=
Specifies the overall cut aggressiveness	CUTSTRATEGY=
Specifies the zero-half cut level	CUTZEROHALF=

## PROC OPTMILP Statement

PROC OPTMILP < options > ;
You can specify the following options in the PROC OPTMILP statement.

## Data Set Options

DATA=SAS-data-set
specifies the input data set that corresponds to the MILP model. If this option is not specified, PROC OPTMILP uses the most recently created SAS data set. See Chapter 14, "The MPS-Format SAS Data Set," for more details about the input data set.

## DUALOUT=SAS-data-set

DOUT=SAS-data-set
specifies the output data set to contain the constraint activities.

## OBJSENSE=MIN | MAX

specifies whether the MILP model is a minimization or a maximization problem. You can use OBJSENSE=MIN for a minimization problem and OBJSENSE=MAX for a maximization problem. Alternatively, you can specify the objective sense in the input data set. This option supersedes the objective sense specified in the input data set. If the objective sense is not specified anywhere, then PROC OPTMILP interprets and solves the MILP as a minimization problem.

## PRIMALIN=SAS-data-set

enables you to input a warm start solution in a SAS data set. PROC OPTMILP validates both the data set and the solution stored in the data set. If the data set is not valid, then the PRIMALIN= data are ignored. If the solution stored in a valid PRIMALIN= data set is a feasible integer solution, then it provides an incumbent solution and a bound for the branch-and-bound algorithm. If the solution stored in a valid PRIMALIN= data set is infeasible, contains missing values, or contains fractional values for integer variables, PROC OPTMILP tries to repair the solution with a number of specialized repair heuristics. See the section "Warm Start" on page 422 for details.

PRIMALOUT=SAS-data-set
POUT=SAS-data-set
specifies the output data set for the primal solution. This data set contains the primal solution information. See the section "Data Input and Output" on page 420 for details.

## Presolve Option

PRESOLVER=number \| string
specifies a presolve string or its corresponding value number, as listed in Table 10.2.
Table 10.2 Values for PRESOLVER= Option

number	string	Description
-1	AUTOMATIC	Applies the default level of presolve processing
0	NONE	Disables presolver
1	BASIC	Performs minimal presolve processing
2	MODERATE	Applies a higher level of presolve processing
3	AGGRESSIVE	Applies the highest level of presolve processing

The default value is AUTOMATIC.

## Control Options

## ABSOBJGAP=number

specifies a stopping criterion. When the absolute difference between the best integer objective and the objective of the best remaining node becomes smaller than the value of number, the procedure stops. The value of number can be any nonnegative number; the default value is $1 \mathrm{E}-6$.

## CUTOFF=number

cuts off any nodes in a minimization (maximization) problem with an objective value above (below) number. The value of number can be any number; the default value is the positive (negative) number that has the largest absolute value that can be represented in your operating environment.

## EMPHASIS=number | string

specifies a search emphasis string or its corresponding value number as listed in Table 10.3.
Table 10.3 Values for EMPHASIS= Option

number	string	Description
0	BALANCE	Performs a balanced search
1	OPTIMAL	Emphasizes optimality over feasibility
2	FEASIBLE	Emphasizes feasibility over optimality

The default value is BALANCE.

## FEASTOL=number

specifies the tolerance used to check the feasibility of a solution. This tolerance applies both to the maximum violation of bounds on variables and to the difference between the right-hand sides and left-hand sides of constraints. The value of number can be any value between (and including) $1 \mathrm{E}-4$ and $1 \mathrm{E}-9$. The default value is $1 \mathrm{E}-6$.

If PROC OPTMILP fails to find a feasible solution within this tolerance but does find a solution with a slightly larger violation, then the procedure ends with a solution status of OPTIMAL_COND (see the section "Macro Variable _OROPTMILP_" on page 432).

## INTTOL=number

specifies the amount by which an integer variable value can differ from an integer and still be considered integer feasible. The value of number can be any number between 0.0 and 1.0 ; the default value is $1 \mathrm{E}-5$. PROC OPTMILP attempts to find an optimal solution with integer infeasibility less than number. If you assign a value smaller than $1 \mathrm{E}-10$ to number and the best solution found by PROC OPTMILP has integer infeasibility between number and 1E-10, then PROC OPTMILP ends with a solution status of OPTIMAL_COND (see the section "Macro Variable _OROPTMILP_" on page 432).

## LOGFREQ=number

## PRINTFREQ=number

specifies how often information is printed in the node log. The value of number can be any nonnegative integer up to the largest four-byte signed integer, which is $2^{31}-1$. The default value is 100 . If number is set to 0 , then the node $\log$ is disabled. If number is positive, then an entry is made in the node log at the first node, at the last node, and at intervals dictated by the value of number. An entry is also made each time a better integer solution is found.

## LOGLEVEL=number | string

## PRINTLEVEL2=number | string

controls the amount of information displayed in the SAS log by the solver, from a short description of presolve information and summary to details at each node. Table 10.4 describes the valid values for this option.

Table 10.4 Values for LOGLEVEL= Option

number	string	Description
0	NONE	Turns off all solver-related messages in the SAS   log
1	BASIC	Displays a solver summary after stopping   2
MODERATE	Prints a solver summary and a node log by using   the interval dictated by the LOGFREQ= option   Prints a detailed solver summary and a node log   by using the interval dictated by the LOGFREQ=   option	

The default value is MODERATE.

## MAXNODES=number

specifies the maximum number of branch-and-bound nodes to be processed. The value of number can be any nonnegative integer up to the largest four-byte signed integer, which is $2^{31}-1$. The default value is $2^{31}-1$.

## MAXSOLS=number

specifies a stopping criterion. If number solutions have been found, then the procedure stops. The value of number can be any positive integer up to the largest four-byte signed integer, which is $2^{31}-1$. The default value is $2^{31}-1$.

## MAXTIME= $t$

specifies an upper limit of $t$ seconds of time for reading in the data and performing the optimization process. The value of the TIMETYPE= option determines the type of units used. If you do not specify this option, the procedure does not stop based on the amount of time elapsed. The value of $t$ can be any positive number; the default value is the positive number that has the largest absolute value that can be represented in your operating environment.

## OPTTOL=number

specifies the tolerance used to determine the optimality of nodes in the branch-and-bound tree. The value of number can be any value between (and including) 1E-4 and 1E-9. The default is $1 \mathrm{E}-6$.

## PRINTLEVEL=0| $\mathbf{1}$ | 2

specifies whether a summary of the problem and solution should be printed. If PRINTLEVEL=1, then the Output Delivery System (ODS) tables ProblemSummary, SolutionSummary, and PerformanceInfo are produced and printed. If PRINTLEVEL=2, then the same tables are produced and printed along with an additional table called ProblemStatistics. If PRINTLEVEL=0, then no ODS tables are produced or printed. The default value is 1 .

For details about the ODS tables created by PROC OPTMILP, see the section "ODS Tables" on page 428.

PROBE=number | string
specifies a probing string or its corresponding value number, as listed in Table 10.5:
Table 10.5 Values for $\mathrm{PROBE}=$ Option

number	string	Description
-1	AUTOMATIC	Uses the probing strategy determined by PROC
		OPTMILP
0	NONE	Disables probing
1	MODERATE	Uses the probing moderately
2	AGGRESSIVE	Uses the probing aggressively

The default value is AUTOMATIC. See the section "Presolve and Probing" on page 425 for more information.

## RELOBJGAP=number

specifies a stopping criterion based on the best integer objective (BestInteger) and the objective of the best remaining node (BestBound). The relative objective gap is equal to

$$
\mid \text { BestInteger }- \text { BestBound } \mid /(1 \mathrm{E}-10+\mid \text { BestBound } \mid)
$$

When this value becomes smaller than the specified gap size number, the procedure stops. The value of number can be any nonnegative number; the default value is $1 \mathrm{E}-4$.

SCALE=number | string
indicates whether to scale the problem matrix. SCALE= can take either of the values AUTOMATIC ( -1 ) and NONE (0). SCALE=AUTOMATIC scales the matrix as determined by PROC OPTMILP; SCALE=NONE disables scaling. The default value is AUTOMATIC.

## TARGET=number

specifies a stopping criterion for minimization (maximization) problems. If the best integer objective is better than or equal to number, the procedure stops. The value of number can be any number; the default value is the negative (positive) number that has the largest absolute value representable in your operating environment.

## TIMETYPE=number | string

specifies whether CPU time or real time is used for the MAXTIME= option and the _OROPTMILP_ macro variable in a PROC OPTMILP call. Table 10.6 describes the valid values of the TIMETYPE= option.

Table 10.6 Values for TIMETYPE= Option

number	string	Description
0	CPU	Specifies units of CPU time
1	REAL	Specifies units of real time

The default value of the TIMETYPE= option depends on the values of the NTHREADS= and NODES = options in the PERFORMANCE statement. See the section "PERFORMANCE Statement" on page 17 for more information about the NTHREADS = option. See Chapter 3, "Shared Concepts
and Topics" (SAS High-Performance Analytics Server: User's Guide), for more information about the NODES = option. (The NODES = option requires SAS ${ }^{\circledR}$ High-Performance Analytics software.)

If you specify a value greater than 1 for either the NTHREADS= or the NODES= option, the default value of the TIMETYPE $=$ option is REAL. If you specify a value of 1 for both the NTHREADS $=$ and NODES $=$ options, the default value of the TIMETYPE $=$ option is CPU.

## Heuristics Option

## HEURISTICS=number | string

controls the level of primal heuristics applied by PROC OPTMILP. This level determines how frequently primal heuristics are applied during the branch-and-bound tree search. It also affects the maximum number of iterations allowed in iterative heuristics. Some computationally expensive heuristics might be disabled by the solver at less aggressive levels. The values of string and the corresponding values of number are listed in Table 10.7.

Table 10.7 Values for HEURISTICS= Option

number	string	Description
-1	AUTOMATIC	Applies the default level of heuristics, similar to   MODERATE
0	NONE	Disables all primal heuristics   1
BASIC	Applies basic primal heuristics at low frequency	
2	MODERATE	Applies most primal heuristics at moderate fre-   quency
3	AGGRESSIVE	Applies all primal heuristics at high frequency

Setting HEURISTICS=NONE does not disable the heuristics that repair an infeasible input solution that is specified in a PRIMALIN= data set.

The default value of the HEURISTICS= option is AUTOMATIC. For details about primal heuristics, see the section "Primal Heuristics" on page 427.

## Search Options

## CONFLICTSEARCH=number | string

specifies the level of conflict search performed by PROC OPTMILP. Conflict search is used to find clauses resulting from infeasible subproblems that arise in the search tree. The values of string and the corresponding values of number are listed in Table 10.8.

Table 10.8 Values for CONFLICTSEARCH= Option

number	string	Description
-1	AUTOMATIC	Performs conflict search based on a strategy de-   termined by PROC OPTMILP
0	NONE	Disables conflict search
1	MODERATE	Performs a moderate conflict search
2	AGGRESSIVE	Performs an aggressive conflict search

The default value is AUTOMATIC.

NODESEL=number | string
specifies the node selection strategy string or its corresponding value number, as listed in Table 10.9.
Table 10.9 Values for NODESEL= Option

number	string	Description
-1	AUTOMATIC	Uses automatic node selection   0
BESTBOUND	Chooses the node with the best relaxed objective   (best-bound-first strategy)	
1	BESTESTIMATE	Chooses the node with the best estimate of the in-   teger objective value (best-estimate-first strategy)
2	DEPTH	Chooses the most recently created node (depth-   first strategy)

The default value is AUTOMATIC. For details about node selection, see the section "Node Selection" on page 424 .

## PRIORITY=0 | 1

indicates whether to use specified branching priorities for integer variables. PRIORITY=0 ignores variable priorities; PRIORITY=1 uses priorities when they exist. The default value is 1 . See the section "Branching Priorities" on page 425 for details.

## STRONGITER=number | AUTOMATIC

specifies the number of simplex iterations performed for each variable in the candidate list when using the strong branching variable selection strategy. The value of number can be any positive integer up to the largest four-byte signed integer, which is $2^{31}-1$. If you specify the keyword AUTOMATIC or the value -1 , PROC OPTMILP uses the default value; this value is calculated automatically.

## STRONGLEN=number | AUTOMATIC

specifies the number of candidates used when performing the strong branching variable selection strategy. The value of number can be any positive integer up to the largest four-byte signed integer, which is $2^{31}-1$. If you specify the keyword AUTOMATIC or the value -1 , PROC OPTMILP uses the default value; this value is calculated automatically.

## VARSEL=number | string

specifies the rule for selecting the branching variable. The values of string and the corresponding values of number are listed in Table 10.10.

Table 10.10 Values for VARSEL= Option

number	string	Description
-1	AUTOMATIC	Uses automatic branching variable selection
0	MAXINFEAS	Chooses the variable with maximum infeasibility
1	MININFEAS	Chooses the variable with minimum infeasibility
2	PSEUDO	Chooses a branching variable based on pseudo-   cost
3	STRONG	Uses strong branching variable selection strategy

The default value is AUTOMATIC. For details about variable selection, see the section "Variable Selection" on page 424 .

## Cut Options

Table 10.11 describes the string and number values for the cut options in PROC OPTMILP.

Table 10.11 Values for Individual Cut Options

number	string	Description		
-1	AUTOMATIC	Generates cutting planes based on a strategy de-   termined by PROC OPTMILP		
0		NONE	Disables generation of cutting planes $\quad$	1
:---:				
2				

You can specify the CUTSTRATEGY= option to set the overall aggressiveness of the cut generation in PROC OPTMILP. Alternatively, you can use the ALLCUTS= option to set all cut types to the same level. You can override the ALLCUTS= value by using the options that correspond to particular cut types. For example, if you want PROC OPTMILP to generate only Gomory cuts, specify ALLCUTS=NONE and CUTGOMORY=AUTOMATIC. If you want to generate all cuts aggressively but generate no lift-and-project cuts, set ALLCUTS=AGGRESSIVE and CUTLAP=NONE.

## ALLCUTS=number | string

provides a shorthand way of setting all the cuts-related options in one setting. In other words, ALLCUTS=number is equivalent to setting each of the individual cuts parameters to the same value number. Thus, ALLCUTS=-1 has the effect of setting CUTCLIQUE=-1, CUTFLOWCOVER=1, CUTFLOWPATH $=-1, \ldots$, CUTMIR=-1, and CUTZEROHALF=-1. Table 10.11 lists the values that can be assigned to string and number. In addition, you can override levels for individual cuts with the CUTCLIQUE=, CUTFLOWCOVER=, CUTFLOWPATH=, CUTGOMORY=, CUTGUB=, CUTIMPLIED=, CUTKNAPSACK=, CUTLAP=, CUTMILIFTED=, CUTMIR=, and CUTZEROHALF= options. If the ALLCUTS= option is not specified, all the cuts-related options are either set to their individually specified values (if the corresponding option is specified) or to their default values (if that option is not specified).

## CUTCLIQUE=number | string

specifies the level of clique cuts generated by PROC OPTMILP. Table 10.11 lists the values that can be assigned to string and number. The CUTCLIQUE= option overrides the ALLCUTS= option. The default value is AUTOMATIC.

## CUTFLOWCOVER=number | string

specifies the level of flow cover cuts generated by PROC OPTMILP. Table 10.11 lists the values that can be assigned to string and number. The CUTFLOWCOVER= option overrides the ALLCUTS= option. The default value is AUTOMATIC.

## CUTFLOWPATH=number | string

specifies the level of flow path cuts generated by PROC OPTMILP. Table 10.11 lists the values that can be assigned to string and number. The CUTFLOWPATH= option overrides the ALLCUTS= option. The default value is AUTOMATIC.

## CUTGOMORY=number | string

specifies the level of Gomory cuts generated by PROC OPTMILP. Table 10.11 lists the values that can be assigned to string and number. The CUTGOMORY= option overrides the ALLCUTS= option. The default value is AUTOMATIC.

## CUTGUB=number | string

specifies the level of generalized upper bound (GUB) cover cuts generated by PROC OPTMILP. Table 10.11 lists the values that can be assigned to string and number. The CUTGUB=option overrides the ALLCUTS = option. The default value is AUTOMATIC.

## CUTIMPLIED=number | string

specifies the level of implied bound cuts generated by PROC OPTMILP. Table 10.11 lists the values that can be assigned to string and number. The CUTIMPLIED= option overrides the ALLCUTS= option. The default value is AUTOMATIC.

## CUTKNAPSACK=number | string

specifies the level of knapsack cover cuts generated by PROC OPTMILP. Table 10.11 lists the values that can be assigned to string and number. The CUTKNAPSACK= option overrides the ALLCUTS= option. The default value is AUTOMATIC.

## CUTLAP=number | string

specifies the level of lift-and-project (LAP) cuts generated by PROC OPTMILP. Table 10.11 lists the values that can be assigned to string and number. The CUTLAP= option overrides the ALLCUTS= option. The default value is NONE.

## CUTMILIFTED=number | string

specifies the level of mixed lifted $0-1$ cuts that are generated by PROC OPTMILP. Table 10.11 lists the values that can be assigned to option and num. The CUTMILIFTED= option overrides the ALLCUTS $=$ option. The default value is AUTOMATIC.

## CUTMIR=number | string

specifies the level of mixed integer rounding (MIR) cuts generated by PROC OPTMILP. Table 10.11 lists the values that can be assigned to string and number. The CUTMIR= option overrides the ALLCUTS = option. The default value is AUTOMATIC.

## CUTSFACTOR=number

specifies a row multiplier factor for cuts. The number of cuts that are added is limited to number times the original number of rows. The value of number can be any nonnegative number less than or equal to 100 ; the default value is automatically calculated by PROC OPTMILP.

## CUTSTRATEGY=number | string

CUTS=number | string
specifies the overall aggressiveness of the cut generation in the solver. Setting a nondefault value adjusts a number of cut parameters such that the cut generation is basic, moderate, or aggressive compared to the default value.

## CUTZEROHALF=number | string

specifies the level of zero-half cuts that are generated by PROC OPTMILP. Table 10.11 lists the values that can be assigned to string and number.The CUTZEROHALF= option overrides the ALLCUTS= option. The default value is AUTOMATIC.

## Decomposition Algorithm Statements

The following statements are available for the decomposition algorithm in the OPTMILP procedure:

```
DECOMP < options> ;
DECOMP_MASTER < options> ;
DECOMP_MASTER_IP < options > ;
DECOMP_SUBPROB <options> ;
```

For more information about these statements, see Chapter 12, "The Decomposition Algorithm."

## PERFORMANCE Statement

PERFORMANCE < performance-options > ;
The PERFORMANCE statement specifies performance-options for multithreaded (SMP) and distributed (MPP) computing, passes variables around the distributed computing environment, and requests detailed performance results of the OPTMILP procedure.
With the PERFORMANCE statement, you can also control whether the OPTMILP procedure executes in SMP or MPP mode. Only the decomposition algorithm and the option tuner can be run in these modes.

The PERFORMANCE statement for multithreaded computing mode is documented in the section "PERFORMANCE Statement" on page 17 in Chapter 3, "Shared Concepts and Topics." The OPTMILP procedure supports the deterministic and nondeterministic modes of the PARALLELMODE= option in the PERFORMANCE statement.

The PERFORMANCE statement for distributed computing mode is documented in Chapter 3, "Shared Concepts and Topics" (SAS High-Performance Analytics Server: User's Guide).

NOTE: Distributed computing mode requires SAS ${ }^{\circledR}$ High-Performance Analytics software.

## TUNER Statement

TUNER < performance-options > ;
The TUNER statement invokes the OPTMILP option tuner. The option tuner is a tool that enables you to explore alternative (and potentially better) option configurations for your optimization problems. For more information about this feature, see Chapter 13, "The OPTMILP Option Tuner."

## Details: OPTMILP Procedure

## Data Input and Output

This subsection describes the PRIMALIN= data set required to warm start PROC OPTMILP, in addition to the PRIMALOUT $=$ and DUALOUT $=$ data sets.

## Definitions of Variables in the PRIMALIN= Data Set

The PRIMALIN = data set has two required variables defined as follows:
_VAR_
specifies the variable (column) names of the problem. The values should match the column names in the DATA= data set for the current problem.
_VALUE_
specifies the solution value for each variable in the problem.
Note: If PROC OPTMILP produces a feasible solution, the primal output data set from that run can be used as the PRIMALIN= data set for a subsequent run, provided that the variable names are the same. If this input solution is not feasible for the subsequent run, the solver automatically tries to repair it. See the section "Warm Start" on page 422 for more details.

## Definitions of Variables in the PRIMALOUT= Data Set

PROC OPTMILP stores the current best integer feasible solution of the problem in the data set specified by the PRIMALOUT= option. The variables in this data set are defined as follows:

## _OBJ_ID_

specifies the identifier of the objective function.

## _RHS_ID_

specifies the identifier of the right-hand side.
_VAR_
specifies the variable (column) names.

## _TYPE_

specifies the variable type. _TYPE_ can take one of the following values:
C continuous variable
I general integer variable
B binary variable (0 or 1)

## _OBJCOEF_

specifies the coefficient of the variable in the objective function.

## _LBOUND_

specifies the lower bound on the variable.

## _UBOUND_

specifies the upper bound on the variable.

## _VALUE

specifies the value of the variable in the current solution.

## Definitions of the DUALOUT= Data Set Variables

The DUALOUT= data set contains the constraint activities that correspond to the primal solution in the PRIMALOUT= data set. Information about additional objective rows of the MILP problem is not included. The variables in this data set are defined as follows:

## _OBJ_ID_

specifies the identifier of the objective function from the input data set.

## _RHS_ID_

specifies the identifier of the right-hand side from the input data set.
_ROW_
specifies the constraint (row) name.
_TYPE_
specifies the constraint type. _TYPE_ can take one of the following values:
L "less than or equal" constraint
E equality constraint
G "greater than or equal" constraint
R ranged constraint (both "less than or equal" and "greater than or equal")

## _RHS_

specifies the value of the right-hand side of the constraint. It takes a missing value for a ranged constraint.

## _L_RHS_

specifies the lower bound of a ranged constraint. It takes a missing value for a non-ranged constraint.

## _U_RHS

specifies the upper bound of a ranged constraint. It takes a missing value for a non-ranged constraint.

## _ACTIVITY

specifies the activity of a constraint for a given primal solution. In other words, the value of _ACTIVITY_for the $i$ th constraint is equal to $\mathbf{a}_{i}^{T} \mathbf{x}$, where $\mathbf{a}_{i}$ refers to the $i$ th row of the constraint matrix and x denotes the vector of the current primal solution.

## Warm Start

PROC OPTMILP enables you to input a warm start solution by using the PRIMALIN= option. PROC OPTMILP checks that the decision variables named in _VAR_ are the same as those in the MPS-format SAS data set. If they are not the same, PROC OPTMILP issues a warning and ignores the input solution. PROC OPTMILP also checks whether the solution is infeasible, contains missing values, or contains fractional values for integer variables. If this is the case, PROC OPTMILP attempts to repair the solution with a number of specialized repair heuristics. The success of the attempt largely depends both on the specific model and on the proximity between the input solution and an integer feasible solution. An infeasible input solution can be considered a hint for PROC OPTMILP that might or might not help to solve the problem.

An integer feasible or repaired input solution provides an incumbent solution in addition to an upper (min) or lower (max) bound for the branch-and-bound algorithm. PROC OPTMILP uses the input solution to reduce the search space and to guide the search process. When it is difficult to find a good integer feasible solution for a problem, warm start can reduce solution time significantly.

## Branch-and-Bound Algorithm

The branch-and-bound algorithm, first proposed by Land and Doig (1960), is an effective approach to solving mixed integer linear programs. The following discussion outlines the approach and explains how PROC OPTMILP enhances the basic algorithm by using several advanced techniques.

The branch-and-bound algorithm solves a mixed integer linear program by dividing the search space and generating a sequence of subproblems. The search space of a mixed integer linear program can be represented by a tree. Each node in the tree is identified with a subproblem derived from previous subproblems on the path that leads to the root of the tree. The subproblem (MILP ${ }^{0}$ ) associated with the root is identical to the original problem, which is called (MILP), given in the section "Overview: OPTMILP Procedure" on page 405.

The linear programming relaxation $\left(\mathrm{LP}^{0}\right)$ of $\left(\mathrm{MILP}^{0}\right)$ can be written as

$$
\begin{aligned}
\min & \mathbf{c}^{T} \mathbf{x} \\
\text { subject to } & \mathbf{A x}\{\geq,=, \leq\} \mathbf{b} \\
& \mathbf{l} \leq \mathbf{x} \leq \mathbf{u}
\end{aligned}
$$

The branch-and-bound algorithm generates subproblems along the nodes of the tree by using the following scheme. Consider $\bar{x}^{0}$, the optimal solution to $\left(\mathrm{LP}^{0}\right)$, which is usually obtained by using the dual simplex algorithm. If $\bar{x}_{i}^{0}$ is an integer for all $i \in \mathcal{S}$, then $\bar{x}^{0}$ is an optimal solution to (MILP). Suppose that for some $i \in \mathcal{S}, \bar{x}_{i}^{0}$ is nonintegral. In that case the algorithm defines two new subproblems (MILP ${ }^{1}$ ) and (MILP ${ }^{2}$ ), descendants of the parent subproblem (MILP ${ }^{0}$ ). The subproblem (MILP ${ }^{1}$ ) is identical to (MILP ${ }^{0}$ ) except for the additional constraint

$$
x_{i} \leq\left\lfloor\bar{x}_{i}^{0}\right\rfloor
$$

and the subproblem $\left(\right.$ MILP $\left.^{2}\right)$ is identical to $\left(\right.$ MILP $\left.^{0}\right)$ except for the additional constraint

$$
x_{i} \geq\left\lceil\bar{x}_{i}^{0}\right\rceil
$$

The notation $\lfloor y\rfloor$ represents the largest integer that is less than or equal to $y$, and the notation $\lceil y\rceil$ represents the smallest integer that is greater than or equal to $y$. The two preceding constraints can be handled by modifying the bounds of the variable $x_{i}$ rather than by explicitly adding the constraints to the constraint matrix. The two new subproblems do not have $\bar{x}^{0}$ as a feasible solution, but the integer solution to (MILP) must satisfy one of the preceding constraints. The two subproblems thus defined are called active nodes in the branch-and-bound tree, and the variable $x_{i}$ is called the branching variable.

In the next step the branch-and-bound algorithm chooses one of the active nodes and attempts to solve the linear programming relaxation of that subproblem. The relaxation might be infeasible, in which case the subproblem is dropped (fathomed). If the subproblem can be solved and the solution is integer feasible (that is, $x_{i}$ is an integer for all $i \in \mathcal{S}$ ), then its objective value provides an upper bound for the objective value in the minimization problem (MILP); if the solution is not integer feasible, then it defines two new subproblems. Branching continues in this manner until there are no active nodes. At this point the best integer solution found is an optimal solution for (MILP). If no integer solution has been found, then (MILP) is integer infeasible. You can specify other criteria to stop the branch-and-bound algorithm before it processes all the active nodes; see the section "Controlling the Branch-and-Bound Algorithm" on page 423 for details.

Upper bounds from integer feasible solutions can be used to fathom or cut off active nodes. Since the objective value of an optimal solution cannot be greater than an upper bound, active nodes with lower bounds higher than an existing upper bound can be safely deleted. In particular, if $z$ is the objective value of the current best integer solution, then any active subproblems whose relaxed objective value is greater than or equal to $z$ can be discarded.

It is important to realize that mixed integer linear programs are non-deterministic polynomial-time hard (NP-hard). Roughly speaking, this means that the effort required to solve a mixed integer linear program grows exponentially with the size of the problem. For example, a problem with 10 binary variables can generate in the worst case $2^{10}=1,024$ nodes in the branch-and-bound tree. A problem with 20 binary variables can generate in the worst case $2^{20}=1,048,576$ nodes in the branch-and-bound tree. Although it is unlikely that the branch-and-bound algorithm has to generate every single possible node, the need to explore even a small fraction of the potential number of nodes for a large problem can be resource-intensive.

A number of techniques can speed up the search progress of the branch-and-bound algorithm. Heuristics are used to find feasible solutions, which can improve the upper bounds on solutions of mixed integer linear programs. Cutting planes can reduce the search space and thus improve the lower bounds on solutions of mixed integer linear programs. When using cutting planes, the branch-and-bound algorithm is also called the branch-and-cut algorithm. Preprocessing can reduce problem size and improve problem solvability. PROC OPTMILP employs various heuristics, cutting planes, preprocessing, and other techniques, which you can control through corresponding options.

## Controlling the Branch-and-Bound Algorithm

There are numerous strategies that can be used to control the branch-and-bound search (see Linderoth and Savelsbergh 1998, Achterberg, Koch, and Martin 2005). PROC OPTMILP implements the most widely used strategies and provides several options that enable you to direct the choice of the next active node and of the branching variable. In the discussion that follows, let ( $\mathrm{LP}^{k}$ ) be the linear programming relaxation of subproblem (MILP ${ }^{k}$ ). Also, let

$$
f_{i}(k)=\bar{x}_{i}^{k}-\left\lfloor\bar{x}_{i}^{k}\right\rfloor
$$

where $\bar{x}^{k}$ is the optimal solution to the relaxation problem ( $\mathrm{LP}^{k}$ ) solved at node $k$.

## Node Selection

The NODESEL= option specifies the strategy used to select the next active node. The valid keywords for this option are AUTOMATIC, BESTBOUND, BESTESTIMATE, and DEPTH. The following list describes the strategy associated with each keyword:

AUTOMATIC allows PROC OPTMILP to choose the best node selection strategy based on problem characteristics and search progress. This is the default setting.

BESTBOUND chooses the node with the smallest (or largest, in the case of a maximization problem) relaxed objective value. The best-bound strategy tends to reduce the number of nodes to be processed and can improve lower bounds quickly. However, if there is no good upper bound, the number of active nodes can be large. This can result in the solver running out of memory.
BESTESTIMATE chooses the node with the smallest (or largest, in the case of a maximization problem) objective value of the estimated integer solution. Besides improving lower bounds, the best-estimate strategy also attempts to process nodes that can yield good feasible solutions.

DEPTH chooses the node that is deepest in the search tree. Depth-first search is effective in locating feasible solutions, since such solutions are usually deep in the search tree. Compared to the costs of the best-bound and best-estimate strategies, the cost of solving LP relaxations is less in the depth-first strategy. The number of active nodes is generally small, but it is possible that the depth-first search will remain in a portion of the search tree with no good integer solutions. This occurrence is computationally expensive.

## Variable Selection

The VARSEL= option specifies the strategy used to select the next branching variable. The valid keywords for this option are AUTOMATIC, MAXINFEAS, MININFEAS, PSEUDO, and STRONG. The following list describes the action taken in each case when $\bar{x}^{k}$, a relaxed optimal solution of (MILP ${ }^{k}$ ), is used to define two active subproblems. In the following list, "INTTOL" refers to the value assigned using the INTTOL= option. For details about the INTTOL= option, see the section "Control Options" on page 412.

AUTOMATIC enables PROC OPTMILP to choose the best variable selection strategy based on problem characteristics and search progress. This is the default setting.

MAXINFEAS chooses as the branching variable the variable $x_{i}$ such that $i$ maximizes

$$
\begin{aligned}
& \left\{\min \left\{f_{i}(k), 1-f_{i}(k)\right\} \mid i \in \mathcal{S}\right. \text { and } \\
& \left.\mathrm{INTTOL} \leq f_{i}(k) \leq 1-\mathrm{INTTOL}\right\}
\end{aligned}
$$

MININFEAS
chooses as the branching variable the variable $x_{i}$ such that $i$ minimizes

$$
\begin{aligned}
& \left\{\min \left\{f_{i}(k), 1-f_{i}(k)\right\} \mid i \in \mathcal{S}\right. \text { and } \\
& \left.\mathrm{INTTOL} \leq f_{i}(k) \leq 1-\mathrm{INTTOL}\right\}
\end{aligned}
$$

PSEUDO chooses as the branching variable the variable $x_{i}$ such that $i$ maximizes the weighted up and down pseudocosts. Pseudocost branching attempts to branch on significant variables first, quickly improving lower bounds. Pseudocost branching estimates significance based on historical information; however, this approach might not be accurate for future search.
STRONG chooses as the branching variable the variable $x_{i}$ such that $i$ maximizes the estimated improvement in the objective value. Strong branching first generates a list of candidates, then branches on each candidate and records the improvement in the objective value. The candidate with the largest improvement is chosen as the branching variable. Strong branching can be effective for combinatorial problems, but it is usually computationally expensive.

## Branching Priorities

In some cases, it is possible to speed up the branch-and-bound algorithm by branching on variables in a specific order. You can accomplish this in PROC OPTMILP by attaching branching priorities to the integer variables in your model.

You can set branching priorities for use by PROC OPTMILP in two ways. You can specify the branching priorities directly in the input MPS-format data set; see the section "BRANCH Section (Optional)" on page 589 for details. If you are constructing a model in PROC OPTMODEL, you can set branching priorities for integer variables by using the .priority suffix. More information about this suffix is available in the section "Integer Variable Suffixes" on page 124 in Chapter 4. For an example in which branching priorities are used, see Example 6.3.

## Presolve and Probing

PROC OPTMILP includes a variety of presolve techniques to reduce problem size, improve numerical stability, and detect infeasibility or unboundedness (Andersen and Andersen 1995; Gondzio 1997). During presolve, redundant constraints and variables are identified and removed. Presolve can further reduce the problem size by substituting variables. Variable substitution is a very effective technique, but it might occasionally increase the number of nonzero entries in the constraint matrix. Presolve might also modify the constraint coefficients to tighten the formulation of the problem.
In most cases, using presolve is very helpful in reducing solution times. You can enable presolve at different levels by specifying the PRESOLVER= option.

Probing is a technique that tentatively sets each binary variable to 0 or 1 , then explores the logical consequences (Savelsbergh 1994). Probing can expedite the solution of a difficult problem by fixing variables and improving the model. However, probing is often computationally expensive and can significantly increase the solution time in some cases. You can enable probing at different levels by specifying the PROBE= option.

## Cutting Planes

The feasible region of every linear program forms a polyhedron. Every polyhedron in $n$-space can be written as a finite number of half-spaces (equivalently, inequalities). In the notation used in this chapter, this
polyhedron is defined by the set $\mathcal{Q}=\left\{x \in \mathbb{R}^{n} \mid A x \leq b, l \leq x \leq u\right\}$. After you add the restriction that some variables must be integral, the set of feasible solutions, $\mathcal{F}=\left\{x \in \mathcal{Q} \mid x_{i} \in \mathbb{Z} \forall i \in \mathcal{S}\right\}$, no longer forms a polyhedron.

The convex hull of a set $X$ is the minimal convex set that contains $X$. In solving a mixed integer linear program, in order to take advantage of LP-based algorithms you want to find the convex hull, $\operatorname{conv}(\mathcal{F})$, of $\mathcal{F}$. If you can find $\operatorname{conv}(\mathcal{F})$ and describe it compactly, then you can solve a mixed integer linear program with a linear programming solver. This is generally very difficult, so you must be satisfied with finding an approximation. Typically, the better the approximation, the more efficiently the LP-based branch-and-bound algorithm can perform.

As described in the section "Branch-and-Bound Algorithm" on page 422, the branch-and-bound algorithm begins by solving the linear programming relaxation over the polyhedron $\mathcal{Q}$. Clearly, $\mathcal{Q}$ contains the convex hull of the feasible region of the original integer program; that is, $\operatorname{conv}(\mathcal{F}) \subseteq \mathcal{Q}$.

Cutting plane techniques are used to tighten the linear relaxation to better approximate $\operatorname{conv}(\mathcal{F})$. Assume you are given a solution $\bar{x}$ to some intermediate linear relaxation during the branch-and-bound algorithm. A cut, or valid inequality $\left(\pi x \leq \pi^{0}\right)$, is some half-space with the following characteristics:

- The half-space contains $\operatorname{conv}(\mathcal{F})$; that is, every integer feasible solution is feasible for the cut $(\pi x \leq$ $\left.\pi^{0}, \forall x \in \mathcal{F}\right)$.
- The half-space does not contain the current solution $\bar{x}$; that is, $\bar{x}$ is not feasible for the cut $\left(\pi \bar{x}>\pi^{0}\right)$.

Cutting planes were first made popular by Dantzig, Fulkerson, and Johnson (1954) in their work on the traveling salesman problem. The two major classifications of cutting planes are generic cuts and structured cuts. Generic cuts are based solely on algebraic arguments and can be applied to any relaxation of any integer program. Structured cuts are specific to certain structures that can be found in some relaxations of the mixed integer linear program. These structures are automatically discovered during the cut initialization phase of PROC OPTMILP. Table 10.12 lists the various types of cutting planes that are built into PROC OPTMILP. Included in each type are algorithms for numerous variations based on different relaxations and lifting techniques. For a survey of cutting plane techniques for mixed integer programming, see Marchand et al. (1999). For a survey of lifting techniques, see Atamturk (2004).

Table 10.12 Cutting Planes in PROC OPTMILP

Generic Cutting Planes	Structured Cutting Planes
Gomory mixed integer	Cliques
Lift-and-project	Flow cover
Mixed integer rounding	Flow path
Mixed lifted 0-1	Generalized upper bound cover
Zero-half	Implied bound
	Knapsack cover

You can set levels for individual cuts by using the CUTCLIQUE=, CUTFLOWCOVER=, CUTFLOWPATH=, CUTGOMORY=, CUTGUB=, CUTIMPLIED=, CUTKNAPSACK=, CUTLAP=, and CUTMIR= options. The valid levels for these options are given in Table 10.11.

The cut level determines the internal strategy used by PROC OPTMILP for generating the cutting planes. The strategy consists of several factors, including how frequently the cut search is called, the number of cuts allowed, and the aggressiveness of the search algorithms.

Sophisticated cutting planes, such as those included in PROC OPTMILP, can take a great deal of CPU time. Typically the additional tightening of the relaxation helps to speed up the overall process as it provides better bounds for the branch-and-bound tree and helps guide the LP solver toward integer solutions. In rare cases, shutting off cutting planes completely might lead to faster overall run times.

The default settings of PROC OPTMILP have been tuned to work well for most instances. However, problem-specific expertise might suggest adjusting one or more of the strategies. These options give you that flexibility.

## Primal Heuristics

Primal heuristics, an important component of PROC OPTMILP, are applied during the branch-and-bound algorithm. They are used to find integer feasible solutions early in the search tree, thereby improving the upper bound for a minimization problem. Primal heuristics play a role that is complementary to cutting planes in reducing the gap between the upper and lower bounds, thus reducing the size of the branch-andbound tree.

Applying primal heuristics in the branch-and-bound algorithm assists in the following areas:

- finding a good upper bound early in the tree search (this can lead to earlier fathoming, resulting in fewer subproblems to be processed)
- locating a reasonably good feasible solution when that is sufficient (sometimes a good feasible solution is the best the solver can produce within certain time or resource limits)
- providing upper bounds for some bound-tightening techniques

The OPTMILP procedure implements several heuristic methodologies. Some algorithms, such as rounding and iterative rounding (diving) heuristics, attempt to construct an integer feasible solution by using fractional solutions to the continuous relaxation at each node of the branch-and-cut tree. Other algorithms start with an incumbent solution and attempt to find a better solution within a neighborhood of the current best solution.

The HEURISTICS = option enables you to control the level of primal heuristics applied by PROC OPTMILP. This level determines how frequently primal heuristics are applied during the tree search. Some expensive heuristics might be disabled by the solver at less aggressive levels. Setting the HEURISTICS= option to a lower level also reduces the maximum number of iterations allowed in iterative heuristics. The valid values for this option are listed in Table 10.7.

## Node Log

The following information about the status of the branch-and-bound algorithm is printed in the node log:
Node indicates the sequence number of the current node in the search tree.
Active indicates the current number of active nodes in the branch-and-bound tree.
Sols indicates the number of feasible solutions found so far.
BestInteger indicates the best upper bound (assuming minimization) found so far.

BestBound indicates the best lower bound (assuming minimization) found so far.
Gap

Time
indicates the relative gap between BestInteger and BestBound, displayed as a percentage. If the relative gap is larger than 1,000 , then the absolute gap is displayed. If no active nodes remain, the value of Gap is 0 .
indicates the elapsed real time.
The LOGFREQ= and LOGLEVEL= options can be used to control the amount of information printed in the node log. By default a new entry is included in the log at the first node, at the last node, and at 100 -node intervals. A new entry is also included each time a better integer solution is found. The LOGFREQ= option enables you to change the interval between entries in the node log. Figure 10.4 shows a sample node log.

Figure 10.4 Sample Node Log

```
NOTE: The problem exldata has 10 variables (0 binary, 10 integer, 0 free, 0
 fixed).
NOTE: The problem has 2 constraints (2 LE, O EQ, O GE, O range).
NOTE: The problem has 20 constraint coefficients.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed O variables and O constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified O constraint coefficients.
NOTE: The presolved problem has }10\mathrm{ variables, 2 constraints, and 20 constraint
 coefficients.
NOTE: The MILP solver is called.
 Node Active Sols BestInteger BestBound Gap Time
 llll
 178.0000000 52.25% 0
 88.0955497 3.51% 0
 0
 87.8923914 3.29% 0
 0 1 1 4 86.0000000
 87.8372425 2.09% 0
 0 1 4 4 86.0000000
 87.8342067 2.09% 0
 0 1 4 4 86.0000000
 87.8293532 2.08% 0
 0 1 4 4 86.0000000
 87.7862201 2.03% 0
 0
 87.7857235 2.03%
```



```
NOTE: The MILP solver added 3 cuts with 30 cut coefficients at the root.
NOTE: Optimal.
NOTE: Objective = 87.
NOTE: The data set WORK.EX1SOLN has }10\mathrm{ observations and 8 variables.
```


## ODS Tables

PROC OPTMILP creates three Output Delivery System (ODS) tables by default. The first table, ProblemSummary, is a summary of the input MILP problem. The second table, SolutionSummary, is a brief summary of the solution status. The third table, PerformanceInfo, is a summary of performance options. You can use ODS table names to select tables and create output data sets. For more information about ODS, see SAS Output Delivery System: User's Guide.

If you specify a value of 2 for the PRINTLEVEL= option, then the ProblemStatistics table is produced.

This table contains information about the problem data. See the section "Problem Statistics" on page 432 for more information.

If you specify the DETAILS option in the PERFORMANCE statement, then the Timing table is produced.
Table 10.13 lists all the ODS tables that can be produced by the OPTMILP procedure, along with the statement and option specifications required to produce each table.

Table 10.13 ODS Tables Produced by PROC OPTMILP

ODS Table Name	Description	Statement	Option
ProblemSummary	Summary of the input MILP   problem	PROC OPTMILP	PRINTLEVEL=1 (default)
SolutionSummary	Summary of the solution status	PROC OPTMILP	PRINTLEVEL=1 (default)
ProblemStatistics	Description of input problem data	PROC OPTMILP	PRINTLEVEL=2
PerformanceInfo	List of performance options and   their values	PROC OPTMILP	PRINTLEVEL=1 (default)
Timing	Detailed solution timing	PERFORMANCE	DETAILS

A typical ProblemSummary table is shown in Figure 10.5.
Figure 10.5 Example PROC OPTMILP Output: Problem Summary

The OPTMILP Procedure	
Problem Summary	
Problem Name	EX_MIP
Objective Sense	Minimization
Objective Function	COST
RHS	RHS
Number of Variables	3
Bounded Above	0
Bounded Below	0
Bounded Above and Below	3
Free	0
Fixed	0
Binary	3
Integer	0
Number of Constraints	3
LE (<=)	2
EQ ( $=$ )	0
GE ( $>=$ )	1
Range	0
Constraint Coefficients	8

A typical SolutionSummary table is shown in Figure 10.6.
Figure 10.6 Example PROC OPTMILP Output: Solution Summary


You can create output data sets from these tables by using the ODS OUTPUT statement. The output data sets from the preceding example are displayed in Figure 10.7 and Figure 10.8, where you can also find variable names for the tables used in the ODS template of the OPTMILP procedure.

Figure 10.7 ODS Output Data Set: Problem Summary

Problem Summary			
Obs	Label1	cValue1	nValue1
1	Problem Name	EX_MIP	-
2	Objective Sense	Minimization	-
3	Objective Function	COST	-
4	RHS	RHS	-
5			-
6	Number of Variables	3	3.000000
7	Bounded Above	0	0
8	Bounded Below	0	0
9	Bounded Above and Below	3	3.000000
10	Free	0	0
11	Fixed	0	0
12	Binary	3	3.000000
13	Integer	0	0
14			.
15	Number of Constraints	3	3.000000
16	LE (<=)	2	2.000000
17	EQ ( $=$ )	0	0
18	GE (>=)	1	1.000000
19	Range	0	0
20			.
21	Constraint Coefficients	8	8.000000

Figure 10.8 ODS Output Data Set: Solution Summary

Solution Summary			
Obs	Labell	cValue1	nValue1
1	Solver	MILP	.
2	Algorithm	Branch and Cut	.
3	Objective Function	COST	.
4	Solution Status	Optimal	-
5	Objective Value	-7	-7.000000
6			.
7	Relative Gap	0	0
8	Absolute Gap	0	0
9	Primal Infeasibility	0	0
10	Bound Infeasibility	0	0
11	Integer Infeasibility	0	0
12			.
13	Best Bound	-	-
14	Nodes	0	0
15	Iterations	0	0
16	Presolve Time	0.00	0
17	Solution Time	0.00	0

## Problem Statistics

Optimizers can encounter difficulty when solving poorly formulated models. Information about data magnitude provides a simple gauge to determine how well a model is formulated. For example, a model whose constraint matrix contains one very large entry (on the order of $10^{9}$ ) can cause difficulty when the remaining entries are single-digit numbers. The PRINTLEVEL=2 option in the OPTMILP procedure causes the ODS table ProblemStatistics to be generated. This table provides basic data magnitude information that enables you to improve the formulation of your models.

The example output in Figure 10.9 demonstrates the contents of the ODS table ProblemStatistics.
Figure 10.9 ODS Table ProblemStatistics

ProblemStatistics			
Obs	Label1	cValue1	nValue1
1	Number of Constraint Matrix Nonzeros	8	8.000000
2	Maximum Constraint Matrix Coefficient	3	3.000000
3	Minimum Constraint Matrix Coefficient	1	1.000000
4	Average Constraint Matrix Coefficient	1.875	1.875000
5			
6	Number of Objective Nonzeros	3	3.000000
7	Maximum Objective Coefficient	4	4.000000
8	Minimum Objective Coefficient	2	2.000000
9	Average Objective Coefficient	3	3.000000
10			
11	Number of RHS Nonzeros	3	3.000000
12	Maximum RHS	7	7.000000
13	Minimum RHS	4	4.000000
14	Average RHS	5.3333333333	5.333333
15			
16	Maximum Number of Nonzeros per Column	3	3.000000
17	Minimum Number of Nonzeros per Column	2	2.000000
18	Average Number of Nonzeros per Column	2	2.000000
19			.
20	Maximum Number of Nonzeros per Row	3	3.000000
21	Minimum Number of Nonzeros per Row	2	2.000000
22	Average Number of Nonzeros per Row	2	2.000000

The variable names in the ODS table ProblemStatistics are Label1, cValue1, and nValue1.

## Macro Variable _OROPTMILP_

The OPTMILP procedure defines a macro variable named _OROPTMILP_. This variable contains a character string that indicates the status of the OPTMILP procedure upon termination. The various terms of the variable are interpreted as follows.

## STATUS

indicates the solver status at termination. It can take one of the following values:
OK The procedure terminated normally.
SYNTAX_ERROR Incorrect syntax was used.
DATA_ERROR
The input data was inconsistent.
OUT_OF_MEMORY
IO_ERROR
ERROR

Insufficient memory was allocated to the procedure.
A problem occurred in reading or writing data.
The status cannot be classified into any of the preceding categories.

## ALGORITHM

indicates the algorithm that produced the solution data in the macro variable. This term only appears when STATUS=OK. It can take one of the following values:

BAC The branch-and-cut algorithm produced the solution data.
DECOMP The decomposition algorithm produced the solution data.

## SOLUTION_STATUS

indicates the solution status at termination. It can take one of the following values:

OPTIMAL
OPTIMAL_AGAP

OPTIMAL_RGAP

OPTIMAL_COND

TARGET

INFEASIBLE
UNBOUNDED
INFEASIBLE_OR_UNBOUNDED
SOLUTION_LIM

NODE_LIM_SOL

NODE_LIM_NOSOL

TIME_LIM_SOL

The solution is optimal.
The solution is optimal within the absolute gap specified by the ABSOBJGAP= option.

The solution is optimal within the relative gap specified by the RELOBJGAP= option.
The solution is optimal, but some infeasibilities (primal, bound, or integer) exceed tolerances due to scaling or choice of a small INTTOL= value.

The solution is not worse than the target specified by the TARGET= option.

The problem is infeasible.
The problem is unbounded.
The problem is infeasible or unbounded.
The solver reached the maximum number of solutions specified by the MAXSOLS= option.

The solver reached the maximum number of nodes specified by the MAXNODES= option and found a solution.

The solver reached the maximum number of nodes specified by the MAXNODES= option and did not find a solution.

The solver reached the execution time limit specified by the MAXTIME $=$ option and found a solution.

TIME_LIM_NOSOL

ABORT_SOL
ABORT_NOSOL
OUTMEM_SOL
OUTMEM_NOSOL

FAIL_SOL
FAIL_NOSOL

The solver reached the execution time limit specified by the MAXTIME $=$ option and did not find a solution.

The solver was stopped by the user but still found a solution.
The solver was stopped by the user and did not find a solution.
The solver ran out of memory but still found a solution.
The solver ran out of memory and either did not find a solution or failed to output the solution due to insufficient memory.

The solver stopped due to errors but still found a solution.
The solver stopped due to errors and did not find a solution.

## OBJECTIVE

indicates the objective value obtained by the solver at termination.

## RELATIVE_GAP

specifies the relative gap between the best integer objective (BestInteger) and the objective of the best remaining node (BestBound) upon termination of the OPTMILP procedure. The relative gap is equal to
| BestInteger - BestBound | / (1E-10 + | BestBound |)


#### Abstract

ABSOLUTE_GAP specifies the absolute gap between the best integer objective (BestInteger) and the objective of the best remaining node (BestBound) upon termination of the OPTMILP procedure. The absolute gap is equal to $\mid$ BestInteger - BestBound $\mid$.


## PRIMAL_INFEASIBILITY

 indicates the maximum (absolute) violation of the primal constraints by the solution.
## BOUND_INFEASIBILITY

indicates the maximum (absolute) violation by the solution of the lower or upper bounds (or both).

## INTEGER_INFEASIBILITY

indicates the maximum (absolute) violation of the integrality of integer variables returned by the OPTMILP procedure.

## BEST_BOUND

specifies the best LP objective value of all unprocessed nodes on the branch-and-bound tree at the end of execution. A missing value indicates that the OPTMILP procedure has processed either all or none of the nodes on the branch-and-bound tree.

## NODES

specifies the number of nodes enumerated by the OPTMILP procedure when using the branch-andbound algorithm.

## ITERATIONS

indicates the number of simplex iterations taken to solve the problem.

## PRESOLVE_TIME

indicates the time (in seconds) used in preprocessing.

## SOLUTION_TIME

indicates the time (in seconds) taken to solve the problem, including preprocessing time.
Note: The time reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real time. The type is determined by the TIMETYPE= option.

## Examples: OPTMILP Procedure

This section contains examples that illustrate the options and syntax of PROC OPTMILP. Example 10.1 demonstrates a model contained in an MPS-format SAS data set and finds an optimal solution by using PROC OPTMILP. Example 10.2 illustrates the use of standard MPS files in PROC OPTMILP. Example 10.3 demonstrates how to warm start PROC OPTMILP. More detailed examples of mixed integer linear programs, along with example SAS code, are given in Chapter 6.

## Example 10.1: Simple Integer Linear Program

This example illustrates a model in an MPS-format SAS data set. This data set is passed to PROC OPTMILP, and a solution is found.

Consider a scenario where you have a container with a set of limiting attributes (volume $V$ and weight $W$ ) and a set $I$ of items that you want to pack. Each item type $i$ has a certain value $p_{i}$, a volume $v_{i}$, and a weight $w_{i}$. You must choose at most four items of each type so that the total value is maximized and all the chosen items fit into the container. Let $x_{i}$ be the number of items of type $i$ to be included in the container. This model can be formulated as the following integer linear program:

$$
\begin{array}{llll}
\max & \sum_{i \in I} p_{i} x_{i} & & \\
\text { s.t. } & \sum_{i \in I} v_{i} x_{i} \leq V & \text { (volume_con) } \\
& \sum_{i \in I} w_{i} x_{i} \leq W & & \\
& x_{i} & \leq 4 & \forall i \in I \\
& & \\
& x_{i} \in \mathbb{Z}^{+} & \forall i \in I &
\end{array}
$$

Constraint (volume_con) enforces the volume capacity limit, while constraint (weight_con) enforces the weight capacity limit. An instance of this problem can be saved in an MPS-format SAS data set by using the following code:

```
data ex1data;
 input field1 $ field2 $ field3 $ field4 field5 $ field6;
 datalines;
\begin{tabular}{ll}
NAME & - \\
ROWS & MAX \\
L & z
\end{tabular}
I volume_con
L weight_con
COLUMNS
. .MRKO
. .MRKO
. .MRKO
 x[2]
 x[2]
 x[3]
 x[3]
 x[4]
 x[4]
 x[5] z
 x[5] weight_con 22
 x[6] z 6
 x[6] weight_con 16
 x[7] z
lll
lll
.
 x[9]
 x[9]
.
.
 .MRK1
. RHS .MRK
BOUNDS
 .RHS .
 ex1data
 ex1data
```

This problem can be solved by using the following statements to call the OPTMILP procedure:

```
proc optmodel;
 num nItems = 10;
 num volume_capacity = 1000;
 num weight_capacity = 500;
 set<num> Items = {1..nItems};
 num value{Items} = [1,2,3,4,5,6,7,8,9,10];
 num volume{Items} = [10, 300, 250, 610, 500, 120, 45, 100, 200, 61];
 num weight{Items} = [12, 15, 72, 100, 223, 16, 73, 12, 200, 110];
 var x{Items} integer >= 0 <= 4;
 max z = sum{i in Items} value[i] * x[i];
 con volume_con: sum{i in Items} volume[i] * x[i] <= volume_capacity;
 con weight_con: sum{i in Items} weight[i] * x[i] <= weight_capacity;
 save mps exldata;
 quit;
run;
proc optmilp data=ex1data primalout=ex1soln;
run;
```

The progress of the solver is shown in Output 10.1.1.
Output 10.1.1 Simple Integer Linear Program PROC OPTMILP Log

```
NOTE: The problem exldata has 10 variables (0 binary, 10 integer, 0 free, 0
 fixed).
NOTE: The problem has 2 constraints (2 LE, O EQ, O GE, O range).
NOTE: The problem has 20 constraint coefficients.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed O variables and O constraints.
NOTE: The MILP presolver removed O constraint coefficients.
NOTE: The MILP presolver modified O constraint coefficients.
NOTE: The presolved problem has 10 variables, 2 constraints, and 20 constraint
 coefficients.
NOTE: The MILP solver is called.
\begin{tabular}{rrrrrrr}
Node & Active & Sols & BestInteger & BestBound & Gap & Time \\
0 & 1 & 3 & 85.0000000 & 178.0000000 & \(52.25 \%\) & 0 \\
0 & 1 & 3 & 85.0000000 & 88.0955497 & \(3.51 \%\) & 0 \\
0 & 1 & 3 & 85.0000000 & 87.8923914 & \(3.29 \%\) & 0 \\
0 & 1 & 4 & 86.0000000 & 87.8372425 & \(2.09 \%\) & 0 \\
0 & 1 & 4 & 86.0000000 & 87.8342067 & \(2.09 \%\) & 0 \\
0 & 1 & 4 & 86.0000000 & 87.8293532 & \(2.08 \%\) & 0 \\
0 & 1 & 4 & 86.0000000 & 87.7862201 & \(2.03 \%\) & 0 \\
0 & 1 & 4 & 86.0000000 & 87.7857235 & \(2.03 \%\) & 0 \\
0 & 1 & 4 & 86.0000000 & 87.7559469 & \(2.00 \%\) & 0
\end{tabular}
NOTE: The MILP solver added 3 cuts with 30 cut coefficients at the root.
 5 0 5 5 87.0000000 87.0000000 0.00% 0
NOTE: Optimal.
NOTE: Objective = 87.
NOTE: The data set WORK.EX1SOLN has 10 observations and 8 variables.
```

The data set ex1soln is shown in Output 10.1.2.
Output 10.1.2 Simple Integer Linear Program Solution


The optimal solution is $x_{6}=3, x_{7}=1, x_{8}=4$, and $x_{10}=3$, with a total value of 87 . From this solution, you can compute the total volume used, which is $988(\leq V=1000)$; the total weight used is 499 ( $\leq W=500$ ). The problem summary and solution summary are shown in Output 10.1.3.

```
proc optmodel;
 num nItems = 10;
 num volume_capacity = 1000;
 num weight_capacity = 500;
 set<num> Items = {1..nItems};
 num value{Items} = [1,2,3,4,5,6,7,8,9,10];
 num volume{Items} = [10, 300, 250, 610, 500, 120, 45, 100, 200, 61];
 num weight{Items} = [12, 15, 72, 100, 223, 16, 73, 12, 200, 110];
 var x{Items} integer >= 0 <= 4;
 max z = sum{i in Items} value[i] * x[i];
 con volume_con: sum{i in Items} volume[i] * x[i] <= volume_capacity;
 con weight_con: sum{i in Items} weight[i] * x[i] <= weight_capacity;
 save mps exldata;
 quit;
run;
proc optmilp data=ex1data primalout=ex1soln;
title ' ';
run;
```

Output 10.1.3 Simple Integer Linear Program Summary

The OPTMILP Procedure	
Problem Name Objective Sense Objective Function RHS	$\begin{array}{r} \text { exldata } \\ \text { Maximization } \\ \mathbf{z} \\ \text {.RHS } \end{array}$
Number of Variables	10
Bounded Above	0
Bounded Below	0
Bounded Above and Below	10
Free	0
Fixed	0
Binary	0
Integer	10
Number of Constraints	2
LE (<=)	2
EQ (=)	0
GE (>=)	0
Range	0
Constraint Coefficients	20
Solution Summary	
Solver	MILP
Algorithm	Branch and Cut
Objective Function	z
Solution Status	Optimal
Objective Value	87
Relative Gap	0
Absolute Gap	0
Primal Infeasibility	0
Bound Infeasibility	0
Integer Infeasibility	0
Best Bound	87
Nodes	6
Iterations	53
Presolve Time	0.02
Solution Time	0.03

## Example 10.2: MIPLIB Benchmark Instance

The following example illustrates the conversion of a standard MPS-format file into an MPS-format SAS data set. The problem is re-solved several times, each time by using a different control option. For such a small example, it is necessary to disable cuts and heuristics in order to see the computational savings gained by using other options. For larger or more complex examples, the benefits of using the various control options are more pronounced.

The standard set of MILP benchmark cases is called MIPLIB (Bixby et al. 1998, Achterberg, Koch, and Martin 2003) and can be found at http://miplib.zib.de/. The following statement uses the \%MPS2SASD macro to convert an example from MIPLIB to a SAS data set:

```
%mps2sasd(mpsfile="bell3a.mps", outdata=mpsdata);
```

The problem can then be solved using PROC OPTMILP on the data set created by the conversion:

```
proc optmilp data=mpsdata allcuts=none heuristics=none logfreq=10000;
run;
```

The resulting log is shown in Output 10.2.1.

## Output 10.2.1 MIPLIB PROC OPTMILP Log

```
NOTE: The problem BELL3A has }133\mathrm{ variables (39 binary, 32 integer, 0 free, 0
 fixed).
NOTE: The problem has 123 constraints (123 LE, O EQ, O GE, O range).
NOTE: The problem has }347\mathrm{ constraint coefficients.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 33 variables and 37 constraints.
NOTE: The MILP presolver removed 92 constraint coefficients.
NOTE: The MILP presolver modified 3 constraint coefficients.
NOTE: The presolved problem has }100\mathrm{ variables, }86\mathrm{ constraints, and 255
 constraint coefficients.
NOTE: The MILP solver is called.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Node & Active & Sols & BestInteger & BestBound & Gap & Time \\
\hline 0 & 1 & 0 & . & 866240 & . & 0 \\
\hline 0 & 1 & 0 & - & 866240 & . & 0 \\
\hline 801 & 49 & 1 & 916564 & 874287 & 4.84\% & 0 \\
\hline 881 & 108 & 2 & 916327 & 874287 & 4.81\% & 0 \\
\hline 947 & 159 & 3 & 915158 & 874287 & 4.67\% & 0 \\
\hline 979 & 165 & 4 & 898096 & 874287 & 2.72\% & 0 \\
\hline 1002 & 123 & 5 & 887234 & 874287 & 1.48\% & 0 \\
\hline 1088 & 122 & 6 & 883066 & 874287 & 1.00\% & 0 \\
\hline 1978 & 381 & 7 & 880717 & 874502 & \(0.71 \%\) & 0 \\
\hline 6093 & 1902 & 8 & 878430 & 875484 & \(0.34 \%\) & 0 \\
\hline 10000 & 2382 & 8 & 878430 & 876000 & 0.28\% & 1 \\
\hline 20000 & 1703 & 8 & 878430 & 876961 & 0.17\% & 2 \\
\hline 23321 & 2 & 8 & 878430 & 878365 & 0.01\% & 2 \\
\hline
\end{tabular}
NOTE: Optimal within relative gap.
NOTE: Objective \(=878430.316\).
```

Suppose you do not have a bound for the solution. If there is an objective value that, even if it is not optimal, satisfies your requirements, then you can save time by using the TARGET= option. The following PROC OPTMILP call solves the problem with a target value of 880,000 :

```
proc optmilp data=mpsdata allcuts=none heuristics=none logfreq=5000
 target=880000;
run;
```

The relevant results from this run are displayed in Output 10.2.2. In this case, there is a decrease in CPU time, but the objective value has increased.

Output 10.2.2 MIPLIB PROC OPTMILP Log with TARGET= Option

```
NOTE: The problem BELL3A has 133 variables (39 binary, 32 integer, 0 free, 0
 fixed).
NOTE: The problem has 123 constraints (123 LE, O EQ, O GE, O range).
NOTE: The problem has 347 constraint coefficients.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 33 variables and 37 constraints.
NOTE: The MILP presolver removed 92 constraint coefficients.
NOTE: The MILP presolver modified 3 constraint coefficients.
NOTE: The presolved problem has }100\mathrm{ variables, 86 constraints, and 255
 constraint coefficients.
NOTE: The MILP solver is called.
\begin{tabular}{rrrrrrr}
Node & Active & Sols & BestInteger & BestBound & Gap & Time \\
0 & 1 & 0 & \(\cdot\) & 866240 & \(\cdot\) & 0 \\
0 & 1 & 0 &. & 866240 &. & 0 \\
801 & 49 & 1 & 916564 & 874287 & \(4.84 \%\) & 0 \\
881 & 108 & 2 & 916327 & 874287 & \(4.81 \%\) & 0 \\
947 & 159 & 3 & 915158 & 874287 & \(4.67 \%\) & 0 \\
979 & 165 & 4 & 898096 & 874287 & \(2.72 \%\) & 0 \\
1002 & 123 & 5 & 887234 & 874287 & \(1.48 \%\) & 0 \\
1088 & 122 & 6 & 883066 & 874287 & \(1.00 \%\) & 0 \\
1978 & 381 & 7 & 880717 & 874502 & \(0.71 \%\) & 0 \\
5000 & 1476 & 7 & 880717 & 875311 & \(0.62 \%\) & 0 \\
6093 & 2011 & 8 & 878430 & 875484 & \(0.34 \%\) & 0
\end{tabular}
NOTE: Target reached.
NOTE: Objective of the best integer solution found = 878430.32.
```

When the objective value of a solution is within a certain relative gap of the optimal objective value, the procedure stops. The acceptable relative gap can be changed using the RELOBJGAP=option, as demonstrated in the following example:

```
proc optmilp data=mpsdata allcuts=none heuristics=none relobjgap=0.01;
run;
```

The relevant results from this run are displayed in Output 10.2.3. In this case, since the specified RELOBJGAP = value is larger than the default value, the number of nodes and the CPU time have decreased from their values in the original run. Note that these savings are exchanged for an increase in the objective value of the solution.

Output 10.2.3 MIPLIB PROC OPTMILP Log with RELOBJGAP= Option

NOTE: The problem BELL3A has 133 variables ( 39 binary, 32 integer, 0 free, 0 fixed).
NOTE: The problem has 123 constraints ( $123 \mathrm{LE}, \mathrm{O} \mathrm{EQ}, \mathrm{O} \mathrm{GE}, 0$ range).
NOTE: The problem has 347 constraint coefficients.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 33 variables and 37 constraints.
NOTE: The MILP presolver removed 92 constraint coefficients.
NOTE: The MILP presolver modified 3 constraint coefficients.
NOTE: The presolved problem has 100 variables, 86 constraints, and 255 constraint coefficients.
NOTE: The MILP solver is called.

Node	Active	Sols	BestInteger	BestBound	Gap	Time
0	1	0	.	866240	.	0
0	1	0	.	866240	-	0
100	85	0	.	873180	.	0
200	166	0	.	873577	.	0
300	243	0	-	873730	.	0
400	317	0	.	873867	-	0
500	379	0	-	874141	-	0
600	460	0	.	874247	-	0
700	544	0	-	874262	-	0
800	50	0	-	874287	-	0
801	49	1	916564	874287	4.84\%	0
881	108	2	916327	874287	4.81\%	0
900	125	2	916327	874287	4.81\%	0
947	159	3	915158	874287	4.67\%	0
979	165	4	898096	874287	2.72\%	0
1000	185	4	898096	874287	2.72\%	0
1002	123	5	887234	874287	1.48\%	0
1088	122	6	883066	874287	1.00\%	0
1100	129	6	883066	874287	1.00\%	0
1200	168	6	883066	874287	1.00\%	0
1300	199	6	883066	874287	1.00\%	0
1400	238	6	883066	874287	1.00\%	0
1500	266	6	883066	874287	1.00\%	0
1600	302	6	883066	874287	1.00\%	0
1700	327	6	883066	874314	1.00\%	0
1736	341	6	883066	874325	1.00\%	0

NOTE: Optimal within relative gap.
NOTE: Objective $=883066.108$.

The MAXTIME= option enables you to accept the best solution produced by PROC OPTMILP in a specified amount of time. The following example illustrates the use of the MAXTIME= option:

```
proc optmilp data=mpsdata allcuts=none heuristics=none maxtime=0.1;
run;
```

The relevant results from this run are displayed in Output 10.2.4. Once again, a reduction in solution time is traded for an increase in objective value.

Output 10.2.4 MIPLIB PROC OPTMILP Log with MAXTIME= Option

```
NOTE: The problem BELL3A has }133\mathrm{ variables (39 binary, 32 integer, 0 free, 0
 fixed).
NOTE: The problem has 123 constraints (123 LE, O EQ, O GE, O range).
NOTE: The problem has 347 constraint coefficients.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 33 variables and 37 constraints.
NOTE: The MILP presolver removed 92 constraint coefficients.
NOTE: The MILP presolver modified 3 constraint coefficients.
NOTE: The presolved problem has }100\mathrm{ variables, 86 constraints, and 255
 constraint coefficients.
NOTE: The MILP solver is called.
\begin{tabular}{rrrrrrr}
Node & Active & Sols & BestInteger & BestBound & Gap & Time \\
0 & 1 & 0 &. & 866240 &. & 0 \\
0 & 1 & 0 &. & 866240 &. & 0 \\
100 & 85 & 0 &. & 873180 &. & 0 \\
200 & 166 & 0 &. & 873577 &. & 0 \\
203 & 167 & 0 &. & 873577 &. & 0
\end{tabular}
NOTE: CPU time limit reached.
NOTE: No integer solutions found.
```

The MAXNODES= option enables you to limit the number of nodes generated by PROC OPTMILP. The following example illustrates the use of the MAXNODES= option:

```
proc optmilp data=mpsdata allcuts=none heuristics=none maxnodes=500;
run;
```

The relevant results from this run are displayed in Output 10.2.5. PROC OPTMILP displays the best objective value of all the solutions produced.

Output 10.2.5 MIPLIB PROC OPTMILP Log with MAXNODES= Option

```
NOTE: The problem BELL3A has }133\mathrm{ variables (39 binary, 32 integer, 0 free, 0
 fixed).
NOTE: The problem has 123 constraints (123 LE, O EQ, O GE, O range).
NOTE: The problem has 347 constraint coefficients.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 33 variables and 37 constraints.
NOTE: The MILP presolver removed 92 constraint coefficients.
NOTE: The MILP presolver modified 3 constraint coefficients.
NOTE: The presolved problem has }100\mathrm{ variables, 86 constraints, and 255
 constraint coefficients.
NOTE: The MILP solver is called.
\begin{tabular}{rrrrrrr}
Node & Active & Sols & BestInteger & BestBound & Gap & Time \\
0 & 1 & 0 &. & 866240 &. & 0 \\
0 & 1 & 0 &. & 866240 &. & 0 \\
100 & 85 & 0 &. & 873180 &. & 0 \\
200 & 166 & 0 &. & 873577 &. & 0 \\
300 & 243 & 0 &. & 873730 &. & 0 \\
400 & 317 & 0 &. & 873867 &. & 0 \\
499 & 378 & 0 &. & 874141 &. & 0
\end{tabular}
```

NOTE: Node limit reached.
NOTE: No integer solutions found.

## Example 10.3: Facility Location

This advanced example demonstrates how to warm start PROC OPTMILP by using the PRIMALIN=option. The model is constructed in PROC OPTMODEL and saved in an MPS-format SAS data set for use in PROC OPTMILP. This problem can also be solved from within PROC OPTMODEL; see Chapter 6 for details.

Consider the classical facility location problem. Given a set $L$ of customer locations and a set $F$ of candidate facility sites, you must decide on which sites to build facilities and assign coverage of customer demand to these sites so as to minimize cost. All customer demand $d_{i}$ must be satisfied, and each facility has a demand capacity limit $C$. The total cost is the sum of the distances $c_{i j}$ between facility $j$ and its assigned customer $i$, plus a fixed charge $f_{j}$ for building a facility at site $j$. Let $y_{j}=1$ represent choosing site $j$ to build a facility, and 0 otherwise. Also, let $x_{i j}=1$ represent the assignment of customer $i$ to facility $j$, and 0 otherwise. This model can be formulated as the following integer linear program:

$$
\begin{array}{llll}
\min & \sum_{i \in L} \sum_{j \in F} c_{i j} x_{i j}+\sum_{j \in F} f_{j} y_{j} & & \\
\text { s.t. } & \sum_{j \in F} x_{i j} & =1 & \forall i \in L
\end{array} \quad \text { (assign_def) }
$$

Constraint (assign_def) ensures that each customer is assigned to exactly one site. Constraint (link) forces a facility to be built if any customer has been assigned to that facility. Finally, constraint (capacity) enforces the capacity limit at each site.

Consider also a variation of this same problem where there is no cost for building a facility. This problem is typically easier to solve than the original problem. For this variant, let the objective be

$$
\min \sum_{i \in L} \sum_{j \in F} c_{i j} x_{i j}
$$

First, construct a random instance of this problem by using the following DATA steps:

```
%let NumCustomers = 50;
%let NumSites = 10;
%let SiteCapacity = 35;
%let MaxDemand = 10;
%let xmax = 200;
%let ymax = 100;
%let seed = 938;
/* generate random customer locations */
data cdata(drop=i);
 length name $8;
 do i = 1 to &NumCustomers;
 name = compress('C'||put(i,best.));
 x = ranuni(&seed) * &xmax;
 y = ranuni(&seed) * &ymax;
 demand = ranuni(&seed) * &MaxDemand;
 output;
 end;
run;
/* generate random site locations and fixed charge */
data sdata(drop=i);
 length name $8;
 do i = 1 to &NumSites;
 name = compress('SITE'||put(i,best.));
 x = ranuni(&seed) * &xmax;
 y = ranuni(&seed) * &ymax;
 fixed_charge = 30 * (abs(&xmax/2-x) + abs(&ymax/2-y));
 output;
 end;
run;
```

The following PROC OPTMODEL statements generate the model and define both variants of the cost function:

```
proc optmodel;
 set <str> CUSTOMERS;
 set <str> SITES init {};
```

```
 /* x and y coordinates of CUSTOMERS and SITES */
 num x {CUSTOMERS union SITES};
 num y {CUSTOMERS union SITES};
 num demand {CUSTOMERS};
 num fixed_charge {SITES};
 /* distance from customer i to site j */
 num dist {i in CUSTOMERS, j in SITES}
 = sqrt((x[i] - x[j])^2 + (y[i] - y[j])^2);
read data cdata into CUSTOMERS=[name] x y demand;
read data sdata into SITES=[name] x y fixed_charge;
var Assign {CUSTOMERS, SITES} binary;
var Build {SITES} binary;
/* each customer assigned to exactly one site */
con assign_def {i in CUSTOMERS}:
 sum {j in SITES} Assign[i,j] = 1;
/* if customer i assigned to site j, then facility must be */
/* built at j */
con link {i in CUSTOMERS, j in SITES}:
 Assign[i,j] <= Build[j];
/* each site can handle at most &SiteCapacity demand */
con capacity {j in SITES}:
 sum {i in CUSTOMERS} demand[i] * Assign[i,j]
 <= &SiteCapacity * Build[j];
min CostNoFixedCharge
 = sum {i in CUSTOMERS, j in SITES} dist[i,j] * Assign[i,j];
save mps nofcdata;
min CostFixedCharge
 = CostNoFixedCharge
 + sum {j in SITES} fixed_charge[j] * Build[j];
save mps fcdata;
quit;
```

First solve the problem for the model with no fixed charge by using the following statements. The first PROC SQL call populates the macro variables varcostNo. This macro variable displays the objective value when the results are plotted. The second PROC SQL call generates a data set that is used to plot the results. The information printed in the log by PROC OPTMILP is displayed in Output 10.3.1.

```
proc optmilp data=nofcdata primalout=nofcout;
run;
proc sql noprint;
 select put(sum(_objcoef_ * _value_),6.1) into :varcostNo
 from nofcout;
quit;
```

```
proc sql;
 create table CostNoFixedCharge_Data as
 select
 scan(P._var_,2,'[],') as customer,
 scan(p._var_, 3,'[],') as site,
 C.x as xi, C.Y as yi, s.x as xj, s.y as yj
 from
 cdata as c,
 sdata as s,
 nofcout (where=(substr(_var_, 1,6)='Assign' and
 round(_value_) = 1)) as p
 where calculated customer = c.name and calculated site = s.name;
quit;
```

Output 10.3.1 PROC OPTMILP Log for Facility Location with No Fixed Charges

```
NOTE: The problem nofcdata has }510\mathrm{ variables (510 binary, 0 integer, 0 free, 0
 fixed).
NOTE: The problem has 560 constraints (510 LE, 50 EQ, O GE, O range).
NOTE: The problem has 2010 constraint coefficients.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed }10\mathrm{ variables and 500 constraints.
NOTE: The MILP presolver removed 1010 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has }500\mathrm{ variables, }60\mathrm{ constraints, and 1000
 constraint coefficients.
NOTE: The MILP solver is called.
\begin{tabular}{rrrrrrr}
Node & Active & Sols & BestInteger & BestBound & Gap & Time \\
0 & 1 & 2 & 972.1737321 & 0 & 972.2 & 0 \\
0 & 1 & 2 & 972.1737321 & 961.2403449 & \(1.14 \%\) & 0 \\
0 & 1 & 3 & 966.4832160 & 966.4832160 & \(0.00 \%\) & 0 \\
0 & 0 & 3 & 966.4832160 & 966.4832160 & \(0.00 \%\) & 0
\end{tabular}
```

NOTE: The MILP solver added 11 cuts with 596 cut coefficients at the root.
NOTE: Optimal.
NOTE: Objective $=966.483216$.
NOTE: The data set WORK.NOFCOUT has 510 observations and 8 variables.

Next, solve the fixed-charge model by using the following statements. Note that the solution to the model with no fixed charge is feasible for the fixed-charge model and should provide a good starting point for PROC OPTMILP. The PRIMALIN= option provides an incumbent solution ("warm start"). The two PROC SQL calls perform the same functions as in the case with no fixed charges. The results from this approach are shown in Output 10.3.2.

```
proc optmilp data=fcdata primalin=nofcout;
run;
proc sql noprint;
 select put(sum(_objcoef_ * _value_), 6.1) into :varcost
 from fcout(where=(substr(_var_,1,6)='Assign'));
 select put(sum(_objcoef_ * _value_), 5.1) into :fixcost
 from fcout(where=(substr(_var_,1,5)='Build'));
 select put(sum(_objcoef_ * _value_), 6.1) into :totalcost
 from fcout;
quit;
```

```
proc sql;
 create table CostFixedCharge_Data as
 select
 scan(p._var_,2,'[],') as customer,
 scan(p._var_,3,'[],') as site,
 c.x as xi, c.y as yi, s.x as xj, s.y as yj
 from
 cdata as c,
 sdata as s,
 fcout (where=(substr(_var_,1,6)='Assign' and
 round(_value_) = 1)) as p
 where calculated customer = c.name and calculated site = s.name;
quit;
```

Output 10.3.2 PROC OPTMILP Log for Facility Location with Fixed Charges, Using Warm Start

```
NOTE: The problem fcdata has }510\mathrm{ variables (510 binary, 0 integer, 0 free, 0
 fixed).
NOTE: The problem has 560 constraints (510 LE, 50 EQ, O GE, O range).
NOTE: The problem has 2010 constraint coefficients.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed O variables and O constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has }510\mathrm{ variables, 560 constraints, and 2010
 constraint coefficients.
NOTE: The MILP solver is called.
\begin{tabular}{rrrrrrr}
Node & Active & Sols & BestInteger & BestBound & Gap & Time \\
0 & 1 & 3 & 16070.0150023 & 0 & 16070 & 0 \\
0 & 1 & 3 & 16070.0150023 & 9946.2514269 & \(61.57 \%\) & 0 \\
0 & 1 & 3 & 16070.0150023 & 10928.4411260 & \(47.05 \%\) & 0 \\
0 & 1 & 3 & 16070.0150023 & 10935.7635057 & \(46.95 \%\) & 0 \\
0 & 1 & 3 & 16070.0150023 & 10937.2213002 & \(46.93 \%\) & 0 \\
0 & 1 & 3 & 16070.0150023 & 10939.0078942 & \(46.91 \%\) & 0 \\
0 & 1 & 6 & 12700.1240062 & 10940.2528587 & \(16.09 \%\) & 0 \\
0 & 1 & 6 & 12700.1240062 & 10940.7429023 & \(16.08 \%\) & 0 \\
0 & 1 & 7 & 10971.6925165 & 10941.2788248 & \(0.28 \%\) & 0 \\
0 & 1 & 7 & 10971.6925165 & 10941.4289061 & \(0.28 \%\) & 0 \\
0 & 1 & 7 & 10971.6925165 & 10941.4296168 & \(0.28 \%\) & 0 \\
0 & 1 & 7 & 10971.6925165 & 10942.0350487 & \(0.27 \%\) & 0
\end{tabular}
NOTE: The MILP solver added 19 cuts with 531 cut coefficients at the root.
\begin{tabular}{rrrrrrr}
14 & 14 & 8 & 10957.5224217 & 10942.3886864 & \(0.14 \%\) & 0 \\
21 & 14 & 9 & 10952.7127125 & 10942.3886864 & \(0.09 \%\) & 0 \\
28 & 18 & 10 & 10950.3308547 & 10943.9352442 & \(0.06 \%\) & 0 \\
29 & 8 & 11 & 10948.4603366 & 10944.8287002 & \(0.03 \%\) & 0 \\
43 & 3 & 11 & 10948.4603366 & 10947.6400559 & \(0.01 \%\) & 1
\end{tabular}
```

NOTE: Optimal within relative gap.
NOTE: Objective $=10948.4603$.
NOTE: The data set WORK.FCOUT has 510 observations and 8 variables.

The following two SAS programs produce a plot of the solutions for both variants of the model, using data sets produced by PROC SQL from the PRIMALOUT= data sets produced by PROC OPTMILP.

Note: Execution of this code requires SAS/GRAPH software.

```
title1 "Facility Location Problem";
title2 "TotalCost = &varcostNo (Variable = &varcostNo, Fixed = 0)";
data csdata;
 set cdata(rename=(y=cy)) sdata(rename=(y=sy));
run;
/* create Annotate data set to draw line between customer and */
/* assigned site */
%annomac;
data anno(drop=xi yi xj yj);
 %SYSTEM(2, 2, 2);
set CostNoFixedCharge_Data(keep=xi yi xj yj);
 %LINE(xi, yi, xj, yj, *, 1, 1);
run;
proc gplot data=csdata anno=anno;
 axis1 label=none order=(0 to &xmax by 10);
 axis2 label=none order=(0 to &ymax by 10);
 symboll value=dot interpol=none
 pointlabel=("#name" nodropcollisions height=0.7) cv=black;
 symbol2 value=diamond interpol=none
 pointlabel=("#name" nodropcollisions color=blue height=0.7) cv=blue;
 plot cy*x sy*x / overlay haxis=axis1 vaxis=axis2;
run;
quit;
```

The output from the first program appears in Output 10.3.3.

Output 10.3.3 Solution Plot for Facility Location with No Fixed Charges


```
title1 "Facility Location Problem";
title2 "TotalCost = &totalcost (Variable = &varcost, Fixed = &fixcost)";
/* create Annotate data set to draw line between customer and */
/* assigned site
data anno(drop=xi yi xj yj);
 %SYSTEM(2, 2, 2);
 set CostFixedCharge_Data(keep=xi yi xj yj);
 %LINE(xi, yi, xj, yj, *, 1, 1);
run;
proc gplot data=csdata anno=anno;
 axis1 label=none order=(0 to &xmax by 10);
 axis2 label=none order=(0 to &ymax by 10);
 symboll value=dot interpol=none
 pointlabel=("#name" nodropcollisions height=0.7) cv=black;
 symbol2 value=diamond interpol=none
 pointlabel=("#name" nodropcollisions color=blue height=0.7) cv=blue;
 plot cy*x sy*x / overlay haxis=axis1 vaxis=axis2;
run;
quit;
```

The output from the second program appears in Output 10.3.4.

## Output 10.3.4 Solution Plot for Facility Location with Fixed Charges



The economic tradeoff for the fixed-charge model forces you to build fewer sites and push more demand to each site.

## Example 10.4: Scheduling

This example is intended for users who prefer to use the SAS DATA step, PROC SQL, and similar programming methods to prepare data for input to SAS/OR optimization procedures. SAS/OR users who prefer to use the algebraic modeling capabilities of PROC OPTMODEL to specify optimization models should consult Example 6.1 in Chapter 6, "The Mixed Integer Linear Programming Solver," for a discussion of the same business problem in a PROC OPTMODEL context.

Scheduling is an application area where techniques in model generation can be valuable. Problems that involve scheduling are often solved with integer programming and are similar to assignment problems. In this example, you have eight one-hour time slots in each of five days. You have to assign four people to these time slots so that each slot is covered every day. You allow the people to specify preference data for each slot on each day. In addition, there are constraints that must be satisfied:

- Each person has some slots for which they are unavailable.
- Each person must have either slot 4 or 5 off for lunch.
- Each person can work only two time slots in a row.
- Each person can work only a specified number of hours in the week.

To formulate this problem, let $i$ denote person, $j$ denote time slot, and $k$ denote day. Then, let $x_{i j k}=1$ if person $i$ is assigned to time slot $j$ on day $k$, and 0 otherwise; let $p_{i j k}$ denote the preference of person $i$ for slot $j$ on day $k$; and let $h_{i}$ denote the number of hours in a week that person $i$ will work. Then, you get

$$
\begin{array}{lll}
\max & \sum_{i j k} p_{i j k} x_{i j k} & \\
\text { subject to } & \sum_{i} x_{i j k}=1 & \text { for all } j \text { and } k \\
& x_{i 4 k}+x_{i 5 k} \leq 1 & \text { for all } i \text { and } k \\
& x_{i, \ell, k}+x_{i, \ell+1, k}+x_{i, \ell+2, k} \leq 2 & \text { for all } i \text { and } k, \text { and } \ell=1, \ldots, 6 \\
& \sum_{j k} x_{i j k} \leq h_{i} & \text { for all } i \\
& x_{i j k}=0 \text { or } 1 & \text { for all } i \text { and } k \text { such that } p_{i j k}>0, \\
& & \text { otherwise } x_{i j k}=0
\end{array}
$$

To solve this problem, create a data set that has the hours and preference data for each individual, time slot, and day. A 10 represents the most desirable time slot, and a 1 represents the least desirable time slot. In addition, a 0 indicates that the time slot is not available.

```
data raw;
 input name $ hour slot mon tue wed thu fri;
 datalines;
marc 20 1 10 10 10 10 10
marc 20 2 2 0
marc 20 3 % 8 8 8 8 8 8 8
marc }200
marc 20 5 1 1 1 1 1 1 1
marc 20 6 1 1 1 1 1 1 1
marc }20\begin{array}{llllllll}{m}&{7}&{1}&{1}&{1}&{1}&{1}
marc 20 8 % 1 1 1 1 1 1 1
mike }20\begin{array}{llllllll}{1}&{1}&{10}&{9}&{8}&{7}&{6}
mike }\begin{array}{lllllllll}{20}&{2}&{10}&{9}&{8}&{7}&{6}\\{\mathrm{ mike }}&{20}&{3}&{10}&{9}&{8}&{7}&{6}
mike }\begin{array}{llllllll}{20}&{3}&{10}&{9}&{8}&{7}&{6}\\{\mathrm{ mike }}&{20}&{4}&{10}&{3}&{3}&{3}&{3}
mike 20 5 1 1 1 1 1 1 1 1
mike }\begin{array}{llllllll}{20}&{6}&{1}&{2}&{3}&{4}&{5}
mike }\begin{array}{lllllllll}{20}&{7}&{1}&{2}&{3}&{4}&{5}
```



```
bill 20 1 10 10 10 10 10
bill 20 2
bill 20 < 3 % 8 8 8 8 8 8
bill 20 4 0
```



```
bill 20 6
bill
bob
```

bob	20	2	10	9	8	7	6
bob	20	3	10	9	8	7	6
bob	20	4	10	3	3	3	3
bob	20	5	1	1	1	1	1
bob	20	6	1	2	3	4	5
bob	20	7	1	2	3	4	5
bob	20	8	1	2	3	4	5
$;$							

These data are read by the following DATA step, and an integer program is built to solve the problem. The model is saved in the data set named MODEL, which is constructed in the following steps:

1. The objective function is built using the data saved in the RAW data set.
2. The constraints that ensure that no one works during a time slot during which they are unavailable are built.
3. The constraints that require a person to be working in each time slot are built.
4. The constraints that allow each person time for lunch are added.
5. The constraints that restrict people to only two consecutive hours are added.
6. The constraints that limit the time that any one person works in a week are added.
7. The constraints that allow a person to be assigned only to a time slot for which he is available are added.

The statements to build each of these constraints follow the formulation closely.

```
data model;
 array workweek{5} mon tue wed thu fri;
 array hours{4} hours1 hours2 hours3 hours4;
 retain hours1-hours4;
 set raw end=eof;
 length _row_ $ 8 _col_ $ 8 _type_ $ 8;
 keep _type_ _col_ _row_ _coef_;
 if name='marc' then i=1;
 else if name='mike' then i=2;
 else if name='bill' then i=3;
 else if name='bob' then i=4;
 hours{i}=hour;
 /* build the objective function */
 do k=1 to 5;
 col='x'||put(i,1.)||put(slot,1.)||put(k,1.);
 row='object';
```

```
 coef=workweek{k} * 1000;
 output;
end;
/* build the rest of the model */
/* cannot work during unavailable slots */
do k=1 to 5;
 if workweek{k}=0 then do;
 row='off'||put(i,1.)||put(slot,1.)||put(k,1.);
 type='eq';
 col='_RHS_';
 coef=0;
 output;
 col='x'||put(i,1.)||put(slot,1.)||put(k,1.);
 coef=1;
 type=' ';
 output;
 end;
end;
if eof then do;
 coef=.;
 col=' ';
 /* every hour 1 person working */
 do j=1 to 8;
 do k=1 to 5;
 row='work'||put(j,1.)||put(k,1.);
 type='eq';
 col='_RHS_';
 coef=1;
 output;
 coef=1;
 type=' ';
 do i=1 to 4;
 col='x'||put(i,1.)||put(j,1.)||put(k,1.);
 output;
 end;
 end;
 end;
 /* each person has a lunch */
 do i=1 to 4;
 do k=1 to 5;
 row='lunch'||put(i,1.)||put(k,1.);
 type='le';
 col='_RHS_';
 coef=1;
 output;
 coef=1;
 type=' ';
 col='x'||put(i,1.)||'4'||put(k,1.);
 output;
```

```
 col='x'||put(i,1.)||'5'||put(k,1.);
 output;
 end;
 end;
 /* work at most 2 slots in a row */
 do i=1 to 4;
 do k=1 to 5;
 do l=1 to 6;
 row='seq'||put(i,1.)||put(k,1.)||put(1,1.);
 type='le';
 col='_RHS_';
 coef=2;
 output;
 coef=1;
 type=' ';
 do j=0 to 2;
 col='x'||put(i,1.)||put(l+j,1.)||put(k,1.);
 output;
 end;
 end;
 end;
 end;
 /* work at most n hours in a week */
 do i=1 to 4;
 row='capacit'||put(i,1.);
 type='le';
 col='_RHS_';
 coef=hours{i};
 output;
 coef=1;
 type=' ';
 do j=1 to 8;
 do k=1 to 5;
 col='x'||put(i,1.)||put(j,1.)||put(k,1.);
 output;
 end;
 end;
 end;
 end;
run;
```

Next, this SAS data set is converted to an MPS-format SAS data set by establishing the structure of the MPS format and through very minor conversions of the data.

```
/* the following code transforms the above sparse data set */
/* into an MPS-format data set
 */
/* generate the header of the MPS-format data set */
data mps0;
 format field1 field2 field3 $10.;
 format field4 10.;
 format field5 $10.;
```

```
 format field6 10.;
 field1 = 'NAME';
 field2 = ' ';
 field3 = 'PROBLEM';
 field4 = .;
 field5 = ' ';
 field6 = .;
 output;
 field1 = 'ROWS';
 field3 = '';
 output;
 field1 = 'MAX';
 field2 = 'object';
 field3 = '';
 output;
run;
/* generate rows */
proc sql;
 create table mps1 as
 select _type_ as field1, _row_ as field2 from model
 where _row_ eq 'object' and _type_ ne '' union
 select 'E' as field1, _row_ as field2 from model
 where _type_ eq 'eq' union
 select 'L' as field1, _row_ as field2 from model
 where _type_ eq 'le' union
 select 'G' as field1, _row_ as field2 from model
 where _type_ eq 'ge';
quit;
/* indicate start of columns section and declare type of all */
/* variables as integer */
data mps2;
 format field1 field2 field3 $10.;
 format field4 10.;
 format field5 $10.;
 format field6 10.;
 field1 = 'COLUMNS';
 field2 = ' ';
 field3 = ' ';
 field4 = .;
 field5 = ' ';
 field6 = .;
 output;
 field1 = ' ';
 field2 = '.MARKO';
 field3 = "'MARKER'";
 field4 = .;
 field5 = "'INTORG'";
 field6 = .;
 output;
run;
```

```
/* generate columns */
data mps3;
 set model;
 format field1 field2 field3 $10.;
 format field4 10.;
 format field5 $10.;
 format field6 10.;
 keep field1-field6;
 field1 = ' ';
 field2 = _col_;
 field3 = _row_;
 field4 = _coef_;
 field5 = ' ';
 field6 = .;
 if field2 ne '_RHS_' then do;
 output;
 end;
run;
/* sort columns by variable names */
proc sort data=mps3;
 by field2;
run;
/* indicate the end of the columns section */
data mps4;
 format field1 field2 field3 $10.;
 format field4 10.;
 format field5 $10.;
 format field6 10.;
 field1 = ' ';
 field2 = '.MARK1';
 field3 = "'MARKER'";
 field4 = .;
 field5 = "'INTEND'";
 field6 = .;
 output;
run;
/* indicate the start of the RHS section */
data mps5;
 format field1 field2 field3 $10.;
 format field4 10.;
 format field5 $10.;
 format field6 10.;
 field1 = 'RHS';
run;
/* generate RHS entries */
data mps6;
 set model;
 format field1 field2 field3 $10.;
 format field4 10.;
 format field5 $10.;
```

```
 format field6 10.;
 keep field1-field6;
 field1 = ' ';
 field2 = _col_;
 field3 = _row_;
 field4 = _coef_;
 field5 = ' ';
 field6 = .;
 if field2 eq '_RHS_' then do;
 output;
 end;
run;
/* denote the end of the MPS-format data set */
data mps7;
 format field1 field2 field3 $10.;
 format field4 10.;
 format field5 $10.;
 format field6 10.;
 field1 = 'ENDATA';
run;
/* merge all sections of the MPS-format data set */
data mps;
 format field1 field2 field3 $10.;
 format field4 10.;
 format field5 $10.;
 format field6 10.;
 set mps0 mps1 mps2 mps3 mps4 mps5 mps6 mps7;
run;
```

The model is solved using the OPTMILP procedure. The option PRIMALOUT=SOLUTION causes PROC OPTMILP to save the primal solution in the data set named SOLUTION.

```
/* solve the binary program */
proc optmilp data=mps
 printlevel=0 loglevel=0
 primalout=solution maxtime=1000;
run;
```

The following DATA step takes the solution data set SOLUTION and generates a report data set named REPORT. It restores the original interpretation (person, shift, day) of the variable names xijk so that a more meaningful report can be written. Then PROC TABULATE is used to display a schedule that shows how the eight time slots are covered for the week.

```
/* report the solution */
title 'Reported Solution';
data report;
 set solution;
 keep name slot mon tue wed thu fri;
 if substr(_var_, 1,1)='x' then do;
 if _value_>0 then do;
 n=substr(_var_,2,1);
 slot=substr(_var_,3,1);
 d=substr(_var_,4,1);
 if n='1' then name='marc';
 else if n='2' then name='mike';
 else if n='3' then name='bill';
 else name='bob';
 if d='1' then mon=1;
 else if d='2' then tue=1;
 else if d='3' then wed=1;
 else if d='4' then thu=1;
 else fri=1;
 output;
 end;
 end;
run;
proc format;
 value xfmt 1=' xxx ';
run;
proc tabulate data=report;
 class name slot;
 var mon--fri;
 table (slot * name), (mon tue wed thu fri)*sum=' '*f=xfmt.
 /misstext=' ';
run;
```

Output 10.4.1 from PROC TABULATE summarizes the schedule. Notice that the constraint that requires a person to be assigned to each possible time slot on each day is satisfied.

Output 10.4.1 A Scheduling Problem


Recall that PROC OPTMILP puts a character string in the macro variable _OROPTMILP_ that describes the characteristics of the solution on termination. This string can be parsed using macro functions, and the information obtained can be used in report writing. The variable can be written to the $\log$ with the following command:

```
%put &_OROPTMILP_;
```

This command produces the output shown in Output 10.4.2.

Output 10.4.2 _OROPTMILP_ Macro Variable

```
STATUS=OK ALGORITHM=BAC SOLUTION_STATUS=OPTIMAL OBJECTIVE=211000
RELATIVE_GAP=0 ABSOLUTE_GAP=0 PRIMAL_INFEASIBILITY=0
BOUND_INFEASIBILITY=0 INTEGER_INFEASIBILITY=0 BEST_BOUND=211000 NODES=1
ITERATIONS=64 PRESOLVE_TIME=0.00 SOLUTION_TIME=0.02
```

From this output you learn, for example, that at termination the solution is integer-optimal and has an objective value of 211,000 .

## References

Achterberg, T., Koch, T., and Martin, A. (2003), "MIPLIB 2003," on the MIPLIB Web page: http://miplib.zib.de/.

Achterberg, T., Koch, T., and Martin, A. (2005), "Branching Rules Revisited," Operations Research Letters, 33(1), 42-54.

Andersen, E. D. and Andersen, K. D. (1995), "Presolving in Linear Programming," Mathematical Programming, 71(2), 221-245.

Atamturk, A. (2004), "Sequence Independent Lifting for Mixed-Integer Programming," Operations Research, 52, 487-490.

Bixby, R. E., Ceria, S., McZeal, C. M., and Savelsbergh, M. W. P. (1998), "An Updated Mixed Integer Programming Library: MIPLIB 3.0," Optima, 58, 12-15.

Dantzig, G. B., Fulkerson, R., and Johnson, S. M. (1954), "Solution of a Large-Scale Traveling Salesman Problem," Operations Research, 2, 393-410.

Gondzio, J. (1997), "Presolve Analysis of Linear Programs prior to Applying an Interior Point Method," INFORMS Journal on Computing, 9 (1), 73-91.

Land, A. H. and Doig, A. G. (1960), "An Automatic Method for Solving Discrete Programming Problems," Econometrica, 28, 497-520.

Linderoth, J. T. and Savelsbergh, M. (1998), "A Computational Study of Search Strategies for Mixed Integer Programming," INFORMS Journal on Computing, 11, 173-187.

Marchand, H., Martin, A., Weismantel, R., and Wolsey, L. (1999), "Cutting Planes in Integer and Mixed Integer Programming," DP 9953, CORE, Université Catholique de Louvainla-Neuve, 1999.

Savelsbergh, M. W. P. (1994), "Preprocessing and Probing Techniques for Mixed Integer Programming Problems," ORSA J. on Computing, 6, 445-454.

## Chapter 11 <br> The OPTQP Procedure

## Contents

Overview: OPTQP Procedure ..... 463
Getting Started: OPTQP Procedure ..... 465
Syntax: OPTQP Procedure ..... 469
Functional Summary ..... 470
PROC OPTQP Statement ..... 470
PERFORMANCE Statement ..... 472
Details: OPTQP Procedure ..... 473
Output Data Sets ..... 473
Interior Point Algorithm: Overview ..... 475
Iteration Log for the OPTQP Procedure ..... 477
ODS Tables ..... 477
Macro Variable _OROPTQP ..... 481
Examples: OPTQP Procedure ..... 483
Example 11.1: Linear Least Squares Problem ..... 483
Example 11.2: Portfolio Optimization ..... 486
Example 11.3: Portfolio Selection with Transactions ..... 489
References ..... 491

## Overview: OPTQP Procedure

The OPTQP procedure solves quadratic programs-problems with quadratic objective function and a collection of linear constraints, including lower or upper bounds (or both) on the decision variables.

Mathematically, a quadratic programming (QP) problem can be stated as follows:

$$
\begin{array}{rc}
\min & \frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x}+\mathbf{c}^{\mathrm{T}} \mathbf{x} \\
\text { subject to } & \mathbf{A x}\{\geq,=, \leq\} \mathbf{b} \\
& \mathbf{l} \leq \mathbf{x} \leq \mathbf{u}
\end{array}
$$

where

$\mathbf{Q}$	$\in$	$\mathbb{R}^{n \times n}$	is the quadratic (also known as Hessian) matrix
$\mathbf{A}$	$\in$	$\mathbb{R}^{m \times n}$	is the constraints matrix
$\mathbf{x}$	$\in \mathbb{R}^{n}$	is the vector of decision variables	
$\mathbf{c}$	$\in \mathbb{R}^{n}$	is the vector of linear objective function coefficients	
$\mathbf{b}$	$\in \mathbb{R}^{m}$	is the vector of constraints right-hand sides (RHS)	
$\mathbf{l}$	$\in \mathbb{R}^{n}$	is the vector of lower bounds on the decision variables	
$\mathbf{u}$	$\in \mathbb{R}^{n}$	is the vector of upper bounds on the decision variables	
		Number of variables (columns)	

The quadratic matrix $\mathbf{Q}$ is assumed to be symmetric; that is,

$$
q_{i j}=q_{j i}, \quad \forall i, j=1, \ldots, n
$$

Indeed, it is easy to show that even if $\mathbf{Q} \neq \mathbf{Q}^{\mathrm{T}}$, the simple modification

$$
\tilde{\mathbf{Q}}=\frac{1}{2}\left(\mathbf{Q}+\mathbf{Q}^{\mathrm{T}}\right)
$$

produces an equivalent formulation $\mathbf{x}^{T} \mathbf{Q} \mathbf{x} \equiv \mathbf{x}^{\mathrm{T}} \tilde{\mathbf{Q}} \mathbf{x}$; hence symmetry is assumed. When you specify a quadratic matrix, it suffices to list only lower triangular coefficients.
In addition to being symmetric, $\mathbf{Q}$ is also required to be positive semidefinite,

$$
\mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x} \geq 0, \quad \forall \mathrm{x} \in \mathbb{R}^{n}
$$

for minimization type of models; it is required to be negative semidefinite for the maximization type of models. Convexity can come as a result of a matrix-matrix multiplication

$$
\mathbf{Q}=\mathbf{L L}^{\mathrm{T}}
$$

or as a consequence of physical laws, and so on. See Figure 11.1 for examples of convex, concave, and nonconvex objective functions.

Figure 11.1 Examples of Convex, Concave, and Nonconvex Objective Functions


The order of constraints is insignificant. Some or all components of $\mathbf{l}$ or $\mathbf{u}$ (lower and upper bounds, respectively) can be omitted.

## Getting Started: OPTQP Procedure

Consider a small illustrative example. Suppose you want to minimize a two-variable quadratic function $f\left(x_{1}, x_{2}\right)$ on the nonnegative quadrant, subject to two constraints:

$$
\begin{array}{rcccccc}
\min & 2 x_{1} & +3 x_{2} & +x_{1}^{2}+10 x_{2}^{2}+2.5 x_{1} x_{2} \\
\text { subject to } & x_{1} & -x_{2} & \leq 1 \\
& x_{1} & +2 x_{2} & \geq 100 \\
& x_{1} & & \\
& & x_{2} & \geq 0
\end{array}
$$

The linear objective function coefficients, vector of right-hand sides, and lower and upper bounds are identified immediately as

$$
\mathbf{c}=\left[\begin{array}{l}
2 \\
3
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{c}
1 \\
100
\end{array}\right], \quad \mathbf{l}=\left[\begin{array}{l}
0 \\
0
\end{array}\right], \quad \mathbf{u}=\left[\begin{array}{l}
+\infty \\
+\infty
\end{array}\right]
$$

Carefully construct the quadratic matrix $\mathbf{Q}$. Observe that you can use symmetry to separate the maindiagonal and off-diagonal elements:

$$
\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{Q x} \equiv \frac{1}{2} \sum_{i, j=1}^{n} x_{i} q_{i j} x_{j}=\frac{1}{2} \sum_{i=1}^{n} q_{i i} x_{i}^{2}+\sum_{i>j} x_{i} q_{i j} x_{j}
$$

The first expression

$$
\frac{1}{2} \sum_{i=1}^{n} q_{i i} x_{i}^{2}
$$

sums the main-diagonal elements. Thus, in this case you have

$$
q_{11}=2, \quad q_{22}=20
$$

Notice that the main-diagonal values are doubled in order to accommodate the $1 / 2$ factor. Now the second term

$$
\sum_{i>j} x_{i} q_{i j} x_{j}
$$

sums the off-diagonal elements in the strict lower triangular part of the matrix. The only off-diagonal ( $x_{i} x_{j}, i \neq j$ ) term in the objective function is $2.5 x_{1} x_{2}$, so you have

$$
q_{21}=2.5
$$

Notice that you do not need to specify the upper triangular part of the quadratic matrix.
Finally, the matrix of constraints is as follows:

$$
\mathbf{A}=\left[\begin{array}{rr}
1 & -1 \\
1 & 2
\end{array}\right]
$$

The SAS input data set with a quadratic programming system (QPS) format for the preceding problem can be expressed in the following manner:


For more details about the QPS-format data set, see Chapter 14, "The MPS-Format SAS Data Set."
Alternatively, if you have a QPS-format flat file named gs.qps, then the following call to the SAS macro \%MPS2SASD translates that file into a SAS data set, named gsdata:

```
%mps2sasd(mpsfile =gs.qps, outdata = gsdata);
```

NOTE: The SAS macro \%MPS2SASD is provided in SAS/OR software. See "Converting an MPS/QPSFormat File: \%MPS2SASD" on page 590 for details.

You can use the following call to PROC OPTQP:

```
proc optqp data=gsdata
 primalout = gspout
 dualout = gsdout;
run;
```

The procedure output is displayed in Figure 11.2.
Figure 11.2 Procedure Output


Figure 11.2 continued

Solution Summary	
Solver	QP
Algorithm	Interior Point
Objective Function	OBJ
Solution Status	Optimal
Objective Value	15018
Primal Infeasibility	$3.146026 \mathrm{E}-16$
Dual Infeasibility	$8.727374 \mathrm{E}-15$
Bound Infeasibility	0
Duality Gap	7.266753E-16
Complementarity	0
Iterations	6
Presolve Time	0.00
Solution Time	0.25

The optimal primal solution is displayed in Figure 11.3.
Figure 11.3 Optimal Solution


The SAS $\log$ shown in Figure 11.4 provides information about the problem, convergence information after each iteration, and the optimal objective value.

Figure 11.4 Iteration Log

```
NOTE: The problem EXAMPLE has 2 variables (0 free, 0 fixed).
NOTE: The problem has 2 constraints (1 LE, O EQ, 1 GE, O range).
NOTE: The problem has 4 constraint coefficients.
NOTE: The objective function has 2 Hessian diagonal elements and 1 Hessian
 elements above the diagonal.
NOTE: The QP presolver value AUTOMATIC is applied.
NOTE: The QP presolver removed O variables and O constraints.
NOTE: The QP presolver removed O constraint coefficients.
NOTE: The presolved problem has 2 variables, 2 constraints, and 4 constraint
 coefficients.
NOTE: The QP solver is called.
NOTE: The Interior Point algorithm is used.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Interior Point algorithm is using up to 4 threads.
\begin{tabular}{rrrrrr}
Iter & Complement & Duality Gap & Primal & Bound & Dual \\
0 & \(3.61419 e+03\) & \(4.89451 e+00\) & \(1.02569 e+00\) & \(1.03529 e+02\) & \(8.95247 e-02\) \\
1 & \(2.00854 e+03\) & \(9.54360 e-01\) & \(4.43601 e-01\) & \(4.47753 e+01\) & \(3.87186 e-02\) \\
2 & \(2.25399 e+03\) & \(1.25043 e-01\) & \(4.43601 e-03\) & \(4.47753 e-01\) & \(3.87186 e-04\) \\
3 & \(5.09548 e+01\) & \(3.28862 e-03\) & \(4.43601 e-05\) & \(4.47753 e-03\) & \(3.87186 e-06\) \\
4 & \(5.09076 e-01\) & \(3.29491 e-05\) & \(4.43601 e-07\) & \(4.47753 e-05\) & \(3.87186 e-08\) \\
5 & \(5.09065 e-03\) & \(3.29493 e-07\) & \(4.43601 e-09\) & \(4.47753 e-07\) & \(3.87202 e-10\) \\
6 & \(0.00000 e+00\) & \(7.26675 e-16\) & \(3.14603 e-16\) & \(0.00000 e+00\) & \(8.72737 e-15\)
\end{tabular}
NOTE: Optimal.
NOTE: Objective = 15018.
NOTE: The Interior Point solve time is 0.00 seconds.
NOTE: The data set WORK.GSPOUT has 2 observations and 9 variables.
NOTE: The data set WORK.GSDOUT has 2 observations and 10 variables.
```

See the section "Interior Point Algorithm: Overview" on page 475 and the section "Iteration Log for the OPTQP Procedure" on page 477 for more details about convergence information given by the iteration log.

## Syntax: OPTQP Procedure

The following statements are available in the OPTQP procedure:
PROC OPTQP < options > ;
PERFORMANCE < performance-options > ;

## Functional Summary

Table 11.1 outlines the options available for the OPTQP procedure classified by function.
Table 11.1 Options in the OPTQP Procedure

Description	Option
Data Set Options	
Specifies a QPS-format input SAS data set	DATA=
Specifies a dual solution output SAS data set   Specifies whether the QP model is a maximization or   minimization problem	OUALOUT=
OBJSENSE=	
Specifies the primal solution output SAS data set	PRIMALOUT=
Saves output data sets only if optimal	SAVE_ONLY_IF_OPTIMAL
Control Options	
Specifies the maximum number of iterations	MAXITER=
Specifies the time limit for the optimization process	MAXTIME=
Specifies the type of presolve	PRESOLVER=
Enables or disables iteration log	LOGFREQ=
Enables or disables printing summary	PRINTLEVEL=
Specifies the stopping criterion based on duality gap	STOP_DG=
Specifies the stopping criterion based on dual infeasi-	STOP_DI=
bility	
Specifies the stopping criterion based on primal infea-	STOP_PI=
sibility	
Specifies units of CPU time or real time	TIMETYPE=

## PROC OPTQP Statement

The following options can be specified in the PROC OPTQP statement.
DATA=SAS-data-set
specifies the input SAS data set. This data set can also be created from a QPS-format flat file by using the SAS macro \%MPS2SASD. If the DATA= option is not specified, PROC OPTQP uses the most recently created SAS data set. See Chapter 14, "The MPS-Format SAS Data Set," for more details.

DUALOUT=SAS-data-set
DOUT=SAS-data-set
specifies the output data set to contain the dual solution. See the section "Output Data Sets" on page 473 for details.

## LOGFREQ=k

## PRINTFREQ=k

specifies that the printing of the solution progress to the iteration log should occur after every $k$ iterations. The print frequency, $k$, is an integer between zero and the largest four-byte, signed integer,
which is $2^{31}-1$. The value $k=0$ disables the printing of the progress of the solution. The default value of this option is 1 .

## MAXITER=k

specifies the maximum number of predictor-corrector iterations performed by the interior point algorithm (see the section "Interior Point Algorithm: Overview" on page 475). The value $k$ is an integer between 1 and the largest four-byte, signed integer, which is $2^{31}-1$. If you do not specify this option, the procedure does not stop based on the number of iterations performed.

## MAXTIME= $t$

specifies an upper limit of $t$ seconds of time for reading in the data and performing the optimization process. The value of the TIMETYPE= option determines the type of units used. If you do not specify this option, the procedure does not stop based on the amount of time elapsed. The value of $t$ can be any positive number; the default value is the positive number that has the largest absolute value that can be represented in your operating environment.

## OBJSENSE=option

specifies whether the QP model is a minimization or a maximization problem. You specify OBJSENSE=MIN for a minimization problem and OBJSENSE=MAX for a maximization problem. Alternatively, you can specify the objective sense in the input data set; see the section "ROWS Section" on page 583 for details. If the objective sense is specified differently in these two places, this option supersedes the objective sense specified in the input data set. If the objective sense is not specified anywhere, then PROC OPTQP interprets and solves the quadratic program as a minimization problem.

## PRESOLVER=number | string

## PRESOL=number | string

specifies one of the following presolve options:

number	string	Description
0	NONE	Disables the presolver.
-1	AUTOMATIC	Applies the presolver by using default setting.
1	BASIC	Applies the basic presolver.
2	MODERATE	Applies the moderate presolver.
3	AGGRESSIVE	Applies the aggressive presolver.

You can specify the option either by a word or by integers from -1 to 3 . The default option is AUTOMATIC.

PRIMALOUT=SAS-data-set
POUT=SAS-data-set
specifies the output data set to contain the primal solution. See the section "Output Data Sets" on page 473 for details.

## PRINTLEVEL=0 | 1

specifies whether a summary of the problem and solution should be printed. If PRINTLEVEL=1, then the Output Delivery System (ODS) tables ProblemSummary, SolutionSummary, and PerformanceInfo are produced and printed. If PRINTLEVEL=2, then the same tables are produced and printed
along with an additional table called ProblemStatistics. If PRINTLEVEL $=0$, then no ODS tables are produced or printed. The default value is 1 .

For details about the ODS tables created by PROC OPTQP, see the section "ODS Tables" on page 477.

## SAVE_ONLY_IF_OPTIMAL

specifies that the PRIMALOUT= and DUALOUT= data sets be saved only if the final solution obtained by the solver at termination is optimal. If the PRIMALOUT= or DUALOUT= option is specified, and this option is not specified, then the output data sets will only contain solution values at optimality. If the SAVE_ONLY_IF_OPTIMAL option is not specified, the output data sets will not contain an intermediate solution.

## STOP_DG= $\delta$

specifies the desired relative duality gap, $\delta \in[1 \mathrm{E}-9,1 \mathrm{E}-4]$. This is the relative difference between the primal and dual objective function values and is the primary solution quality parameter. The default value is 1E-6. See the section "Interior Point Algorithm: Overview" on page 475 for details.

## STOP_DI= $\beta$

specifies the maximum allowed relative dual constraints violation, $\beta \in[1 \mathrm{E}-9,1 \mathrm{E}-4]$. The default value is 1E-6. See the section "Interior Point Algorithm: Overview" on page 475 for details.

## STOP_PI= $\alpha$

specifies the maximum allowed relative bound and primal constraints violation, $\alpha \in[1 \mathrm{E}-9,1 \mathrm{E}-4]$. The default value is 1E-6. See the section "Interior Point Algorithm: Overview" on page 475 for details.

## TIMETYPE=number | string

specifies whether CPU time or real time is used for the MAXTIME= option and the _OROPTQP_ macro variable in a PROC OPTQP call. Table 11.3 describes the valid values of the TIMETYPE= option.

Table 11.3 Values for TIMETYPE= Option

number	string	Description
0	CPU	Specifies units of CPU time.
1	REAL	Specifies units of real time.

The default value of the TIMETYPE= option depends on the value of the NTHREADS= option in the PERFORMANCE statement. See the section "PERFORMANCE Statement" on page 17 for more information about the NTHREADS $=$ option.

If you specify a value greater than 1 for the NTHREADS= option, the default value of the TIMETYPE $=$ option is REAL. If you specify a value of 1 for the NTHREADS $=$ option, the default value of the TIMETYPE= option is CPU.

## PERFORMANCE Statement

PERFORMANCE < performance-options > ;

The PERFORMANCE statement specifies performance-options for multithreaded (SMP) computing, passes variables around the distributed computing environment, and requests detailed results about the performance characteristics of the OPTQP procedure.

The PERFORMANCE statement for multithreaded computing mode is documented in the section "PERFORMANCE Statement" on page 17 in Chapter 3, "Shared Concepts and Topics." The OPTQP procedure supports the deterministic and nondeterministic modes of the PARALLELMODE= option in the PERFORMANCE statement.

## Details: OPTQP Procedure

## Output Data Sets

This section describes the PRIMALOUT= and DUALOUT= output data sets. If the SAVE_ONLY_IF_OPTIMAL option is not specified, the output data sets do not contain an intermediate solution.

## Definitions of Variables in the PRIMALOUT= Data Set

The PRIMALOUT= data set contains the primal solution to the quadratic programming (QP) model. The variables in the data set have the following names and meanings.

## _OBJ_ID_

specifies the name of the objective function. Naming objective functions is particularly useful when there are multiple objective functions, in which case each objective function has a unique name. See the section "ROWS Section" on page 583 for details.

NOTE: PROC OPTQP does not support simultaneous optimization of multiple objective functions in this release.

## _RHS_ID_

specifies the name of the variable that contains the right-hand-side value of each constraint. See the section "ROWS Section" on page 583 for details.
_VAR_
specifies the name of the decision variable.
_TYPE_
specifies the type of the decision variable. _TYPE_ can take one of the following values:
N nonnegative variable
D bounded variable with either lower or upper bound
F free variable
X fixed variable
O other

## OBJCOEF

specifies the coefficient of the decision variable in the linear component of the objective function.

## _LBOUND_

specifies the lower bound on the decision variable.

## _UBOUND_

specifies the upper bound on the decision variable.

## _VALUE

specifies the value of the decision variable.

## _STATUS

specifies the status of the decision variable. _STATUS_can indicate one of the following two cases:
O The QP problem is optimal.
I The QP problem could be infeasible or unbounded, or PROC OPTQP was not able to solve the problem.

## Definitions of Variables in the DUALOUT= Data Set

The DUALOUT= data set contains the dual solution to the QP model. Information about the objective rows of the QP problems is not included. The variables in the data set have the following names and meanings.

## _OBJ_ID_

specifies the name of the objective function. Naming objective functions is particularly useful when there are multiple objective functions, in which case each objective function has a unique name. See the section "ROWS Section" on page 583 for details.

NOTE: PROC OPTQP does not support simultaneous optimization of multiple objective functions in this release.

## RHS_ID_

specifies the name of the variable that contains the right-hand-side value of each constraint. See the section "ROWS Section" on page 583 for details.

## ROW

specifies the name of the constraint. See the section "ROWS Section" on page 583 for details.

## _TYPE

specifies the type of the constraint. _TYPE_can take one of the following values:
L "less than or equals" constraint
E equality constraint
G "greater than or equals" constraint
R ranged constraint (both "less than or equals" and "greater than or equals")

See the sections "ROWS Section" on page 583 and "RANGES Section (Optional)" on page 586 for details.

## RHS

specifies the value of the right-hand side of the constraints. It takes a missing value for a ranged constraint.

## _L_RHS_

specifies the lower bound of a ranged constraint. It takes a missing value for a non-ranged constraint.

## _U_RHS_

specifies the upper bound of a ranged constraint. It takes a missing value for a non-ranged constraint.

## _VALUE_

specifies the value of the dual variable associated with the constraint.

## _STATUS_

 specifies the status of the constraint. _STATUS_can indicate one of the following two cases:O The QP problem is optimal.
I The QP problem could be infeasible or unbounded, or PROC OPTQP was not able to solve the problem.

## _ACTIVITY_

specifies the value of a constraint. In other words, the value of _ACTIVITY_ for the $i$ th constraint is equal to $\mathbf{a}_{i}^{T} \mathbf{x}$, where $\mathbf{a}_{i}$ refers to the $i$ th row of the constraints matrix and $\mathbf{x}$ denotes the vector of current decision variable values.

## Interior Point Algorithm: Overview

The interior point solver in PROC OPTQP implements an infeasible primal-dual predictor-corrector interior point algorithm. To illustrate the algorithm and the concepts of duality and dual infeasibility, consider the following QP formulation (the primal):

$$
\begin{aligned}
\min & \frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x}+\mathbf{c}^{\mathrm{T}} \mathbf{x} \\
\text { subject to } & \mathbf{A x} \geq \mathbf{b} \\
& \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

The corresponding dual is as follows:

$$
\begin{aligned}
& \max -\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{Q x}+\mathbf{b}^{\mathrm{T}} \mathbf{y} \\
& \text { subject to } \quad-\mathbf{Q x}+\mathbf{A}^{\mathrm{T}} \mathbf{y}+\mathbf{w}=\mathbf{c} \\
& \mathrm{y} \geq \mathbf{0} \\
& \mathbf{w} \geq \mathbf{0}
\end{aligned}
$$

where $\mathbf{y} \in \mathbb{R}^{m}$ refers to the vector of dual variables and $\mathbf{w} \in \mathbb{R}^{n}$ refers to the vector of slack variables in the dual problem.

The dual makes an important contribution to the certificate of optimality for the primal. The primal and dual constraints combined with complementarity conditions define the first-order optimality conditions, also known as KKT (Karush-Kuhn-Tucker) conditions, which can be stated as follows:

$$
\begin{array}{rlr}
\mathbf{A x}-\mathbf{s} & =\mathbf{b} \\
-\mathbf{Q x}+\mathbf{A}^{\mathrm{T}} \mathbf{y}+\mathbf{w} & =\mathbf{c} \\
\mathbf{W X e} & =\mathbf{0} \\
\mathbf{S Y e} & =\mathbf{0} & \text { (complementarity) } \\
\mathbf{x}, \mathbf{y}, \mathbf{w}, \mathbf{s} & \geq \mathbf{0}
\end{array}
$$

where $\mathbf{e} \equiv(1, \ldots, 1)^{\mathrm{T}}$ is of appropriate dimension and $\mathrm{s} \in \mathbb{R}^{m}$ is the vector of primal slack variables.
Note: Slack variables (the $s$ vector) are automatically introduced by the solver when necessary; it is therefore recommended that you not introduce any slack variables explicitly. This enables the solver to handle slack variables much more efficiently.

The letters $\mathbf{X}, \mathbf{Y}, \mathbf{W}$, and $\mathbf{S}$ denote matrices with corresponding $x, y, w$, and $s$ on the main diagonal and zero elsewhere, as in the following example:

$$
\mathbf{X} \equiv\left[\begin{array}{cccc}
x_{1} & 0 & \cdots & 0 \\
0 & x_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & x_{n}
\end{array}\right]
$$

If $\left(\mathrm{x}^{*}, \mathrm{y}^{*}, \mathrm{w}^{*}, \mathrm{~s}^{*}\right)$ is a solution of the previously defined system of equations that represent the KKT conditions, then $\mathrm{x}^{*}$ is also an optimal solution to the original QP model.
At each iteration the interior point algorithm solves a large, sparse system of linear equations as follows:

$$
\left[\begin{array}{cc}
\mathbf{Y}^{-1} \mathbf{S} & \mathbf{A} \\
\mathbf{A}^{\mathrm{T}} & -\mathbf{Q}-\mathbf{X}^{-1} \mathbf{W}
\end{array}\right]\left[\begin{array}{c}
\Delta \mathbf{y} \\
\Delta \mathrm{x}
\end{array}\right]=\left[\begin{array}{l}
\Xi \\
\Theta
\end{array}\right]
$$

where $\Delta \mathbf{x}$ and $\Delta \mathbf{y}$ denote the vector of search directions in the primal and dual spaces, respectively, and $\Theta$ and $\Xi$ constitute the vector of the right-hand sides.

The preceding system is known as the reduced KKT system. PROC OPTQP uses a preconditioned quasiminimum residual algorithm to solve this system of equations efficiently.

An important feature of the interior point solver is that it takes full advantage of the sparsity in the constraint and quadratic matrices, thereby enabling it to efficiently solve large-scale quadratic programs.

The interior point algorithm works simultaneously in the primal and dual spaces. It attains optimality when both primal and dual feasibility are achieved and when complementarity conditions hold. Therefore, it is of interest to observe the following four measures where $\|v\|_{2}$ is the Euclidean norm of the vector $v$ :

- relative primal infeasibility measure $\alpha$ :

$$
\alpha=\frac{\|\mathbf{A} \mathbf{x}-\mathbf{b}-\mathbf{s}\|_{2}}{\|\mathbf{b}\|_{2}+1}
$$

- relative dual infeasibility measure $\beta$ :

$$
\beta=\frac{\left\|\mathbf{Q x}+\mathbf{c}-\mathbf{A}^{\mathrm{T}} \mathbf{y}-\mathbf{w}\right\|_{2}}{\|\mathbf{c}\|_{2}+1}
$$

- relative duality gap $\delta$ :

$$
\delta=\frac{\left|\mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x}+\mathbf{c}^{\mathrm{T}} \mathbf{x}-\mathbf{b}^{\mathrm{T}} \mathbf{y}\right|}{\left|\frac{1}{2} \mathbf{x}^{\mathrm{T}} \mathbf{Q} \mathbf{x}+\mathbf{c}^{\mathrm{T}} \mathbf{x}\right|+1}
$$

- absolute complementarity $\gamma$ :

$$
\gamma=\sum_{i=1}^{n} x_{i} w_{i}+\sum_{i=1}^{m} y_{i} s_{i}
$$

These measures are displayed in the iteration log.

## Iteration Log for the OPTQP Procedure

The interior point solver in PROC OPTQP implements an infeasible primal-dual predictor-corrector interior point algorithm. The following information is displayed in the iteration log:

Iter indicates the iteration number.
Complement indicates the (absolute) complementarity.
Duality Gap indicates the (relative) duality gap.
Primal Infeas indicates the (relative) primal infeasibility measure.
Bound Infeas indicates the (relative) bound infeasibility measure.
Dual Infeas indicates the (relative) dual infeasibility measure.
If the sequence of solutions converges to an optimal solution of the problem, you should see all columns in the iteration log converge to zero or very close to zero. If they do not, it can be the result of insufficient iterations being performed to reach optimality. In this case, you might need to increase the value specified in the option MAXITER= or MAXTIME=. If the complementarity or the duality gap do not converge, the problem might be infeasible or unbounded. If the infeasibility columns do not converge, the problem might be infeasible.

## ODS Tables

PROC OPTQP creates three ODS (Output Delivery System) tables by default. The first table, ProblemSummary, is a summary of the input QP problem. The second table, SolutionSummary, is a brief summary of the solution status. The third table, PerformanceInfo, is a summary of performance options. You can use ODS table names to select tables and create output data sets. For more information about ODS, see the $S A S$ Output Delivery System: User's Guide.

If you specify a value of 2 for the PRINTLEVEL= option, then the ProblemStatistics table is produced. This table contains information about the problem data. See the section "Problem Statistics" on page 480 for more information.

If you specify the DETAILS option in the PERFORMANCE statement, then the Timing table is produced.
Table 11.4 lists all the ODS tables that can be produced by the OPTQP procedure, along with the statement and option specifications required to produce each table.

Table 11.4 ODS Tables Produced by PROC OPTQP

ODS Table Name	Description	Statement	Option
ProblemSummary	Summary of the input QP problem	PROC OPTQP	PRINTLEVEL=1 (default)
SolutionSummary	Summary of the solution status	PROC OPTQP	PRINTLEVEL=1 (default)
ProblemStatistics	Description of input problem data	PROC OPTQP	PRINTLEVEL=2
PerformanceInfo	List of performance options and their values	PROC OPTQP	PRINTLEVEL=1 (default)
Timing	Detailed solution timing	PERFORMANCE	DETAILS

A typical output of PROC OPTQP is shown in Output 11.5.
Figure 11.5 Typical OPTQP Output

The OPTQP Procedure	
Performance Information	
Execution Mode On C	
Number of Threads	4
Problem Summary	
Problem Name	BANDM
Objective Sense	Minimization
Objective Function	. . . 1
RHS	zzzz0001
Number of Variables	472
Bounded Above	0
Bounded Below	472
Bounded Above and Below	0
Free	0
Fixed	0
Number of Constraints	305
LE (<=)	0
EQ (=)	305
GE (>=)	0
Range	0
Constraint Coefficients	2494
Hessian Diagonal Elements	25
Hessian Elements Above the Diagonal	16

Figure 11.5 continued

Solution Summary	
Solver	QP
Algorithm	Interior Point
Objective Function	. 1
Solution Status	Optimal
Objective Value	16352.342037
Primal Infeasibility	1.521799E-12
Dual Infeasibility	$2.162703 \mathrm{E}-12$
Bound Infeasibility	$1.49191 \mathrm{E}-16$
Duality Gap	1.918644E-12
Complementarity	$1.9728184 \mathrm{E}-8$
Iterations	23
Presolve Time	0.00
Solution Time	0.05

You can create output data sets from these tables by using the ODS OUTPUT statement. This can be useful, for example, when you want to create a report to summarize multiple PROC OPTQP runs. The output data sets that correspond to the preceding output are shown in Output 11.6, where you can also find (in the row following the heading of each data set in the display) the variable names that are used in the table definition (template) of each table.

Figure 11.6 ODS Output Data Sets

Problem Summary			
Obs	Label1	cValue1	nValue1
1	Problem Name	BANDM	.
2	Objective Sense	Minimization	.
3	Objective Function	.... 1	
4	RHS	ZZZZ0001	
5			.
6	Number of Variables	472	472.000000
7	Bounded Above	0	0
8	Bounded Below	472	472.000000
9	Bounded Above and Below	0	0
10	Free	0	0
11	Fixed	0	0
12			.
13	Number of Constraints	305	305.000000
14	LE (<=)	0	0
15	EQ (=)	305	305.000000
16	GE (>=)	0	0
17	Range	0	0
18			.
19	Constraint Coefficients	2494	2494.000000
20			.
21	Hessian Diagonal Elements	25	25.000000
22	Hessian Elements Above the Diagonal	16	16.000000

Figure 11.6 continued

Solution Summary			
Obs	Label1	cValue1	nValue1
1	Solver	QP	-
2	Algorithm	Interior Point	-
3	Objective Function	.... 1	-
4	Solution Status	Optimal	.
5	Objective Value	16352.342037	16352
6			.
7	Primal Infeasibility	1.521799E-12	1.521799E-12
8	Dual Infeasibility	$2.162703 \mathrm{E}-12$	$2.162703 \mathrm{E}-12$
9	Bound Infeasibility	1.49191E-16	$1.49191 \mathrm{E}-16$
10	Duality Gap	1.918644E-12	1.918644E-12
11	Complementarity	1.9728184E-8	1.9728184E-8
12			.
13	Iterations	23	23.000000
14	Presolve Time	0.00	0
15	Solution Time	0.05	0.047000

## Problem Statistics

Optimizers can encounter difficulty when solving poorly formulated models. Information about data magnitude provides a simple gauge to determine how well a model is formulated. For example, a model whose constraint matrix contains one very large entry (on the order of $10^{9}$ ) can cause difficulty when the remaining entries are single-digit numbers. The PRINTLEVEL $=2$ option in the OPTQP procedure causes the ODS table ProblemStatistics to be generated. This table provides basic data magnitude information that enables you to improve the formulation of your models.

The example output in Output 11.7 demonstrates the contents of the ODS table ProblemStatistics.

Figure 11.7 ODS Table ProblemStatistics


## Macro Variable OROPTQP

The OPTQP procedure defines a macro variable named _OROPTQP_. This variable contains a character string that indicates the status of the procedure. The various terms of the variable are interpreted as follows.

## STATUS

indicates the solver status at termination. It can take one of the following values:

OK
SYNTAX_ERROR
DATA_ERROR
OUT_OF_MEMORY
IO_ERROR
ERROR

The procedure terminated normally.
Incorrect syntax was used.
The input data were inconsistent.
Insufficient memory was allocated to the procedure.
A problem occurred in reading or writing data.
The status cannot be classified into any of the preceding categories.

## ALGORITHM

indicates the algorithm that produced the solution data in the macro variable. This term only appears when STATUS=OK. It can take the following value:

IP The interior point algorithm produced the solution data.

## SOLUTION_STATUS

indicates the solution status at termination. It can take one of the following values:

OPTIMAL
CONDITIONAL_OPTIMAL
INFEASIBLE
UNBOUNDED
INFEASIBLE_OR_UNBOUNDED
ITERATION_LIMIT_REACHED
TIME_LIMIT_REACHED
FAILED

NONCONVEX
NONCONCAVE

The solution is optimal.
The optimality of the solution cannot be proven.
The problem is infeasible.
The problem is unbounded.
The problem is infeasible or unbounded.
The maximum allowable number of iterations was reached.
The maximum time limit was reached.
The solver failed to converge, possibly due to numerical issues.

The quadratic matrix is nonconvex (minimization).
The quadratic matrix is nonconcave (maximization).

## OBJECTIVE

indicates the objective value obtained by the solver at termination.

## PRIMAL_INFEASIBILITY

indicates the (relative) infeasibility of the primal constraints at the solution. See the section "Interior Point Algorithm: Overview" on page 475 for details.

## DUAL_INFEASIBILITY

indicates the (relative) infeasibility of the dual constraints at the solution. See the section "Interior Point Algorithm: Overview" on page 475 for details.

## BOUND_INFEASIBILITY

indicates the (relative) violation by the solution of the lower or upper bounds (or both). See the section "Interior Point Algorithm: Overview" on page 475 for details.

## DUALITY_GAP

indicates the (relative) duality gap. See the section "Interior Point Algorithm: Overview" on page 475 for details.

## COMPLEMENTARITY

indicates the (absolute) complementarity at the optimal solution. See the section "Interior Point Algorithm: Overview" on page 475 for details.

## ITERATIONS

indicates the number of iterations required to solve the problem.

## PRESOLVE_TIME

indicates the time taken for preprocessing (seconds).

## SOLUTION_TIME

indicates the time (in seconds) taken to solve the problem, including preprocessing time.
Note: The time that is reported in PRESOLVE_TIME and SOLUTION_TIME is either CPU time or real time. The type is determined by the TIMETYPE= option.

## Examples: OPTQP Procedure

This section contains examples that illustrate the use of the OPTQP procedure. Example 11.1 illustrates how to model a linear least squares problem and solve it by using PROC OPTQP. Example 11.2 and Example 11.3 explain in detail how to model the portfolio optimization and selection problems.

## Example 11.1: Linear Least Squares Problem

The linear least squares problem arises in the context of determining a solution to an overdetermined set of linear equations. In practice, these equations could arise in data fitting and estimation problems. An overdetermined system of linear equations can be defined as

$$
A x=b
$$

where $\mathbf{A} \in \mathbb{R}^{m \times n}, \mathbf{x} \in \mathbb{R}^{n}, \mathbf{b} \in \mathbb{R}^{m}$, and $m>n$. Since this system usually does not have a solution, you need to be satisfied with some sort of approximate solution. The most widely used approximation is the least squares solution, which minimizes $\|\mathbf{A x}-\mathbf{b}\|_{2}^{2}$.

This problem is called a least squares problem for the following reason. Let $\mathbf{A}, \mathbf{x}$, and $\mathbf{b}$ be defined as previously. Let $k_{i}(x)$ be the $k$ th component of the vector $\mathbf{A x}-\mathbf{b}$ :

$$
k_{i}(x)=a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}-b_{i}, i=1,2, \ldots, m
$$

By definition of the Euclidean norm, the objective function can be expressed as follows:

$$
\|\mathbf{A x}-\mathbf{b}\|_{2}^{2}=\sum_{i=1}^{m} k_{i}(x)^{2}
$$

Therefore, the function you minimize is the sum of squares of $m$ terms $k_{i}(x)$; hence the term least squares. The following example is an illustration of the linear least squares problem; that is, each of the terms $k_{i}$ is a linear function of $x$.function $\sum_{i j} a_{i j} x_{j}$ plus a constant, $-b_{i}$.
Consider the following least squares problem defined by

$$
\mathbf{A}=\left[\begin{array}{rr}
4 & 0 \\
-1 & 1 \\
3 & 2
\end{array}\right], \quad \mathbf{b}=\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

This translates to the following set of linear equations:

$$
4 x_{1}=1, \quad-x_{1}+x_{2}=0, \quad 3 x_{1}+2 x_{2}=1
$$

The corresponding least squares problem is

$$
\operatorname{minimize}\left(4 x_{1}-1\right)^{2}+\left(-x_{1}+x_{2}\right)^{2}+\left(3 x_{1}+2 x_{2}-1\right)^{2}
$$

The preceding objective function can be expanded to

$$
\operatorname{minimize} 26 x_{1}^{2}+5 x_{2}^{2}+10 x_{1} x_{2}-14 x_{1}-4 x_{2}+2
$$

In addition, you impose the following constraint so that the equation $3 x_{1}+2 x_{2}=1$ is satisfied within a tolerance of 0.1 :

$$
0.9 \leq 3 x_{1}+2 x_{2} \leq 1.1
$$

You can create the QPS-format input data set by using the following SAS statements:

```
data lsdata;
 input field1 $ field2 $ field3 $ field4 field5 $ field6 @;
 datalines;
NAME LEASTSQ
N OBJ
```



```
. X2 OBJ
. RHS OBJ
. RNG
BOUNDS
FR BND1 X1
FR BND1 X2
\begin{tabular}{lll}
QUADOBJ &. &. \\
. & x 1 & x 1
\end{tabular}
\begin{tabular}{llllll}
& X 1 & X 2 & 10 &. &. \\
\(\cdot\) & X 2 & X 2 & 10 & \(\cdot\) &. \\
ENDATA &. &. &. &. &.
\end{tabular}
;
```

The decision variables $x_{1}$ and $x_{2}$ are free, so they have bound type FR in the BOUNDS section of the QPS-format data set.
You can use the following SAS statements to solve the least squares problem:

```
proc optqp data=lsdata
 printlevel = 0
 primalout = lspout;
run;
```

The optimal solution is displayed in Output 11.1.1.

Output 11.1.1 Solution to the Least Squares Problem

Primal Solution					
Obs	Objective Function ID	$\begin{aligned} & \text { RHS } \\ & \text { ID } \end{aligned}$	Variable Name	Variable Type	Linear   Objective Coefficient
1	OBJ	RHS	X1	F	-14
2	OBJ	RHS	X2	F	-4
Obs	Lower Bound			$\begin{gathered} \text { Variable } \\ \text { Value } \end{gathered}$	Variable Status
1	-1.7977E308		7E308	0.23810	0
2	-1.7977E308		7E308	0.16190	0

The iteration $\log$ is shown in Output 11.1.2.
Output 11.1.2 Iteration Log

```
NOTE: The problem LEASTSQ has 2 variables (2 free, 0 fixed).
NOTE: The problem has 1 constraints (O LE, O EQ, O GE, 1 range).
NOTE: The problem has 2 constraint coefficients.
NOTE: The objective function has 2 Hessian diagonal elements and 1 Hessian
 elements above the diagonal.
NOTE: The QP presolver value AUTOMATIC is applied.
NOTE: The QP presolver removed O variables and O constraints.
NOTE: The QP presolver removed O constraint coefficients.
NOTE: The presolved problem has 2 variables, 1 constraints, and 2 constraint
 coefficients.
NOTE: The QP solver is called.
NOTE: The Interior Point algorithm is used.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Interior Point algorithm is using up to 4 threads.
\begin{tabular}{rrrrrr}
Iter & Complement & Duality Gap & Primal & Bound & Dual \\
0 & \(4.35616 e-02\) & \(7.22160 e-03\) & \(1.96367 e-08\) & \(1.17851 e-01\) & \(1.32417 e-03\) \\
1 & \(5.86807 e-03\) & \(1.94022 e-03\) & \(1.97061 e-10\) & \(1.17851 e-03\) & \(1.32417 \mathrm{e}-05\) \\
2 & \(1.99615 e-04\) & \(6.67063 e-05\) & \(5.20022 e-12\) & \(2.46618 \mathrm{e}-05\) & \(2.77099 \mathrm{e}-07\) \\
3 & \(2.07995 \mathrm{e}-06\) & \(6.95270 \mathrm{e}-07\) & \(1.71890 \mathrm{e}-13\) & \(2.47945 \mathrm{e}-07\) & \(2.78591 \mathrm{e}-09\) \\
4 & \(0.00000 \mathrm{e}+00\) & \(7.42506 \mathrm{e}-17\) & \(0.00000 \mathrm{e}+00\) & \(0.00000 \mathrm{e}+00\) & \(3.94044 \mathrm{e}-17\)
\end{tabular}
NOTE: Optimal.
NOTE: Objective \(=0.00952380952\).
NOTE: The Interior Point solve time is 0.00 seconds.
NOTE: The data set WORK.LSPOUT has 2 observations and 9 variables.
```


## Example 11.2: Portfolio Optimization

Consider a portfolio optimization example. The two competing goals of investment are (1) long-term growth of capital and (2) low risk. A good portfolio grows steadily without wild fluctuations in value. The Markowitz model is an optimization model for balancing the return and risk of a portfolio. The decision variables are the amounts invested in each asset. The objective is to minimize the variance of the portfolio's total return, subject to the constraints that (1) the expected growth of the portfolio reaches at least some target level and (2) you do not invest more capital than you have.

Let $x_{1}, \ldots, x_{n}$ be the amount invested in each asset, $\mathcal{B}$ be the amount of capital you have, $\mathbf{R}$ be the random vector of asset returns over some period, and $\mathbf{r}$ be the expected value of $\mathbf{R}$. Let $G$ be the minimum growth you hope to obtain, and $\mathcal{C}$ be the covariance matrix of $\mathbf{R}$. The objective function is $\operatorname{Var}\left(\sum_{i=1}^{n} x_{i} R_{i}\right)$, which can be equivalently denoted as $\mathbf{x}^{\mathrm{T}} \mathcal{C} \mathbf{x}$.

Assume, for example, $n=4$. Let $\mathcal{B}=10,000, G=1000, \mathbf{r}=[0.05,-0.2,0.15,0.30]$, and

$$
\mathcal{C}=\left[\begin{array}{cccc}
0.08 & -0.05 & -0.05 & -0.05 \\
-0.05 & 0.16 & -0.02 & -0.02 \\
-0.05 & -0.02 & 0.35 & 0.06 \\
-0.05 & -0.02 & 0.06 & 0.35
\end{array}\right]
$$

The QP formulation can be written as follows:

$$
\begin{array}{rcccccccc}
\min & 0.08 x_{1}^{2} & -0.1 x_{1} x_{2} & -0.1 x_{1} x_{3} & -0.1 x_{1} x_{4} & + \\
& 0.16 x_{2}^{2} & -0.04 x_{2} x_{3} & - & 0.04 x_{2} x_{4} & +0.35 x_{3}^{2} & + \\
& 0.12 x_{3} x_{4} & + & 0.35 x_{4}^{2} & & & & & \\
\text { subject to } & & & & & x_{3} & + & x_{4} & \leq \\
\text { (budget) } & x_{1} & + & x_{2} & + & x_{3} 0000 \\
\text { (growth) } & 0.05 x_{1} & - & 0.2 x_{2} & + & 0.15 x_{3} & +0.30 x_{4} & \geq & 1000 \\
& & & & x_{1}, x_{2}, x_{3}, x_{4} & \geq & 0
\end{array}
$$

The corresponding QPS-format input data set is as follows:

```
data portdata;
 input field1 $ field2 $ field3 $ field4 field5 $ field6 @;
datalines;
\begin{tabular}{|c|c|c|c|c|c|}
\hline NAME & - & PORT & . & . & . \\
\hline ROWS & - & . & - & - & - \\
\hline N & OBJ.FUNC & - & . & - & - \\
\hline L & BUDGET & - & - & - & - \\
\hline G & GROWTH & - & - & - & - \\
\hline \multicolumn{2}{|l|}{COLUMNS} & . & . & - & - \\
\hline - & x 1 & BUDGET & 1.0 & GROWTH & 0.05 \\
\hline - & x2 & BUDGET & 1.0 & GROWTH & -. 20 \\
\hline . & x3 & BUDGET & 1.0 & GROWTH & 0.15 \\
\hline & X4 & BUDGET & 1.0 & GROWTH & 0.30 \\
\hline \multirow[t]{3}{*}{RHS} & . & . & . & . & . \\
\hline & RHS & BUDGET & 10000 & - & - \\
\hline & RHS & GROWTH & 1000 & & \\
\hline
\end{tabular}
```



Use the following SAS statements to solve the problem:

```
proc optqp data=portdata
 primalout = portpout
 printlevel = 0
 dualout = portdout;
run;
```

The optimal solution is shown in Output 11.2.1.

## Output 11.2.1 Portfolio Optimization



Thus, the minimum variance portfolio that earns an expected return of at least $10 \%$ is $x_{1}=3452.86$, $x_{2}=0, x_{3}=1068.81, x_{4}=2223.45$. Asset 2 gets nothing, because its expected return is $-20 \%$ and its covariance with the other assets is not sufficiently negative for it to bring any diversification benefits.

What if you drop the nonnegativity assumption? You need to update the BOUNDS section in the existing QPS-format data set to indicate that the decision variables are free.

RANGES		.	-	.
BOUNDS		.	.	.
FR	BND1	X1	.	-
FR	BND1	X2	.	-
FR	BND1	X3	-	.
FR	BND1	X4	.	.
QUADOBJ		.	-	.

Financially, that means you are allowed to short-sell-that is, sell low-mean-return assets and use the proceeds to invest in high-mean-return assets. In other words, you put a negative portfolio weight in low-mean assets and "more than $100 \%$ " in high-mean assets. You can see in the optimal solution displayed in Output 11.2.2 that the decision variable $x_{2}$, denoting Asset 2 , is equal to -1563.61 , which means short sale of that asset.

Output 11.2.2 Portfolio Optimization with Short-Sale Option

Obs	The OPTQP Procedure Primal Solution				
	Objective   Function   ID	$\begin{aligned} & \text { RHS } \\ & \text { ID } \end{aligned}$	Variable Name	Variable Type	Linear Objective Coefficient
1	OBJ.FUNC	RHS	x1	F	0
2	OBJ.FUNC	RHS	x 2	F	0
3	OBJ.FUNC	RHS	x3	F	0
4	OBJ.FUNC	RHS	X4	F	0
Obs	Lower Bound		Upper   Bound	$\begin{gathered} \text { Variable } \\ \text { Value } \end{gathered}$	Variable   Status
1	-1.7977E308		.7977E308	1684.35	$\bigcirc$
2	-1.7977E308		.7977E308	-1563.61	$\bigcirc$
3	-1.7977E308		.7977E308	682.51	-
4	-1.7977E308		.7977E308	1668.95	$\bigcirc$

## Example 11.3: Portfolio Selection with Transactions

Consider a portfolio selection problem with a slight modification. You are now required to take into account the current position and transaction costs associated with buying and selling assets. The objective is to find the minimum variance portfolio. In order to understand the scenario better, consider the following data.

You are given three assets. The current holding of the three assets is denoted by the vector $\mathbf{c}=[200,300$, 500], the amount of asset bought and sold is denoted by $b_{i}$ and $s_{i}$, respectively, and the net investment in each asset is denoted by $x_{i}$ and is defined by the following relation:

$$
x_{i}-b_{i}+s_{i}=c_{i}, \quad i=1,2,3
$$

Suppose you pay a transaction fee of 0.01 every time you buy or sell. Let the covariance matrix $\mathcal{C}$ be defined as

$$
\mathcal{C}=\left[\begin{array}{ccc}
0.027489 & -0.00874 & -0.00015 \\
-0.00874 & 0.109449 & -0.00012 \\
-0.00015 & -0.00012 & 0.000766
\end{array}\right]
$$

Assume that you hope to obtain at least $12 \%$ growth. Let $\mathbf{r}=[1.109048,1.169048,1.074286]$ be the vector of expected return on the three assets, and let $\mathcal{B}=1000$ be the available funds. Mathematically, this problem can be written in the following manner:

$$
\begin{aligned}
\min & 0.027489 x_{1}^{2}-0.01748 x_{1} x_{2}-0.0003 x_{1} x_{3}+0.109449 x_{2}^{2} \\
& -0.00024 x_{2} x_{3}+0.000766 x_{3}^{2}
\end{aligned}
$$

subject to

$$
\begin{aligned}
& \text { (return) } \quad \sum_{i=1}^{3} r_{i} x_{i} \geq 1.12 \mathcal{B} \\
& \text { (budget) } \sum_{i=1}^{3} x_{i}+\sum_{i=1}^{3} 0.01\left(b_{i}+s_{i}\right)=\mathcal{B} \\
& \text { (balance) } \\
& \begin{aligned}
x_{i}-b_{i}+s_{i} & =c_{i}, \quad i=1,2,3 \\
x_{i}, b_{i}, s_{i} & \geq 0, \quad i=1,2,3
\end{aligned}
\end{aligned}
$$

The QPS-format input data set is as follows:


-	x3	RETURN	1.074286	BUDGET	1.0
-	x3	BALANC3	1.0	.	.
-	B1	BUDGET	. 01	BALANC1	-1.0
-	B2	BUDGET	. 01	BALANC2	-1.0
.	B3	BUDGET	. 01	BALANC3	-1.0
-	S1	BUDGET	. 01	BALANC1	1.0
-	S2	BUDGET	. 01	BALANC2	1.0
.	S3	BUDGET	. 01	BALANC3	1.0
RHS	.	.	.	.	.
.	RHS	RETURN	1120	.	-
.	RHS	BUDGET	1000	.	.
.	RHS	BALANC1	200	-	.
.	RHS	BALANC2	300	-	.
.	RHS	BALANC3	500	-	.
RANGES	.	.	.	-	.
BOUNDS	-	-	-	-	.
QUADOBJ	.	.	-	-	-
.	x 1	x 1	0.054978	-	-
.	X1	x2	-. 01748	-	.
-	x 1	x3	-. 0003	-	-
-	x 2	x 2	0.218898	-	.
-	x 2	x3	-. 00024	-	-
-	x3	x3	0.001532	.	.
ENDATA	.	.	.	-	-
;					

Use the following SAS statements to solve the problem:

```
proc optqp data=potrdata
 primalout = potrpout
 printlevel = 0
 dualout = potrdout;
run;
```

The optimal solution is displayed in Output 11.3.1.

Output 11.3.1 Portfolio Selection with Transactions


## References

Freund, R. W. (1991), "On Polynomial Preconditioning and Asymptotic Convergence Factors for Indefinite Hermitian Matrices," Linear Algebra and Its Applications, 154-156, 259-288.

Freund, R. W. and Jarre, F. (1997), "A QMR-Based Interior Point Algorithm for Solving Linear Programs," Mathematical Programming, 76, 183-210.

Freund, R. W. and Nachtigal, N. M. (1996), "QMRPACK: A Package of QMR Algorithms," ACM Transactions on Mathematical Software, 22, 46-77.

Vanderbei, R. J. (1999), "LOQO: An Interior Point Code for Quadratic Programming," Optimization Methods and Software, 11, 451-484.

Wright, S. J. (1996), Primal-Dual Interior Point Algorithms, Philadelphia: SIAM.

## Chapter 12 <br> The Decomposition Algorithm

## Contents

Overview: Decomposition Algorithm ..... 493
Getting Started: Decomposition Algorithm ..... 495
Solving a MILP with DECOMP and PROC OPTMODEL ..... 496
Solving a MILP with DECOMP and PROC OPTMILP ..... 497
Syntax: Decomposition Algorithm ..... 498
Decomposition Algorithm Options in the PROC OPTLP Statement or the SOLVE WITH LP Statement in PROC OPTMODEL ..... 499
Decomposition Algorithm Options in the PROC OPTMILP Statement or the SOLVE WITH MILP Statement in PROC OPTMODEL ..... 500
DECOMP Statement ..... 501
DECOMP_MASTER Statement ..... 506
DECOMP_MASTER_IP Statement ..... 507
DECOMP_SUBPROB Statement ..... 509
Details: Decomposition Algorithm ..... 512
Data Input ..... 512
Decomposition Algorithm ..... 513
Parallel Execution ..... 514
Log for the Decomposition Algorithm ..... 514
Examples: Decomposition Algorithm ..... 517
Example 12.1: Multicommodity Flow Problem ..... 517
Example 12.2: Generalized Assignment Problem ..... 522
Example 12.3: Block-Diagonal Structure Using METHOD=AUTO ..... 528
Example 12.4: Resource Allocation Problem ..... 534
Example 12.5: ATM Cash Management ..... 548
References ..... 558

## Overview: Decomposition Algorithm

The SAS/OR decomposition algorithm (DECOMP) provides an alternative method for solving linear programs (LPs) and mixed integer linear programs (MILPs) by exploiting the ability to efficiently solve a relaxation of the original problem. The algorithm is available as an option in the OPTMODEL, OPTLP and OPTMILP procedures and is based on the methodology described in Galati (2009).

A standard linear or mixed integer linear program has the formulation

$$
\begin{array}{llll}
\operatorname{minimize} & \mathbf{c}^{\top} \mathbf{x}+\mathbf{f}^{\top} \mathbf{y} \\
\text { subject to } & \mathbf{D} \mathbf{x}+\mathbf{B y} \quad\{\geq,=, \leq\} \quad \mathbf{d} & \text { (master) } \\
& \mathbf{A x} & \{\geq,=, \leq\} \quad \mathbf{b} & \text { (subproblem) } \\
& l_{i}^{x} \leq x_{i} \leq u_{i}^{x}, \quad x_{i} \in \mathbb{Z} i \in \mathcal{S}^{x} \\
& l_{i}^{y} \leq y_{i} \leq u_{i}^{y}, \quad y_{i} \in \mathbb{Z} \quad i \in \mathcal{S}^{y}
\end{array}
$$

where

```
\(\mathrm{x} \in \mathbb{R}^{n} \quad\) is the vector of structural variables
\(\mathbf{y} \in \mathbb{R}^{s} \quad\) is the vector of master-only structural variables
\(\mathbf{c} \in \mathbb{R}^{n} \quad\) is the vector of objective function coefficients that are associated with variables \(\mathbf{x}\)
\(\mathbf{f} \in \mathbb{R}^{s} \quad\) is the vector of objective function coefficients that are associated with variables \(\mathbf{y}\)
\(\mathbf{D} \in \mathbb{R}^{t \times n} \quad\) is the matrix of master constraint coefficients that are associated with variables \(\mathbf{x}\)
\(\mathbf{B} \in \mathbb{R}^{t \times s} \quad\) is the matrix of master constraint coefficients that are associated with variables \(\mathbf{y}\)
\(\mathbf{A} \in \mathbb{R}^{m \times n} \quad\) is the matrix of subproblem constraint coefficients
\(\mathbf{d} \in \mathbb{R}^{t} \quad\) is the vector of master constraints' right-hand sides
\(\mathbf{b} \in \mathbb{R}^{m} \quad\) is the vector of subproblem constraints' right-hand sides
\(\mathrm{l}^{\mathrm{x}} \in \mathbb{R}^{n} \quad\) is the vector of lower bounds on variables x
\(\mathbf{u}^{\mathbf{x}} \in \mathbb{R}^{n} \quad\) is the vector of upper bounds on variables \(\mathbf{x}\)
\(\mathbf{l}^{\mathbf{y}} \in \mathbb{R}^{s} \quad\) is the vector of lower bounds on variables \(\mathbf{y}\)
\(\mathbf{u}^{\mathbf{y}} \in \mathbb{R}^{S} \quad\) is the vector of upper bounds on variables \(\mathbf{y}\)
\(\mathcal{S}^{x} \quad\) is a subset of the set \(\{1, \ldots, n\}\) of indices on variables \(\mathbf{x}\)
\(\mathcal{S}^{y} \quad\) is a subset of the set \(\{1, \ldots, s\}\) of indices on variables \(\mathbf{y}\)
```

A relaxation of the preceding mathematical program can be formed by removing the master constraints, which are defined by the matrices $\mathbf{D}$ and $\mathbf{B}$. The resulting constraint system, defined by the matrix $\mathbf{A}$, forms the subproblem, which can often be solved much more efficiently than the entire original problem. This is the one of the key motivators for using the decomposition algorithm.

The decomposition algorithm works by finding convex combinations of extreme points of the subproblem polyhedron that satisfy the constraints defined in the master. For MILP subproblems, the strength of the relaxation is another important motivator for using this method. If the subproblem polyhedron defines feasible solutions that are close to the original feasible space, the chance of success for the algorithm increases.

The region that defines the subproblem space is often separable. That is, the formulation of the preceding mathematical program can be written in block-angular form as follows:

$$
\begin{aligned}
& \text { minimize } \mathbf{c}^{1} \mathbf{x}^{1}+\mathbf{c}^{2} \mathbf{x}^{2}+\ldots+\mathbf{c}^{\kappa} \mathbf{x}^{\kappa}+\mathbf{f}^{\top} y \\
& \text { subject to } D^{1} x^{1}+D^{2} x^{2}+\ldots \quad D^{\kappa} x^{\kappa}+B y \quad\{\geq,=, \leq\} \quad d \\
& \mathrm{~A}^{1} \mathrm{x}^{1} \quad\{\geq,=, \leq\} \quad \mathrm{b}^{1} \\
& A^{2} \mathrm{x}^{2} \quad\{\geq,=, \leq\} \quad \mathrm{b}^{2} \\
& \ddots \quad\{\geq,=, \leq\} \quad \vdots \\
& \mathrm{A}^{\kappa} \mathrm{x}^{\kappa} \quad\{\geq,=, \leq\} \quad \mathrm{b}^{\kappa} \\
& l_{i}^{x} \leq x_{i} \leq u_{i,}^{x}, \quad x_{i} \in \mathbb{Z} \quad i \in \mathcal{S}^{x} \\
& l_{i}^{y} \leq y_{i} \leq u_{i}^{y}, \quad y_{i} \in \mathbb{Z} \quad i \in \mathcal{S}^{y}
\end{aligned}
$$

where $K=\{1, \ldots, \kappa\}$ defines a partition of the constraints (and variables) into independent subproblems (blocks) such that $\mathbf{A}=\left[\mathbf{A}^{1} \ldots \mathbf{A}^{\kappa}\right], \mathbf{D}=\left[\mathbf{D}^{1} \ldots \mathbf{D}^{\kappa}\right], \mathbf{c}=\left[\mathbf{c}^{1} \ldots \mathbf{c}^{\kappa}\right]$, and $\mathbf{x}=\left[\mathbf{x}^{1} \ldots \mathbf{x}^{\kappa}\right]$. This type of structure is fairly common in modeling mathematical programs. For example, consider a model that
defines a workplace with separate departmental restrictions (defined as the subproblem constraints), which are coupled together by a company-wide budget across departments (defined as the master constraint). By relaxing the budget (master) constraint, the decomposition algorithm can take advantage of the fact that the decoupled subproblems are separable, and it can process them in parallel. A special case of block-angular form, called block-diagonal, occurs when the set of master constraints is empty. In this special case, the subproblem matrices define the entire original problem.

An important indicator of a problem that is well suited for decomposition is the amount by which the subproblems cover the original problem with respect to both variables and constraints in the original presolved model. This value, expressed as a percentage of the original model is known as the coverage. For LPs, the decomposition algorithm usually performs better than standard approaches only if the subproblems cover a significant amount of the original problem. For MILPs, the correlation between performance and coverage is more difficult to determine, because the strength of the subproblem with respect to integrality is not always proportional to the size of the system. Regardless, it is unlikely that the decomposition algorithm outperforms more standard methods (such as branch-and-cut) for problems with small coverage.

The primary input and output for the decomposition algorithm are identical to those needed and produced by the OPTLP, OPTMILP, and OPTMODEL procedures. For more information, see the sections "Data Input and Output" on page 361, "Data Input and Output" on page 420, "Details: LP Solver" on page 181, and "Details: MILP Solver" on page 249. The only additional input that can be provided for the decomposition algorithm is an explicit definition of the partition of the subproblem constraints. The following section gives a simple example of providing this input for both PROC OPTMILP and PROC OPTMODEL.

## Getting Started: Decomposition Algorithm

This example illustrates how you can use the decomposition algorithm to solve a simple mixed integer linear program. Suppose you want to solve the following problem:

$$
\begin{aligned}
& x_{i j} \in\{0,1\} \quad i \in\{1, \ldots, 3\}, j \in\{1, \ldots, 2\}
\end{aligned}
$$

It is obvious from the structure of the problem that if constraint $(\mathrm{m})$ is removed, then the remaining constraints (s1) and (s2) decompose into two independent subproblems. The next two sections describe how to solve this MILP by using the decomposition algorithm in the OPTMODEL procedure and OPTMILP procedure, respectively.

## Solving a MILP with DECOMP and PROC OPTMODEL

The following statements use the OPTMODEL procedure and the decomposition algorithm to solve the MILP:

```
proc optmodel;
 var x{i in 1..3, j in 1..2} binary;
 max f = x[1,1] + 2*x[2,1] + x[3,1]
 + x[2,2] + x[3,2];
 con m : x[1,1] + x[1,2] >= 1;
 con s1: 5*x[1,1] + 7*x[2,1] + 4*x[3,1] <= 11;
 con s2: x[1,2] + 2*x[2,2] + x[3,2] <= 2;
 s1.block = 0;
 s2.block = 1;
 solve with milp / presolver=none decomp=(logfreq=1);
 print x;
quit;
```

Here, the PRESOLVER=NONE option is used, because otherwise the presolver solves this small instance without invoking any solver. The solution summary and optimal solution are displayed in Figure 12.1.

Figure 12.1 Solution Summary and Optimal Solution


The iteration log, which displays the problem statistics, the progress of the solution, and the optimal objective value, is shown in Figure 12.2.

Figure 12.2 Log

```
NOTE: Problem generation will use 16 threads.
NOTE: The problem has 6 variables (0 free, 0 fixed).
NOTE: The problem has 6 binary and 0 integer variables.
NOTE: The problem has 3 linear constraints (2 LE, O EQ, 1 GE, 0 range).
NOTE: The problem has 8 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (O LE, O EQ, O GE, O range).
NOTE: The MILP presolver value NONE is applied.
NOTE: The MILP solver is called.
NOTE: The Decomposition algorithm is used.
NOTE: The DECOMP method value USER is applied.
NOTE: The decomposition subproblems consist of 2 disjoint blocks.
NOTE: The decomposition subproblems cover 6 (100.00%) variables and 2 (66.67%)
 constraints.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Decomposition algorithm is using up to 16 threads.
\begin{tabular}{lrrrrrrr}
Iter & Best & Master & Best & LP & IP & CPU & Real \\
& Bound & Objective & Integer & Gap & Gap & Time & Time
\end{tabular}
NOTE: Starting phase 1.
 llllll
NOTE: Starting phase 2.
\begin{tabular}{lrrrrrrrrr}
. & 6.0000 & & 3.0000 & 3.0000 & \(50.00 \%\) & \(50.00 \%\) & 0 & 0 \\
3 & 4.0000 & 3.0000 & 3.0000 & \(25.00 \%\) & \(25.00 \%\) & 0 & 0 \\
4 & 4.0000 & & 4.0000 & 4.0000 & \(0.00 \%\) & \(0.00 \%\) & 0 & 0 \\
Node & Active & Sols & Best & Best & Gap & CPU & \begin{tabular}{rl}
Real \\
& \\
0 & 0
\end{tabular} & 2 & Integer
\end{tabular}
```

NOTE: The Decomposition algorithm used 2 threads.
NOTE: The Decomposition algorithm time is 0.03 seconds.
NOTE: Optimal.
NOTE: Objective $=4$.

## Solving a MILP with DECOMP and PROC OPTMILP

Alternatively, to solve the MILP with the OPTMILP procedure, create a corresponding SAS data set that uses the mathematical programming system (MPS) format as follows:

```
data mpsdata;
 input field1 $ field2 $ field3 $ field4 field5 $ field6;
 datalines;
NAME . mpsdata
ROWS . .
MAX f
G m
L s1
L s2
COLUMNS
```

.	.MRK0000	'MARKER'	.	'INTORG'	
.	x [1, 1]	f	1	m	1
.	x[1, 1]	s1	5	.	.
.	$x[2,1]$	f	2	s1	7
.	$x[3,1]$	f	1	s1	4
.	$\mathbf{x}[1,2]$	m	1	s2	1
.	$x[2,2]$	f	1	s2	2
.	x[3,2]	f	1	s2	1
.	.MRK0001	'MARKER'	.	'INTEND'	
RHS	.	.	.	.	
.	. RHS .	m	1	-	.
-	. RHS .	s1	11	.	.
.	. RHS .	s2	2	.	.
BOUNDS	.	-	.	-	
UP	. BOUNDS .	x [1, 1]	1	.	
UP	. BOUNDS .	$x[2,1]$	1	-	.
UP	. BOUNDS .	x[3, 1]	1	.	-
UP	. BOUNDS .	x[1,2]	1	-	-
UP	. BOUNDS .	$x[2,2]$	1	-	-
UP	. BOUNDS .	x[3,2]	1	-	-
ENDATA	.	.	-	-	-

Next, use the following SAS data set to define the subproblem blocks:

```
data blocks;
 input _row_ $ _block_;
 datalines;
s1 0
s2 1
;
```

Now, you can use the following OPTMILP statements to solve this MILP:

```
proc optmilp
 data = mpsdata
 presolver = none;
 decomp
 logfreq = 1
 blocks = blocks;
run;
```


## Syntax: Decomposition Algorithm

You can specify the decomposition algorithm either by using options in a SOLVE statement in the OPTMODEL procedure or by using statements in the OPTLP and OPTMILP procedures. Except for the fact that you use SOLVE statement options in PROC OPTMODEL or you use statements in PROC OPTLP and PROC OPTMILP, the syntax is identical.

The following decomposition algorithm options are available in the SOLVE statement in the OPTMODEL procedure:

```
SOLVE WITH LP / < options>
 <DECOMP=(<decomp-options>)>
 <DECOMP_MASTER=(< decomp-master-options>)>
 <DECOMP_SUBPROB=(<decomp-subprob-options>)> ;
SOLVE WITH MILP / < options>
<DECOMP=(<decomp-options>)>
<DECOMP_MASTER=(< decomp-master-options>)>
<DECOMP_MASTER_IP=(<decomp-master-ip-options>)>
<DECOMP_SUBPROB=(<decomp-subprob-options>)> ;
```

The following statements are available in the OPTLP procedure:

```
PROC OPTLP < options > ;
 DECOMP < decomp-options> ;
 DECOMP_MASTER < decomp-master-options > ;
 DECOMP_SUBPROB < decomp-subprob-options > ;
```

The following statements are available in the OPTMILP procedure:

```
PROC OPTMILP < options> ;
 DECOMP < decomp-options> ;
 DECOMP_MASTER < decomp-master-options > ;
 DECOMP_MASTER_IP < decomp-master-ip-options > ;
 DECOMP_SUBPROB < decomp-subprob-options > ;
```


## Decomposition Algorithm Options in the PROC OPTLP Statement or the SOLVE WITH LP Statement in PROC OPTMODEL

To solve a linear program, you can specify the decomposition algorithm in a SOLVE WITH LP statement in the OPTMODEL procedure or in a PROC OPTLP statement in the OPTLP procedure. To control the overall decomposition algorithm, you can specify one or more of the LP solver options shown in Table 12.1. (As indicated, you can specify some options only in the PROC OPTLP statement.)

The options in Table 12.1 control the overall process flow for solving a linear program, and they are equivalent to the options that are used in PROC OPTLP and PROC OPTMODEL with standard methods. These options are called main solver options in this chapter. They are described in detail in the section "Syntax: LP Solver" on page 174 and the section "Syntax: OPTLP Procedure" on page 353.

Table 12.1 Options in the PROC OPTLP Statement or SOLVE WITH LP Statement

Description	option
Data Set Options (OPTLP procedure only)	
Specifies the input data set	DATA=
Specifies the dual solution output data set	DUALOUT=
Specifies whether the model is a maximization or minimization problem	OBJSENSE=
Specifies the primal solution output data set   Saves output data sets only if optimal   Presolve Option	PRIMALOUT=
Specifies the type of presolve	SAVE_ONLY_IF_OPTIMAL
Control Options	
Specifies the feasibility tolerance	PRESOLVER=

Table 12.1 (continued)

Description	option
Specifies how frequently to print the solution progress	LOGFREQ=
Specifies the level of detail of solution progress to print in the log	LOGLEVEL=
Specifies the maximum number of iterations	MAXITER=
Specifies the time limit for the optimization process	MAXTIME=
Specifies the optimality tolerance	OPTTOL=
Enables or disables printing summary (OPTLP procedure only)	PRINTLEVEL=
Specifies whether time units are CPU time or real time	TIMETYPE=
Algorithm Options	SCALE=
Enables or disables scaling of the problem	

## Decomposition Algorithm Options in the PROC OPTMILP Statement or the SOLVE WITH MILP Statement in PROC OPTMODEL

To solve a mixed integer linear program, you can specify the decomposition algorithm in a SOLVE WITH MILP statement in the OPTMODEL procedure or in a PROC OPTMILP statement in the OPTMILP procedure. To control the overall decomposition algorithm, you can specify one or more of the MILP solver options shown in Table 12.2. (As indicated, you can specify some options only in the PROC OPTMILP statement.)

The options in Table 12.2 control the overall process flow for solving a mixed integer linear program, and they are equivalent to the options used in the OPTMILP and OPTMODEL procedures with standard methods. These options are called main solver options in this chapter. They are described in detail in the section "Syntax: MILP Solver" on page 239 and the section "Syntax: OPTMILP Procedure" on page 409.

Table 12.2 Options in the PROC OPTMILP Statement or SOLVE WITH MILP Statement

Description	option
Data Set Options (OPTMILP procedure only)	
Specifies the input data set	DATA=
Specifies the constraint activities output data set	DUALOUT=
Specifies whether the model is a maximization or minimization problem	OBJSENSE=
Specifies the primal solution input data set (warm start)	PRIMALIN=
Specifies the primal solution output data set	PRIMALOUT=
Presolve Option	
Specifies the type of presolve	PRESOLVER=
Control Options	
Specifies the stopping criterion based on an absolute objective gap	ABSOBJGAP=
Specifies the maximum violation of variables and constraints	FEASTOL=
Specifies the maximum allowed difference between an integer variable's value and an integer	INTTOL=
Specifies how frequently to print the node log	LOGFREQ=
Specifies the level of detail of solution progress to print in the log	LOGLEVEL=
Specifies the maximum number of nodes to be processed	MAXNODES=
Specifies the maximum number of solutions to be found	MAXSOLS $=$

Table 12.2 (continued)

Description	option
Specifies the time limit for the optimization process	MAXTIME=
Specifies the tolerance used when deciding on the optimality of nodes in	OPTTOL=
the branch-and-bound tree	
Uses the input primal solution (warm start) (OPTMODEL procedure only)	PRIMALIN
Enables or disables printing summary (OPTMILP procedure only)	PRINTLEVEL=
Specifies the probing level	PROBE=
Specifies the stopping criterion based on a relative objective gap	RELOBJGAP=
Specifies the scale of the problem matrix	SCALE=
Specifies whether time units are CPU time or real time	TIMETYPE=
Heuristics Option	
Specifies the primal heuristics level	HEURISTICS=

## DECOMP Statement

DECOMP < decomp-options > ;
The DECOMP statement controls the overall decomposition algorithm.
Table 12.3 summarizes the decomp-options available in the DECOMP statement. These options control the overall decomposition algorithm process flow during the solution of an LP or a MILP. (As indicated, you can specify the data set options only in the OPTLP or OPTMILP procedure, and you can specify some control options only for a MILP.)

Table 12.3 Options in the DECOMP Statement

Description	decomp-option
Data Set Options (OPTLP and OPTMILP procedures only)   Specifies the blocks input data set   Control Options	BLOCKS=
Specifies the stopping criterion based on an absolute objective gap   Specifies the frequency of removing ineffective columns from the master	ABSOBJGAP=
LP	COMPRESSFREQ=
Specifies whether to initialize the columns by solving each block with the	INITVARS=
original cost vector	LOGLEVEL=
Specifies the level of detail of solution progress to print in the log	MAXBLOCKS=
Specifies the maximum number of blocks to allow   each pass the maximum number of new columns to allow into the master	MAXCOLSPASS=
Specifies the maximum amount of time spent in the decomposition algo-   rithm	MAXTIME=
Specifies the decomposition algorithm method   Specifies the stopping criterion based on relative objective gap   Control Options (MILP only)	METHOD=
Specifies how frequently to print the continuous iteration log	RELOBJGAP=

Table 12.3 (continued)

Description	decomp-option
Specifies whether the master problem is solved as a MILP with the current	MASTER_IP_BEG=
set of columns at the beginning of phase II	
Specifies whether the master problem is solved as a MILP with the current	MASTER_IP_END=
set of columns at the end of phase II	
Specifies the frequency of solving the master problem as a MILP with the	MASTER_IP_FREQ=
current set of columns	
Specifies the maximum number of outer iterations for the decomposition	MAXITER=
algorithm	

The following list describes the decomp-options in detail.

## ABSOBJGAP=number

specifies a stopping criterion for the continuous bound of the decomposition. When the absolute difference between the master objective and the best dual bound falls below the value of number, the decomposition algorithm stops adding columns. The value of number can be any nonnegative number. The default value is the value of the OPTTOL= main solver option.

## BLOCKS=SAS-data-set

specifies (for OPTLP and OPTMILP procedures only) the input data set that contains block definitions to be used by the decomposition algorithm if METHOD=USER. See the section "The BLOCKS= Data Set in PROC OPTMILP and PROC OPTLP" on page 513 for more information. To specify blocks in PROC OPTMODEL, use the .block constraint suffix instead (see the section "The .block Constraint Suffix in PROC OPTMODEL" on page 513).

## COMPRESSFREQ=number

removes ineffective columns from the master LP after every number of iterations. The frequency, number, is an integer between 0 and the largest four-byte signed integer, which is $2^{31}-1$. The default value is 0 .

## INITVARS=number | string

specifies whether to initialize the columns by using the original cost vector to solve each block.
Table 12.4 describes the valid values of the INITVARS $=$ option.
Table 12.4 Values for INITVARS= Option

number	string	Description
0	OFF	Disables initializing the columns by using the original cost   vector to solve each block.
1	ON	Enables initializing the columns by using the original cost   vector to solve each block.

The default is ON.

## LOGFREQ=number

specifies (for MILP problems only) how often to print information in the continuous iteration log. The value of number can be any nonnegative number up to the largest four-byte signed integer, which is $2^{31}-1$. The default value of number is 10 . If number is set to 0 , then the iteration $\log$ is disabled. If number is positive, then an entry is made in the $\log$ at the first iteration, at the last iteration, and at intervals that are dictated by the value of number. An entry is also made each time a better integer solution or improved bound is found.

## LOGLEVEL=number | string

controls the amount of information that is displayed in the SAS log by the decomposition algorithm. Table 12.5 and Table 12.6 provide the valid values for this option and a description of what is displayed in the $\log$ when an LP and a MILP, respectively, is solved.

Table 12.5 Values for LOGLEVEL= Option for an LP

number	string	Description
-1	AUTOMATIC	Prints the continuous iteration log at the interval dictated   by the LOGFREQ= main solver option.   Turns off printing of all of the decomposition algorithm   messages to the SAS log.
0	NONE	BASIC
2	MODERATE	Prints the continuous iteration log at the interval dictated   by the LOGFREQ= main solver option.   Prints the continuous iteration log and summary infor-   mation for each iteration at the interval dictated by the   LOGFREQ= main solver option.
3	AGGRESSIVEPrints the continuous iteration log and detailed infor-   mation for each iteration at the interval dictated by the   LOGFREQ= main solver option.	

Table 12.6 Values for LOGLEVEL= Option for a MILP

number	string	Description
-1	AUTOMATIC	Prints the continuous iteration log for the root node at the   interval dictated by the LOGFREQ= option in the DE-   COMP statement. Prints the branch-and-bound node log   at the interval dictated by the LOGFREQ= main solver   option.
Turns off printing of all of the decomposition algorithm		
messages to the SAS log.		

Table 12.6 (continued)

number	string	Description
3	AGGRESSIVE	Prints the continuous iteration log and detailed informa-   tion for each iteration of each branch-and-bound node at   the interval dictated by the LOGFREQ= option in the DE-     

The default is AUTOMATIC for both LPs and MILPs.

## MASTER_IP_BEG=number | string

specifies (for MILP problems only) whether the master problem is solved as a MILP with the current set of columns at the beginning of phase II. Table 12.7 describes the valid values of the MASTER_IP_BEG= option.

Table 12.7 Values for MASTER_IP_BEG= Option

number	string	Description
0	OFF	Disables solving the master as a MILP at the beginning of phase II.
1	ON	Enables solving the master as a MILP at the beginning of phase II.

The default is ON in the root node and 0 elsewhere.

## MASTER_IP_END=number | string

specifies (for MILP problems only) whether the master problem is solved as a MILP with the current set of columns at the end of phase II. Table 12.8 describes the valid values of the MASTER_IP_END= option.

Table 12.8 Values for MASTER_IP_END= Option

number	string	Description
0	OFF	Disables solving the master as a MILP at the end of phase II.
1	ON	Enables solving the master as a MILP at the end of phase II.

The default is ON in the root node and 0 elsewhere.

## MASTER_IP_FREQ=number

solves the master problem (for MILP problems only) as a MILP with the current set of columns after every number iterations. The frequency, number, is an integer between 0 and the largest four-byte signed integer, which is $2^{31}-1$. The default is 10 in the root node and 0 elsewhere.

## MAXBLOCKS=number

specifies the maximum number of blocks to allow. If the defined number of blocks exceeds number, the algorithm creates superblocks using a very simple round-robin scheme. The value of number can be any positive number; the default value is the positive number that has the largest absolute value that can be represented in your operating environment.

## MAXCOLSPASS=number

specifies the maximum number of new columns to allow into the master at each pass. This option is disabled on the initial pass if INITVARS $=1$. The default is 100 .

## MAXITER=number

specifies (for MILP problems only) the maximum number of outer iterations for the decomposition algorithm. The value number can be any integer between 1 and the largest four-byte signed integer, which is $2^{31}-1$. If you do not specify this option, the procedure does not stop based on the number of iterations performed.

## MAXTIME=number

specifies an upper limit of number seconds of time for the decomposition algorithm. The value of the TIMETYPE= main solver option determines the type of units used. If you do not specify this option, the procedure does not stop based on the amount of time elapsed. The value of number can be any positive number; the default value is the positive number that has the largest absolute value that can be represented in your operating environment.

## METHOD=string

specifies the decomposition algorithm method as shown in Table 12.9.
Table 12.9 Values for METHOD= Option

string	Description
USER	The user defines which rows belong to which blocks (sub-   problems). In PROC OPTMODEL, use the .block con-   straint suffix. In PROC OPTLP and PROC OPTMILP, use   the BLOCKS= data set instead.
NETWORK	The algorithm attempts to find an embedded network sim-   ilar to what is described in "The Network Simplex Algo-   rithm" on page 181. The weakly connected components   of this network are used as the blocks.
AUTOThe algorithm attempts to find a block structure in the con-   straint matrix. For the current release, METHOD=AUTO   finds block-diagonal structure only (not block-angular   structures); unless your problem separates into completely   independent problems with no linking constraints, this   method finds only one block and hence is equivalent to   calling the MILP solver directly.	

The default is USER if blocks are defined and NETWORK otherwise.

## RELOBJGAP=number

specifies the relative objective gap as a stopping criterion. The relative objective gap is based on the master objective (MasterObjective) and the best dual bound (BestBound); it is equal to

$$
\mid \text { MasterObjective - BestBound | / (1E-10 + | BestBound |) }
$$

When this value becomes smaller than the specified gap size number, the decomposition algorithm stops adding columns. The value of number can be any nonnegative number. For LP, the default value is 0 ; for MILP, the default value is $1 \mathrm{e}-4$.

## DECOMP_MASTER Statement

DECOMP_MASTER < decomp-master-options > ;
MASTER < decomp-master-options > ;
The DECOMP_MASTER statement controls the master problem.
Table 12.10 summarizes the options available in the DECOMP_MASTER statement. These options control the master LP solver in the decomposition algorithm during the solution of an LP or a MILP. (As indicated, you can specify the PRINTLEVEL= option only in the OPTLP procedure.) For descriptions of these options, see the section "LP Solver Options" on page 175 and the section "PROC OPTLP Statement" on page 354.
The following default values differ from the LP solver defaults: ALGORITHM=PS, PRESOLVER=NONE, and BASIS=WARMSTART. These different defaults are motivated by the fact that primal feasibility of the master problem is preserved when columns are added, so a warm start from the previous optimal basis tends to be more efficient than solving the master from scratch in each iteration.

Table 12.10 Options in the DECOMP_MASTER Statement

Description	decomp-master-option
Algorithm Option	
Specifies the master algorithm    Presolve Option ALGORITHM= $=$   Specifies, for the first master solve only, the type of presolve INITPRESOLVER=   Specifies the type of presolve PRESOLVER=   Control Options    Specifies the feasibility tolerance FEASTOL=   Specifies how frequently to print the solution progress LOGFREQ=   Specifies the level of detail of solution progress to print in the log LOGLEVEL=   Specifies the maximum number of iterations MAXITER=   Specifies the time limit for the optimization process MAXTIME=   Specifies the optimality tolerance OPTTOL=   Enables or disables printing summary (OPTLP procedure only) PRINTLEVEL=   Specifies whether time units are CPU time or real time TIMETYPE=   Specifies the type of initial basis BASIS=   Specifies the type of pricing strategy PRICETYPE=   Specifies the queue size for determining the entering variable QUEUESIZE=   Enables or disables scaling of the problem SCALE=   Interior Point Algorithm Options    Enables or disables interior crossover CROSSOVER=   Specifies the stopping criterion based on a duality gap STOP_DG=   Specifies the stopping criterion based on dual infeasibility STOP_DI=   Specifies the stopping criterion based on primal infeasibility STOP_PI=	

In addition to the options listed in Table 12.10, you can specify the following decomp-master-option in the DECOMP_MASTER statement.

## INITPRESOLVER=number | string

INITPRESOL=number | string
specifies, for the first master solve only, presolve conditions as shown in Table 12.11.
Table 12.11 Values for INITPRESOLVER= Option

number	string	Description
-1	AUTOMATIC	Applies the default level of presolve processing.
0	NONE	Disables presolver.
1	BASIC	Performs minimal presolve processing.
2	MODERATE	Applies a higher level of presolve processing.
3	AGGRESSIVE	Applies the highest level of presolve processing.

The default is AUTOMATIC.

## DECOMP_MASTER_IP Statement <br> DECOMP_MASTER_IP < decomp-master-ip-options > ; <br> MASTER_IP < decomp-master-ip-options > ;

For mixed integer linear programming problems, the DECOMP_MASTER_IP statement controls the (restricted) master problem, which is solved as a MILP with the current set of columns in an effort to obtain an integer-feasible solution.

Table 12.12 summarizes the options available in the DECOMP_MASTER_IP statement. These options control the MILP solver that is used to solve the integer version of the master problem. For descriptions of these options, see the section "MILP Solver Options" on page 241 and the section "PROC OPTMILP Statement" on page 410.

Table 12.12 Options in the DECOMP_MASTER_IP Statement

Description	decomp-master-ip-   option
Presolve Option   Specifies the type of presolve   Control Options	PRESOLVER=
Specifies the stopping criterion based on an absolute objective gap   Specifies the cutoff value for node removal	ABSOBJGAP=
Emphasizes feasibility or optimality	CUTOFF=
Specifies the maximum violation on variables and constraints	EMPHASIS=
Specifies the maximum allowed difference between an integer variable's	FEASTOL=
value and an integer	INTTOL=
Specifies how frequently to print the node log   Specifies the level of detail of solution progress to print in the log   Specifies the maximum number of nodes to be processed   Specifies the maximum number of solutions to be found   Specifies the time limit for the optimization process	LOGFREQ=

Table 12.12 (continued)

Description	decomp-master-ipoption
Specifies the tolerance used when deciding on the optimality of nodes in the branch-and-bound tree	OPTTOL=
Specifies whether to use the previous best primal solution as a warm start	PRIMALIN=
Specifies the probing level	PROBE=
Specifies the stopping criterion based on a relative objective gap	RELOBJGAP=
Specifies the scale of the problem matrix	SCALE=
Specifies the stopping criterion based on the target objective value	TARGET=
Specifies whether time units are CPU time or real time	TIMETYPE=
Heuristics Option	
Specifies the primal heuristics level	HEURISTICS $=$
Search Options	
Specifies the level of conflict search	CONFLICTSEARCH=
Specifies the node selection strategy	NODESEL=
Specifies the number of simplex iterations performed on each variable in strong branching strategy	STRONGITER=
Specifies the number of candidates for strong branching	STRONGLEN=
Specifies the rule for selecting branching variable	VARSEL=
Cut Options	
Specifies the cut level for all cuts	ALLCUTS=
Specifies the clique cut level	CUTCLIQUE=
Specifies the flow cover cut level	CUTFLOWCOVER=
Specifies the flow path cut level	CUTFLOWPATH=
Specifies the Gomory cut level	CUTGOMORY=
Specifies the generalized upper bound (GUB) cover cut level	CUTGUB=
Specifies the implied bounds cut level	CUTIMPLIED=
Specifies the knapsack cover cut level	CUTKNAPSACK=
Specifies the lift-and-project cut level	CUTLAP=
Specifies the mixed lifted 0-1 cut level	CUTMILIFTED=
Specifies the mixed integer rounding (MIR) cut level	CUTMIR=
Specifies the row multiplier factor for cuts	CUTSFACTOR=
Specifies the overall cut aggressiveness	CUTSTRATEGY=
Specifies the zero-half cut level	CUTZEROHALF=

In addition to the decomp-master-ip-options specified in Table 12.12, you can specify the following decomp-master-ip-option in the DECOMP_MASTER_IP statement.

## PRIMALIN=number | string

PIN=number | string
specifies whether the MILP solver is to use the previous best solution's variables values as a starting solution (warm start). If the MILP solver finds that the input solution is feasible, then the input solution provides an incumbent solution and a bound for the branch-and-bound algorithm. If the solution is not feasible, the MILP solver tries to repair it. When it is difficult to find a good integer-feasible solution for a problem, warm start can reduce solution time significantly. Table 12.13 describes the valid values of the PRIMALIN= option.

Table 12.13 Values for PRIMALIN= Option

number	string	Description
0	OFF	Ignores the previous solution.
1	ON	Starts from the previous solution.

The default is ON.

## DECOMP_SUBPROB Statement

DECOMP_SUBPROB < decomp-subprob-options> ;
SUBPROB < decomp-subprob-options>;
The DECOMP_SUBPROB statement controls the subproblem.
Table 12.14 summarizes the options available for the decomposition algorithm in the DECOMP_SUBPROB statement when the subproblem algorithm chosen is an LP algorithm. (As indicated, you can specify the PRINTLEVEL= option only in the OPTLP procedure.) For descriptions of these options, see the section "LP Solver Options" on page 175 and the section "PROC OPTLP Statement" on page 354.

The following default values differ from the LP solver defaults: ALGORITHM=PS, PRESOLVER=NONE, and BASIS=WARMSTART (when METHOD=USER is specified in the DECOMP statement), and ALGORITHM=NETWORK_PURE (when METHOD=NETWORK is specified in the DECOMP statement). For METHOD=USER, these defaults are motivated by the fact that primal feasibility of the subproblem is preserved when the objective is changed, so a warm start from the previous optimal basis tends to be more efficient than solving the subproblem from scratch in each iteration. For METHOD=NETWORK, the specialized pure network solver is usually the most efficient choice because each subproblem is a pure network.

Table 12.14 Options in the DECOMP_SUBPROB Statement Used with an LP Algorithm

Description	decomp-subprob-option
Algorithm Option	ALGORITHM=
Specifies the subproblem algorithm	
Presolve Option	
Specifies, for the first master solve only, the type of presolve INITPRESOLVER=   Specifies the type of presolve PRESOLVER=   Control Options    Specifies the feasibility tolerance FEASTOL=   Specifies how frequently to print the solution progress LOGFREQ=   Specifies the level of detail of solution progress to print in the log LOGLEVEL=   Specifies the maximum number of iterations MAXITER=   Specifies the time limit for the optimization process MAXTIME=   Specifies the optimality tolerance OPTTOL=   Enables or disables printing summary (OPTLP procedure only) PRINTLEVEL=   Specifies whether time units are CPU time or real time TIMETYPE=   Simplex Algorithm Options    Specifies the type of initial basis BASIS=	

Table 12.14 (continued)

Description	decomp-subprob-option
Specifies the type of pricing strategy	PRICETYPE=
Specifies the queue size for determining entering variable	QUEUESIZE=
Enables or disables scaling of the problem	SCALE=
Interior Point Algorithm Options	
Enables or disables interior crossover	CROSSOVER=
Specifies the stopping criterion based on duality gap	STOP_DG=
Specifies the stopping criterion based on dual infeasibility	STOP_DI=
Specifies the stopping criterion based on primal infeasibility	STOP_PI=

Table 12.15 summarizes the options available in the DECOMP_SUBPROB statement when the subproblem algorithm chosen is a MILP algorithm. When the subproblem consists of multiple blocks (a block-diagonal structure), these settings apply to all subproblems. For descriptions of these options, see the section "MILP Solver Options" on page 241 and the section "PROC OPTMILP Statement" on page 410.

Table 12.15 Options in the DECOMP_SUBPROB Statement Used with a MILP Algorithm

Description	Option
Algorithm Option	
Specifies the subproblem algorithm	ALGORITHM $=$
Presolve Option	
Specifies, for the first subproblem solve only, the type of presolve	INITPRESOLVER=
Specifies the type of presolve	PRESOLVER=
Control Options	
Specifies the stopping criterion based on absolute objective gap	ABSOBJGAP=
Specifies the cutoff value for node removal	CUTOFF=
Emphasizes feasibility or optimality	EMPHASIS=
Specifies the maximum violation on variables and constraints	FEASTOL=
Specifies the maximum allowed difference between an integer variable's value and an integer	INTTOL=
Specifies how frequently to print the node log	LOGFREQ=
Specifies the level of detail of solution progress to print in the log	LOGLEVEL=
Specifies the maximum number of nodes to be processed	MAXNODES=
Specifies the maximum number of solutions to be found	MAXSOLS=
Specifies the time limit for the optimization process	MAXTIME=
Specifies the tolerance used when deciding on the optimality of nodes in the branch-and-bound tree	OPTTOL=
Specifies whether to use the previous best primal solution as a warm start	PRIMALIN=
Specifies the probing level	PROBE=
Specifies the stopping criterion based on relative objective gap	RELOBJGAP=
Specifies the scale of the problem matrix	SCALE=
Specifies the stopping criterion based on target objective value	TARGET=
Specifies whether time units are CPU time or real time	TIMETYPE=
Heuristics Option	
Specifies the primal heuristics level	HEURISTICS=
Search Options	
Specifies the level of conflict search	CONFLICTSEARCH=

Table 12.15 (continued)

Description	Option
Specifies the node selection strategy	NODESEL=
Specifies the number of simplex iterations performed on each variable in	STRONGITER=
strong branching strategy	
Specifies the number of candidates for strong branching	STRONGLEN=
Specifies the rule for selecting branching variable	VARSEL=
Cut Options	
Specifies the cut level for all cuts	ALLCUTS=
Specifies the clique cut level	CUTCLIQUE=
Specifies the flow cover cut level	CUTFLOWCOVER=
Specifies the flow path cut level	CUTFLOWPATH=
Specifies the Gomory cut level	CUTGOMORY=
Specifies the generalized upper bound (GUB) cover cut level	CUTGUB=
Specifies the implied bounds cut level	CUTIMPLIED=
Specifies the knapsack cover cut level	CUTKNAPSACK=
Specifies the lift-and-project cut level	CUTLAP=
Specifies the mixed lifted $0-1$ cut level	CUTMILIFTED=
Specifies the mixed integer rounding (MIR) cut level	CUTMIR=
Specifies the row multiplier factor for cuts	CUTSFACTOR=
Specifies the overall cut aggressiveness	CUTSTRATEGY=
Specifies the zero-half cut level	CUTZEROHALF=

In addition to the decomp-subprob-options specified in Table 12.14 and Table 12.15, you can specify the following decomp-subprob-options in the DECOMP_SUBPROB statement.

## ALGORITHM=string

SOLVER=string
SOL=string
specifies one of the algorithms shown in Table 12.16 (the valid abbreviated value for each string is shown in parentheses).

Table 12.16 Values for ALGORITHM= Option

string	Description
PRIMAL (PS)	Uses the primal simplex algorithm.
DUAL (DS)	Uses the dual simplex algorithm.
NETWORK (NS)	Uses the network simplex algorithm.
NETWORK_PURE (NSPURE)	Uses the network simplex algorithm for pure networks.
INTERIORPOINT (IP)	Uses the interior point algorithm.
MILP	Uses the mixed integer linear solver.

The default is NETWORK_PURE if METHOD=NETWORK, MILP for mixed integer linear programming subproblems, or PS for linear programming subproblems.

## INITPRESOLVER=number | string

INITPRESOL=number | string
specifies, for the first subproblem solve only, presolve conditions as listed in Table 12.17.
Table 12.17 Values for INITPRESOLVER= Option

number	string	Description
-1	AUTOMATIC	Applies the default level of presolve processing
0	NONE	Disables presolver
1	BASIC	Performs minimal presolve processing
2	MODERATE	Applies a higher level of presolve processing
3	AGGRESSIVE	Applies the highest level of presolve processing

The default is AUTOMATIC.

## PRIMALIN=number | string

PIN=number | string
specifies (for MILP problems only) whether the MILP solver is to use the values of the previous best solution's variables as a starting solution (warm start). If the MILP solver finds that the input solution is feasible, then the input solution provides an incumbent solution and a bound for the branch-andbound algorithm. If the solution is not feasible, the MILP solver tries to repair it. When it is difficult to find a good integer-feasible solution for a problem, warm start can reduce solution time significantly. Table 12.18 describes the valid values of the PRIMALIN= option.

Table 12.18 Values for PRIMALIN= Option

number	string	Description
0	OFF	Ignores the previous solution.
1	ON	Starts from the previous solution.

The default is ON.

## Details: Decomposition Algorithm

## Data Input

This subsection describes the format for describing the partition of the constraint system that defines the subproblem blocks. In the OPTLP and OPTMILP procedures, partitioning is done by using a data set specified in the BLOCKS= data option in the DECOMP statement. In PROC OPTMODEL, partitioning is done by using the .block suffix on constraints.

The blocks must be disjoint with respect to variables. If two blocks contain a nonzero coefficient for the same variable, the decomposition algorithm produces an error that contains information about where the blocks overlap.

## The BLOCKS= Data Set in PROC OPTMILP and PROC OPTLP

The BLOCKS= data set has two required variables:
_ROW_
specifies the constraint (row) names of the problem. The values should be a subset of the row names in the DATA= data set for the current problem.

## BLOCK_

specifies the numeric block identifier for each constraint in the problem. A missing observation or missing value indicates a master (linking) constraint that does not appear in any block. Listing the linking constraints is optional. The block identifiers must start from 0 and be consecutive.

See the section "Solving a MILP with DECOMP and PROC OPTMILP" on page 497 for an example of using this BLOCKS = data set with PROC OPTMILP.

## The .block Constraint Suffix in PROC OPTMODEL

The .block constraint suffix specifies the numeric block identifier for each constraint in the problem. The block identifiers do not need to start from 0 , nor do they need to be consecutive. Master (linking) constraints can be identified by using a missing value. Listing the linking constraints is optional.

See the section "Solving a MILP with DECOMP and PROC OPTMODEL" on page 496 for an example of using the .block constraint suffix with PROC OPTMODEL.

## Decomposition Algorithm

The decomposition algorithm for LPs is based on the original Dantzig-Wolfe method (Dantzig and Wolfe 1960). Embedding this method in the context of a branch-and-bound algorithm for MILPs is described in Barnhart, Hane, and Vance (2000) and is often referred to as branch-and-price. The design of a framework that allows for building a generic branch-and-price solver that requires only the original (compact) formulation and the constraint partition was first proposed independently by Ralphs and Galati (2006) and Vanderbeck and Savelsbergh (2006). This method is also commonly referred to as column generation, although the algorithm implemented here is only one specific variant of this wider class of algorithms.

The algorithm setup starts by forming various components that are used iteratively during the solver process. These components include the master problem (controlled by options in the DECOMP_MASTER statement), one subproblem for each block (controlled by options in the DECOMP_SUBPROB statement) and, for MILPs, the integer version of the master problem (controlled by options in the DECOMP_MASTER_IP statement).

The master problem is a linear program that is defined over a potentially large number of variables that represent the weights of a convex combination. The points in the convex combination satisfy the constraints that are defined in the subproblem. The master constraints of the original problem are enforced in this reformulated space. In this sense, the decomposition algorithm takes the intersection of two polyhedra: one defined by original master constraints and one defined by the subproblem constraints. Since the set of variables needed to define the intersection of the polyhedra can be large, the algorithm works on a restricted subset and generates only those variables (columns) that have good potential with respect to feasibility and optimality. This generation is done by using the dual information that is obtained by solving the master problem to price out new variables. These new variables are generated by solving the subproblems over
the appropriate cost vector (the reduced cost in the original space). This generation is similar to the revised simplex method, except that the variable space is exponentially large and therefore is generated implicitly by solving an optimization problem. This idea of generating variables as needed is the reason why this method is often referred to as column generation.

Similar to the two-phase simplex algorithm, the algorithm first introduces slack variables and solves a phase I problem to find a feasible solution. After the algorithm finds a feasible solution, it switches to a phase II problem to search for an optimal solution. The process of solving the master to generate pricing information and then solving one or more subproblems to generate candidate variables is repeated until there are no longer any improving variables and the method has converged.

For MILPs, this process is then used as a bounding method in a branch-and-bound algorithm, as described in the section "Branch-and-Bound Algorithm" on page 422. The strength of the subproblem polyhedron is one of the key reasons why decomposition can often solve problems that the standard branch-and-cut algorithm cannot solve in a reasonable amount of time. Since the points used in the convex combination are solutions (extreme points) of the subproblem (typically a MILP itself), then the bounds obtained can often be much stronger than the bounds obtained from standard branch-and-bound methods that are based on the LP relaxation. The subproblem polyhedron intersected with the continuous master polyhedron can provide a very good approximation of the true convex hull of the original integer program.

For more information about the algorithm process flow and the framework design, see Galati (2009).

## Parallel Execution

At each iteration of the decomposition method, the subproblem is solved over the reduced cost that is derived from the dual information that solving the master problem provides. As discussed in the section "Overview: Decomposition Algorithm" on page 493, the subproblem often has a block-diagonal structure that enables the solver to process each block independently.

The decomposition algorithm can be run in either a symmetric multiprocessing (SMP) or a massively parallel processing (MPP) computing environment. In SMP mode, the computation is executed with multiple threads on a single computer. The number of threads being used can be controlled by specifying the NTHREADS = option in the PERFORMANCE statement. In MPP mode, the computation is executed in a distributed computing environment.

NOTE: MPP mode requires SAS ${ }^{\circledR}$ High-Performance Analytics software.
You can specify options for parallel execution in the PERFORMANCE statement. The PERFORMANCE statement for SMP mode is documented in the section "PERFORMANCE Statement" on page 17 of Chapter 3, "Shared Concepts and Topics." The PERFORMANCE statement for MPP mode is documented in Chapter 3, "Shared Concepts and Topics" (SAS High-Performance Analytics Server: User's Guide). The decomposition algorithm supports only the deterministic mode of the PARALLELMODE= option in the PERFORMANCE statement.

## Log for the Decomposition Algorithm

The following subsections describe what to expect in the SAS log when you run the decomposition algorithm.

## Setup Information in the SAS Log

In the setup phase of the algorithm, information about the method you choose and the structure of the model is written to the SAS log. One of the most important pieces of information displayed in the log is the number of disjoint blocks and the coverage of those blocks with respect to both variables and constraints in the original presolved model. As explained in the section "Overview: Decomposition Algorithm" on page 493, the decomposition algorithm usually performs better than standard approaches only if the subproblems cover a significant amount of the original problem. However, this is not always a straightforward indicator for MILPs, because the strength of the subproblem with respect to integrality is not always proportional to the size of the system.

After the structural information is written to the log, the algorithm begins and the iteration log is displayed.

## Iteration Log for LPs

When the decomposition algorithm solves LPs, the iteration log shows the progress of convergence in finding the appropriate set of columns in the reformulated space.

The following information is written to the iteration log:
Iter indicates the iteration number.
Best Bound indicates the best dual bound found so far.
Master Objective indicates the current amount of infeasibility in phase I and the primal objective value of the current solution in phase II.
Gap indicates the relative difference between the master objective and the best known dual bound. This indicates how close the algorithm is to convergence. If the best bound is 0 , or if the relative gap is greater than $1000 \%$, then the absolute gap is written.
CPU Time indicates the CPU time elapsed (in seconds).
Real Time indicates the real time elapsed (in seconds).
Entries are made in the log at a frequency that is specified in the LOGFREQ= option. If LOGFREQ=0, then the iteration $\log$ is disabled. If the LOGFREQ= value is positive, then an entry is made in the log at the first iteration, at the last iteration, and at intervals that are specified by the LOGFREQ= value. An entry is also made each time an improved bound is found.

The behavior of objective values in the iteration log depends on both the current phase and on which solver you choose. In phase I, the master formulation has an artificial objective value that decreases to 0 when a feasible solution is found. In phase II, the decomposition algorithm maintains a primal feasible solution, so a minimization problem has decreasing objective values in the iteration log.

When you specify LOGLEVEL=MODERATE or LOGLEVEL=AGGRESSIVE in the DECOMP statement, information about the subproblem solves is written before each iteration line.

## Iteration Log for MILPs

When the decomposition algorithm solves MILPs, the iteration log shows the progress of convergence in finding the appropriate set of columns in the reformulated space, in addition to the global convergence of the branch-and-bound algorithm for finding an optimal integer solution.

You can control the amount of information at each node by using the LOGLEVEL= option in the DECOMP statement. By default, the continuous iteration $\log$ for the root node is written at the interval specified in the LOGFREQ= option in the DECOMP statement. Then the branch-and-bound node log is written at the interval specified in the LOGFREQ= main solver option.

When the algorithm solves MILPs, the continuous iteration log is similar to the iteration log described in the section "Iteration Log for LPs" on page 515 except that information about integer-feasible solutions is also displayed. The following information is printed in the continuous iteration $\log$ when the algorithm solves MILPs:

Iter	indicates the iteration number.
Best Bound	indicates the best dual bound found so far.   indicates the current amount of infeasibility in phase I and the primal objective value   of the current solution in phase II.   Master Objective
Best Integer	indicates the objective of the best integer-feasible solution found so far.   indicates the relative difference between the master objective and the best known dual   bound. This indicates how close the algorithm for this particular node is to conver-   gence. If the best bound is 0, or if the relative gap is greater than 1000\%, then the   absolute gap is displayed.   LP Gap
IPdicates the relative difference between the best integer and the best known dual	
bound. This indicates how close the branch-and-bound algorithm is to convergence. If	
the best bound is 0, or if the relative gap is greater than 1000\%, then the absolute gap	
is displayed.	
indicates the CPU time elapsed (in seconds).	

After the root node is complete, the algorithm then moves into the branch-and-bound phase. By default, it displays the branch-and-bound node log and suppresses the continuous iteration log. The following information is printed in the branch-and-bound node log when the algorithm solves MILPs:

Node indicates the sequence number of the current node in the search tree.
Active indicates the current number of active nodes in the branch-and-bound tree.
Sols indicates the number of feasible solutions found so far.
Best Integer indicates the objective of the best integer-feasible solution found so far.
Best Bound indicates the best dual bound found so far.
Gap
indicates the relative difference between the best integer and the best known dual bound. This indicates how close the branch-and-bound algorithm is to convergence. If the best bound is 0 , or if the relative gap is greater than $1000 \%$, then the absolute gap is displayed.
CPU Time indicates the CPU time elapsed (in seconds).
Real Time indicates the real time elapsed (in seconds).

If the LOGLEVEL= option in the DECOMP statement is set to BASIC, MODERATE or AGGRESSIVE, then the continuous iteration log is displayed for each branch-and-bound node at the interval specified in the LOGFREQ= option in the DECOMP statement.

Additional information can be displayed to the log by specifying the LOGLEVEL= option in each of the algorithmic component statements (DECOMP_MASTER, DECOMP_MASTER_IP, and DECOMP_SUBPROB). By default, the individual component log levels are all disabled.

## Examples: Decomposition Algorithm

## Example 12.1: Multicommodity Flow Problem

This example demonstrates how to use the decomposition algorithm to find a minimum-cost multicommodity flow (MMCF) in a directed network. This type of problem was motivation for the development of the original Dantzig-Wolfe decomposition method (Dantzig and Wolfe 1960).

Let $G=(N, A)$ be a directed graph, and let $K$ be a set of commodities. For each link $(i, j) \in A$ and each commodity $k$, associate a cost per unit of flow, designated by $c_{i j}^{k}$. The demand (or supply) at each node $i \in N$ for commodity $k$ is designated as $b_{i}^{k}$, where $b_{i}^{k} \geq 0$ denotes a supply node and $b_{i}^{k}<0$ denotes a demand node. Define decision variables $x_{i j}^{k}$ that denote the amount of commodity $k$ sent from node $i$ and node $j$. The amount of total flow, across all commodities, that can be sent across each link is bounded above by $u_{i j}$.

The problem can be modeled as a linear programming problem as follows:
minimize
subject to

$$
\begin{array}{rl}
\sum_{k \in K} \sum_{(i, j) \in A} c_{i j}^{k} x_{i j}^{k} & \\
\sum_{k \in K} x_{i j}^{k} \leq u_{i j} & (i, j) \in A \\
\sum_{(i, j) \in A} x_{i j}^{k}-\sum_{(j, i) \in A} x_{j i}^{k}=b_{i}^{k} & i \in N, k \in K \\
x_{i j}^{k} \geq 0 & (i, j) \in A, k \in K
\end{array}
$$

In this formulation, constraints (capacity) limit the total flow across all commodities on each arc. The constraints (balance) ensure that the flow of commodities leaving each supply node and entering each demand node are balanced.

Consider the directed graph in Figure 12.3 which appears in Ahuja, Magnanti, and Orlin (1993).

Figure 12.3 Example Network with Two Commodities


The goal in this example is to minimize the total cost of sending two commodities across the network while satisfying all supplies and demands and respecting arc capacities. If there were no arc capacities linking the two commodities, you could solve a separate minimum-cost network flow problem for each commodity one at a time.

The following data set arc_comm_data provides the cost $c_{i j}^{k}$ of sending a unit of commodity $k$ along arc $(i, j)$ :

```
data arc_comm_data;
 input k i j cost;
 datalines;
1 1 2 1
1 1 3 5
1 5 3 1
1 5 6 5
1 3 4 1
1425
1461
2 1 2 1
2 1 3 5
2 5 3 1
2 5 6 5
2 3 4 1
2425
2461
;
```

Next, the data set arc_data provides the capacity $u_{i j}$ for each arc:

```
data arc_data;
 input i j capacity;
 datalines;
1 5
1 3 30
5 3 30
```

```
5 6 30
3 4 10
4 2 3 0
4 30
;
```

Lastly, the data set supply_data provides the nonzero supply (or demand) $b_{i}^{k}$ for each node and each commodity:

```
data supply_data;
 input k i supply;
 datalines;
1 1 10
1 2 -10
2 5 20
2 6 -20
;
```

The following PROC OPTMODEL statements find the minimum-cost multicommodity flow:

```
proc optmodel;
 set <num,num, num> ARC_COMM;
 num cost {ARC_COMM};
 read data arc_comm_data into ARC_COMM=[i j k] cost;
 set ARCS = setof {<i,j,k> in ARC_COMM} <i,j>;
 set COMMODITIES = setof {<i,j,k> in ARC_COMM} k;
 set NODES = union {<i,j> in ARCS} {i,j};
 num capacity {ARCS};
 read data arc_data into [i j] capacity;
 num supply {NODES, COMMODITIES} init 0;
 read data supply_data into [i k] supply;
 var Flow {<i,j,k> in ARC_COMM} >= 0;
 min TotalCost =
 sum {<i,j,k> in ARC_COMM} cost[i,j,k] * Flow[i,j,k];
 con BalanceCon {i in NODES, k in COMMODITIES}:
 sum {<(i),j,(k)> in ARC_COMM} Flow[i,j,k]
 - sum {<j,(i),(k)> in ARC_COMM} Flow[j,i,k] = supply[i,k];
 con CapacityCon {<i,j> in ARCS}:
 sum {<(i),(j),k> in ARC_COMM} Flow[i,j,k] <= capacity[i,j];
```

Because each (balance) constraint involves variables for only one commodity, a decomposition by commodity is a natural choice. In both the OPTLP and OPTMILP procedures, the block identifiers must be consecutive integers starting from 0 . In PROC OPTMODEL, the block identifiers only need to be numeric. The following FOR loop populates the .block constraint suffix with block identifier $k-1$ for commodity $k$ :

```
for{i in NODES, k in COMMODITIES}
 BalanceCon[i,k].block = k - 1;
```

The .block constraint suffix for the linking (capacity) constraints is left missing, so these constraints become part of the master problem.

The following SOLVE statement uses the DECOMP= option to invoke the decomposition algorithm:

```
 solve with LP / presolver=none decomp=() subprob=(algorithm=nspure);
 print Flow;
quit;
```

Here, the PRESOLVER=NONE option is used, because otherwise the presolver solves this small instance without invoking any solver. Because each subproblem is a pure network flow problem, you can use the ALGORITHM=NSPURE option in the SUBPROB= option to request that a network simplex algorithm for pure networks be used instead of the default algorithm, which for linear programming subproblems is primal simplex.

It turns out for this example that if you specify METHOD=NETWORK (instead of the default METHOD=USER) in the DECOMP= option, the network extractor finds the same blocks, one per commodity. To invoke the METHOD=NETWORK option, simply change the SOLVE statement as follows:

```
solve with LP / presolver=none decomp=(method=network);
```

In this case, the default subproblem solver is NSPURE.
The optimal solution and solution summary are displayed in Figure 12.1.1.
Output 12.1.1 Solution Summary and Optimal Solution


The optimal solution is shown on the network in Figure 12.4.
Figure 12.4 Optimal Flow on Network with Two Commodities


The iteration log, which contains the problem statistics, the progress of the solution, and the optimal objective value, is shown in Figure 12.1.2.

## Output 12.1.2 Log

```
NOTE: There were 14 observations read from the data set WORK.ARC_COMM_DATA.
NOTE: There were 7 observations read from the data set WORK.ARC_DATA.
NOTE: There were 4 observations read from the data set WORK.SUPPLY_DATA.
NOTE: Problem generation will use 16 threads.
NOTE: The problem has 14 variables (0 free, 0 fixed).
NOTE: The problem has }19\mathrm{ linear constraints (7 LE, 12 EQ, O GE, 0 range).
NOTE: The problem has 42 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (0 LE, O EQ, O GE, O range).
NOTE: The LP presolver value NONE is applied.
NOTE: The LP solver is called.
NOTE: The Decomposition algorithm is used.
NOTE: The DECOMP method value USER is applied.
NOTE: The decomposition subproblems consist of 2 disjoint blocks.
NOTE: The decomposition subproblems cover 14 (100.00%) variables and 12 (63.16%)
 constraints.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Decomposition algorithm is using up to 16 threads.
 Iter Best Master Gap RPU Real
 Bound Objective Time Time
NOTE: Starting phase 1.
 1 0.0000
 3 0.0000
 15.0000 1.50e+01
 0.0 0.0
 0.0000 0.00e+00 0.0 0.0
NOTE: Starting phase 2.
 4 150.0000 150.0000 0.00% 0.0
NOTE: The Decomposition algorithm used 2 threads.
NOTE: The Decomposition algorithm time is 0.00 seconds.
NOTE: Optimal.
NOTE: Objective = 150.
```


## Example 12.2: Generalized Assignment Problem

The generalized assignment problem (GAP) is that of finding a maximum profit assignment from $n$ tasks to $m$ machines such that each task is assigned to precisely one machine subject to capacity restrictions on the machines. With each possible assignment, associate a binary variable $x_{i j}$, which, if set to 1 , indicates that machine $i$ is assigned to task $j$. For ease of notation, define two index sets $M=\{1, \ldots, m\}$ and $N=\{1, \ldots, n\}$. A GAP can be formulated as a MILP as follows:

maximize	$\sum_{i \in M} \sum_{j \in N} p_{i j} x_{i j}$		
subject to	$\sum_{i \in M} x_{i j}=1$	$j \in N$	(assignment)
$\sum_{j \in N} w_{i j} x_{i j} \leq b_{i}$	$i \in M$	(knapsack)	
$x_{i j}$	$\in\{0,1\}$	$i \in M, j \in N$	

In this formulation, constraints (assignment) ensure that each task is assigned to exactly one machine. Inequalities (knapsack) ensure that for each machine, the capacity restrictions are met.

Consider the following example taken from Koch et al. (2011) with $n=24$ tasks to be assigned to $m=8$ machines. The data set profit_data provides the profit for assigning a particular task to a particular machine:

```
%let NumTasks = 24;
%let NumMachines = 8;
data profit_data;
 input p1-p&NumTasks;
 datalines;
25 23 20 16 19 22 20 16 15 22 15 21 20 23 20 22 19 25 25 24 21 17 23 17
16 19 22 22 19 23 17 24 15 24 18 19 20 24 25 25 19 24 18 21 16 25 15 20
20}118 23 23 23 17 19 16 24 24 17 23 19 22 23 25 23 18 199 24 20 17 23 23
16 16 15 23 15 15 25 22 17 20 19 16 17 17 20 17 17 18 16 18 15 25 22 17
17 23 21 20 24 22 25 17 22 20 16 22 21 23 24 15 22 25 18 18 19 19 17 22 23
24}212123 17 21 19 19 17 18 24 15 15 17 18 18 15 24 19 21 23 24 17 20 16 21,
```



```
19 24 18 17 21 18 24 25 18 23 21 15 24 23 18 18 23 23 16 20 20 19 25 21
;
```

The data set weight_data provides the amount of resources used by a particular task when assigned to a particular machine:

```
data weight_data;
 input w1-w&NumTasks;
 datalines;
 8
```



```
22 22 21 22 13 16 21 5 5 25 13 12 9 9 24 6 6 22 24 11 21 11 14 12 10 20 6
13
25}1
```



```
24 10
 6
;
```

Finally, the data set capacity_data provides the resource capacity for each machine:

```
data capacity_data;
 input b @@;
 datalines;
36 35 38 34 32 34 31 34
;
```

The following PROC OPTMODEL statements read in the data and define the necessary sets and parameters:

```
proc optmodel;
 /* declare index sets */
 set TASKS = 1..&NumTasks;
 set MACHINES = 1..&NumMachines;
 /* declare parameters */
 num profit {MACHINES, TASKS};
 num weight {MACHINES, TASKS};
 num capacity {MACHINES};
 /* read data sets to populate data */
 read data profit_data into [i=_n_] {j in TASKS} <profit[i,j]=col('p'||j)>;
 read data weight_data into [i=_n_] {j in TASKS} <weight[i,j]=col('w'||j)>;
 read data capacity_data into [_n_] capacity=b;
```

The following statements declare the optimization model:

```
 /* declare decision variables */
 var Assign {MACHINES, TASKS} binary;
 /* declare objective */
 max TotalProfit =
 sum {i in MACHINES, j in TASKS} profit[i,j] * Assign[i,j];
 /* declare constraints */
 con AssignmentCon {j in TASKS}:
 sum {i in MACHINES} Assign[i,j] = 1;
 con KnapsackCon {i in MACHINES}:
 sum {j in TASKS} weight[i,j] * Assign[i,j] <= capacity[i];
```

The following statements use two different decompositions to solve the problem. The first decomposition defines each assignment constraint as a block and uses the pure network simplex solver for the subproblem. The second decomposition defines each knapsack constraint as a block and uses the MILP solver for the subproblem.

```
/* each assignment constraint defines a block */
for{j in TASKS}
 AssignmentCon[j].block = j;
```

```
 solve with milp / logfreq=1000
 decomp
 =()
 decomp_subprob=(algorithm=nspure);
 /* each knapsack constraint defines a block */
for{j in TASKS}
 AssignmentCon[j].block = .;
for{i in MACHINES}
 KnapsackCon[i].block = i;
 solve with milp / decomp=();
quit;
```

The solution summaries are displayed in Figure 12.2.1.
Output 12.2.1 Solution Summaries

The OP Solu	EL Procedure   on Summary
Solver	MILP
Algorithm	Decomposition
Objective Function	TotalProfit
Solution Status	Optimal within Relative Gap
Objective Value	563
Iterations	9652
Best Bound	563.05601358
Nodes	9079
Relative Gap	0.0000994814
Absolute Gap	0.0560135845
Primal Infeasibility	0
Bound Infeasibility	0
Integer Infeasibility	0
Solution Summary	
Solver	MILP
Algorithm	Decomposition
Objective Function	TotalProfit
Solution Status	Optimal within Relative Gap
Objective Value	562.99999995
Iterations	23
Best Bound	563.0010001
Nodes	1
Relative Gap	$1.7763306 \mathrm{E}-6$
Absolute Gap	0.0010000759
Primal Infeasibility	2E-8
Bound Infeasibility	0
Integer Infeasibility	2E-8

The iteration $\log$ for both decompositions is shown in Figure 12.2.2. This example is interesting because it shows the tradeoff between the strength of the relaxation and the difficulty of its resolution. In the first decomposition, the subproblems are totally unimodular and can be solved trivially. Consequently, each iteration of the decomposition algorithm is very fast. However, the bound obtained is as weak as the bound found in direct methods (the LP bound). The weaker bound leads to the need to enumerate more nodes overall. Alternatively, in the second decomposition, the subproblem is the knapsack problem, which is solved using MILP. In this case, the bound is much tighter and the problem solves in very few nodes. The tradeoff, of course, is that each iteration takes longer because solving the knapsack problem is not trivial. Another interesting aspect of this problem is that the subproblem coverage in the second decomposition is much smaller than that of the first decomposition. However, when dealing with MILP, it is not always the size of the coverage that determines the overall effectiveness of a particular choice of decomposition.

## Output 12.2.2 Log

NOTE: There were 8 observations read from the data set WORK.PROFIT_DATA.
NOTE: There were 8 observations read from the data set WORK. WEIGHT_DATA.
NOTE: There were 8 observations read from the data set WORK.CAPACITY_DATA.
NOTE: Problem generation will use 16 threads.
NOTE: The problem has 192 variables ( 0 free, 0 fixed).
NOTE: The problem has 192 binary and 0 integer variables.
NOTE: The problem has 32 linear constraints ( $8 \mathrm{LE}, 24 \mathrm{EQ}, 0 \mathrm{GE}, 0$ range).
NOTE: The problem has 384 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints ( $0 \mathrm{LE}, \mathrm{O} \mathrm{EQ}, \mathrm{O} \mathrm{GE}, 0$ range).
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 0 constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 192 variables, 32 constraints, and 384 constraint coefficients.
NOTE: The MILP solver is called.
NOTE: The Decomposition algorithm is used.
NOTE: The DECOMP method value USER is applied.
NOTE: The subproblem solver chosen is an LP solver but at least one block has integer variables.
NOTE: The decomposition subproblems consist of 24 disjoint blocks.
NOTE: The decomposition subproblems cover 192 ( $100.00 \%$ ) variables and 24 (75.00\%) constraints.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Decomposition algorithm is using up to 16 threads.

Iter	Best	Master	Best	LP	IP	CPU Real	
	Bound	Objective	Integer	Gap	Gap	Time	Time

NOTE: Starting phase 1.

1	0.0000	8.9248		8.92e+00	.	0	0
4	0.0000	0.0000		$0.00 \mathrm{e}+00$	-	0	0
arting phase 2.							
5	589.9388	561.1588	-	4.88\%	-	0	0
6	568.8833	568.5610	-	$0.06 \%$		0	0
7	568.6464	568.6464	.	$0.00 \%$	.	0	0
.	568.6464	568.6464	562.0000	0.00\%	1.17\%	0	0

NOTE: Starting branch and bound.

Node	Active	Sols	Best   Integer	Best   Bound	Gap	$\begin{aligned} & \text { CPU } \\ & \text { Time } \end{aligned}$	Real   Time
0	1	1	562.0000	568.6464	1.17\%	0	0
1000	838	1	562.0000	565.1733	0.56\%	8	7
2000	1500	1	562.0000	564.5574	0.45\%	16	14
3000	1930	1	562.0000	564.1714	0.38\%	24	22
4000	2170	1	562.0000	563.9106	$0.34 \%$	33	30
5000	2174	1	562.0000	563.6909	0.30\%	41	38
6000	1970	1	562.0000	563.5094	0.27\%	51	45
7000	1586	1	562.0000	563.3436	$0.24 \%$	60	53
8000	992	1	562.0000	563.2000	0.21\%	69	61
8447	635	2	563.0000	563.1429	0.03\%	73	65
9000	82	2	563.0000	563.0657	0.01\%	79	69
9078	4	2	563.0000	563.0560	0.01\%	79	70

NOTE: The Decomposition algorithm used 16 threads.
NOTE: The Decomposition algorithm time is 70.34 seconds.
NOTE: Optimal within relative gap.
NOTE: Objective $=563$.

Output 12.2.2 continued


NOTE: The continuous bound was improved to 563.001 due to objective granularity.

| 23 | 563.0010 | 563.0010 | 563.0000 | $0.00 \%$ | $0.00 \%$ | 1 | 1 |
| :--- | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Node | Active | Sols | Best | Best | Gap | CPU | Real |
|  |  |  | Integer | Bound |  | Time | Time |

NOTE: The Decomposition algorithm used 8 threads.
NOTE: The Decomposition algorithm time is 1.37 seconds.
NOTE: Optimal within relative gap.
NOTE: Objective $=563$.

## Example 12.3: Block-Diagonal Structure Using METHOD=AUTO

This example demonstrates how you can use the decomposition algorithm with the METHOD=AUTO option in the DECOMP statement.

Consider a mixed integer linear program defined by the MPS data set mpsdata. In this case, the structure of the model is unknown and only the MPS data set is provided to you.

The following PROC OPTMILP statements attempt to solve the problem by using standard methods and a 15 -second time limit.

```
proc optmilp
 data = mpsdata
 logfreq = 2000
 maxtime = 15;
run;
```

The solution summary is shown in Figure 12.3.1.
Output 12.3.1 Solution Summary


The iteration log, which contains the problem statistics and the progress of the solution, is shown in Figure 12.3.2.

## Output 12.3.2 Log

```
NOTE: The problem MPSDATA has 388 variables (36 binary, 0 integer, 1 free, 0 fixed).
NOTE: The problem has }1297\mathrm{ constraints (630 LE, 37 EQ, 630 GE, 0 range).
NOTE: The problem has 4204 constraint coefficients.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 37 variables and 37 constraints.
NOTE: The MILP presolver removed 424 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 351 variables, 1260 constraints, and 3780 constraint
 coefficients.
NOTE: The MILP solver is called.
NOTE: The problem has a decomposable structure with 4 blocks. The largest block
 covers 25.08% of the rows in the problem. The DECOMP option with METHOD=AUTO is
 recommended for solving problems with this structure.
 Node Active Sols BestInteger BestBound Gap Time
 0 1 1 231.0000000 0
 0 1 1 1 231.0000000 91.4479396 152.60% 0
 0 1 1 2 198.0000000 91.8607875 115.54% 0
 lllllll
 0 1 1 2 198.0000000 102.0754817 115.04% 1
NOTE: The MILP solver added 5 cuts with 32 cut coefficients at the root.
\begin{tabular}{lllllll}
787 & 36 & 3 & 150.0000000 & 95.1863912 & \(57.59 \%\) & 9
\end{tabular}
\(824 \quad 69 \quad 4 \quad 148.0000000 \quad 95.1863912 \quad 55.48 \% \quad 9\)
\(825 \quad 68 \quad 5 \quad 144.0000000 \quad 95.1863912 \quad 51.28 \% \quad 9\)
 926 159 6 142.0000000 95.1863912 49.18% 11
 1220 417 7 141.0000000 95.1863912 48.13% 13
 1320 502 7 7 141.0000000 95.1863912 48.13% 14
NOTE: CPU time limit reached.
NOTE: Objective of the best integer solution found \(=141\).
```

A note in the log suggests using the decomposition algorithm because of the structure of the problem. The following PROC OPTMILP statements use the METHOD=AUTO option:

```
proc optmilp
 data = mpsdata;
 decomp
 loglevel = 2
 method = auto;
 subprob
 loglevel = 2;
run;
```

The solution summary is shown in Figure 12.3.3.

Output 12.3.3 Solution Summary

The OPTMILP Procedure	
Solver	MILP
Algorithm	Decomposition
Objective Function	R0001298
Solution Status	Optimal
Objective Value	120
Relative Gap	0
Absolute Gap	0
Primal Infeasibility	0
Bound Infeasibility	0
Integer Infeasibility	0
Best Bound	120
Nodes	1
Iterations	1
Presolve Time	0.02
Solution Time	2.37

The iteration log, which contains the problem statistics and the progress of the solution, is shown in Figure 12.3.4.

## Output 12.3.4 Log

```
NOTE: The problem MPSDATA has 388 variables (36 binary, 0 integer, 1 free, 0 fixed).
NOTE: The problem has }1297\mathrm{ constraints (630 LE, 37 EQ, 630 GE, 0 range).
NOTE: The problem has 4204 constraint coefficients.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 37 variables and 37 constraints.
NOTE: The MILP presolver removed 424 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 351 variables, 1260 constraints, and 3780 constraint
 coefficients.
NOTE: The MILP solver is called.
NOTE: The Decomposition algorithm is used.
NOTE: The DECOMP method value AUTO is applied.
NOTE: The decomposition subproblems consist of 4 disjoint blocks.
NOTE: The decomposition subproblems cover 351 (100.00%) variables and 1260 (100.00%)
constraints.
NOTE: Block O has 88 (25.07%) variables and 316 (25.08%) constraints.
NOTE: Block 1 has 88 (25.07%) variables and 316 (25.08%) constraints.
NOTE: Block 2 has 88 (25.07%) variables and 316 (25.08%) constraints.
NOTE: Block 3 has 87 (24.79%) variables and 312 (24.76%) constraints.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Decomposition algorithm is using up to 16 threads.
NOTE:
NOTE: Starting to process node 0.
NOTE:
NOTE:
NOTE: The subproblem solver for 4 blocks at iteration O is starting
NOTE
NOTE: The subproblem solver for block O at iteration O is starting on thread 0.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed O variables and O constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has }88\mathrm{ variables, }316\mathrm{ constraints, and 948 constraint
coefficients.
NOTE: The MILP solver is called.
\begin{tabular}{rrrrrrr}
Node & Active & Sols & BestInteger & BestBound & Gap & Time \\
0 & 1 & 1 & -16 & -56 & \(71.43 \%\) & 0 \\
0 & 1 & 1 & -16 & -34.103774 & \(53.08 \%\) & 0 \\
0 & 1 & 1 & -16 & -34.103774 & \(53.08 \%\) & 0 \\
41 & 34 & 2 & -22 & -32.857143 & \(33.04 \%\) & 0 \\
79 & 50 & 3 & -24 & -31.525641 & \(23.87 \%\) & 0 \\
100 & 58 & 3 & -24 & -30.875 & \(22.27 \%\) & 0 \\
120 & 38 & 4 & -27 & -30.209524 & \(10.62 \%\) & 0 \\
200 & 29 & 4 & -27 & -28 & \(3.57 \%\) & 1 \\
248 & 0 & 4 & -27 & \(0.00 \%\) & 1
\end{tabular}
NOTE: Optimal.
NOTE: Objective \(=-27\).
NOTE: The subproblem solver for block 0 used 1.14 (cpu: 4.49) seconds.
```

Output 12.3.4 continued

NOTE:						
NOTE: The subproblem solver for block 1 at iteration 0 is starting on thread 1. NOTE: The MILP presolver value AUTOMATIC is applied.						
NOTE: The MILP presolver removed 0 variables and 0 constraints.   NOTE: The MILP presolver removed 0 constraint coefficients.						
NOTE: The MILP presolver modified 0 constraint coefficients.						
NOTE: The presolved problem has 88 variables, 316 constraints, and 948 constraint coefficients.						
NOTE: The MILP solver is called.						
Node	Active	Sols	BestInteger	BestBound	Gap	Time
0	1	1	0	-59	100.00\%	0
0	1	1	0	-35.367197	100.00\%	0
0	1	2	-12	-35.367197	$66.07 \%$	0
0	1	3	-22	-35.367197	37.80\%	0
0	1	3	-22	-35.367197	37.80\%	0
29	24	4	-25	-34.620157	27.79\%	0
100	69	5	-25	-33.390406	25.13\%	0
184	52	7	-30	-32.297517	7.11\%	1
200	50	7	-30	-32.066667	6. $44 \%$	1
281	0	7	-30	-30	0.00\%	1

NOTE: Optimal.
NOTE: Objective $=-30$.
NOTE: The subproblem solver for block 1 used 1.42 (cpu: 5.32) seconds.
NOTE: $\qquad$
NOTE:
-------------------------------------------------------------------------------------------1
NOTE: The subproblem solver for block 2 at iteration 0 is starting on thread 2.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 0 constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 88 variables, 316 constraints, and 948 constraint coefficients.
NOTE: The MILP solver is called.

Node	Active	Sols	BestInteger	BestBound	Gap	Time
0	1	1	-9	-59	$84.75 \%$	0
0	1	1	-9	-36.206731	$75.14 \%$	0
0	1	2	-14	-35.890696	$60.99 \%$	0
0	1	2	-14	-35.717848	$60.80 \%$	0
0	1	2	-14	-35.695755	$60.78 \%$	0
0	1	2	-14	-35.695406	$60.78 \%$	0
0	1	2	-14	-35.678332	$60.76 \%$	0
0	1	2	-14	-35.666465	$60.75 \%$	0
0	1	2	-14	-35.666275	$60.75 \%$	0
0	1	2	-14	-35.666275	$60.75 \%$	0

NOTE: The MILP solver added 5 cuts with 34 cut coefficients at the root.

29	25	3	-21	-35.108701	$40.19 \%$	0
100	72	4	-21	-33.944444	$38.13 \%$	0
103	72	5	-22	-33.85206	$35.01 \%$	0
149	73	6	-28	-33.384915	$16.13 \%$	1
200	87	7	-28	-32.578125	$14.05 \%$	1
300	95	7	-28	-30.982929	$9.63 \%$	1
400	67	7	-28	-29.484848	$5.04 \%$	1
475	0	7	-28	-28	$0.00 \%$	1

NOTE: Optimal.
NOTE: Objective $=-28$.
NOTE: The subproblem solver for block 2 used 1.79 (cpu: 6.05) seconds.

Output 12.3.4 continued

NOTE: The subproblem solver for block 3 at iteration 0 is starting on thread 3.   NOTE: The MILP presolver value AUTOMATIC is applied.						
NOTE: The MILP presolver removed 0 variables and 0 constraints.						
NOTE: The MILP presolver removed 0 constraint coefficients.						
NOTE: The MILP presolver modified 0 constraint coefficients.						
NOTE: The presolved problem has 87 variables, 312 constraints, and 936 constraint coefficients.						
NOTE: The MILP solver is called.						
Node Active	Sols	BestInteger	BestBound	Gap	Time	
$0 \quad 1$	1	-16	-57	71.93\%	0	
$0 \quad 1$	1	-16	-33.874359	52.77\%	0	
$0 \quad 1$	1	-16	-33.813333	52.68\%	0	
$0 \quad 1$	1	-16	-33.788667	52.65\%	0	
$0 \quad 1$	1	-16	-33.757793	52.60\%	0	
0	1	-16	-33.708333	52.53\%	0	
0	1	-16	-33.695839	52.52\%	0	
$0 \quad 1$	2	-19	-33.695839	43.61\%	0	
0	2	-19	-33.695839	43.61\%	0	
NOTE: The MILP solver added 4 cuts with 21 cut coefficients at the root.						
$6 \quad 6$	3	-20	-33.56867	40.42\%	0	
$100 \quad 74$	3	-20	-32.15016	37.79\%	0	
11177	4	-21	-32	34.37\%	0	
13284	6	-23	-31.8	27.67\%	1	
200111	7	-23	-30.72192	25.13\%	1	
249101	8	-25	-29.915126	16.43\%	1	
300109	8	-25	-29.25	14.53\%	1	
30786	9	-26	-29.206349	10.98\%	1	
$400 \quad 60$	9	-26	-27.422535	5.19\%	1	
$464 \quad 0$	9	-26	-26	0.00\%	1	
NOTE: Optimal.						
NOTE: Objective $=-26$.						
NOTE: The subproblem solver for block 3 used 1.92 (cpu: 6.18) seconds.						
NOTE:						
NOTE: The initial column pool aftering generating initial variables contains 4 columns.						
Iter	$\begin{aligned} & \text { Best } \\ & \text { ound } \end{aligned}$	Master   objective	Best teger	P	$\begin{array}{rr}\text { PPU } & \\ \text { Time }\end{array}$	
NOTE: Starting phase 2.						
NOTE: The number of active nodes is 0 .						
NOTE: The objective value of the best integer feasible solution is 120.0000 and the best bound is 0.0000 .						
NOTE: The Decomposition algorithm used 4 threads.						
NOTE: The Decomposition algorithm time is 1.92 seconds.						
NOTE: Optimal.						
NOTE: Objective $=120$.						

In this case, the solver found that, after presolve, the constraint matrix decomposed into block-diagonal form. That is, all of the constraints are covered by subproblem blocks, leaving the set of master constraints empty. With no coupling constraints, the problem decomposes into four completely independent problems. If you specify LOGLEVEL=2 in the DECOMP statement, the log displays the size of each block. The blocks in this case are nicely balanced, which allows parallel execution to be efficient, and the solver finds the optimal solution almost immediately.

## Example 12.4: Resource Allocation Problem

This example describes a model for selecting tasks to be run on a shared resource (Gamrath 2010). Consider a set $I$ of tasks and a resource capacity $C$. Each item $i \in I$ has a profit $p_{i}$, a resource utilization level $w_{i}$, a starting period $s_{i}$, and an ending period $e_{i}$. The time horizon considered is from the earliest starting time to the latest ending time of all tasks. With each task, associate a binary variable $x_{i}$, which, if set to 1 , indicates that the task is running from its start time until just before its end time. A task consumes capacity if it is running. The goal is to select which tasks to run in order to maximize profit while not exceeding the shared resource capacity. Let $S=\left\{s_{i} \mid i \in I\right\}$ define the set of start times for all tasks, and let $L_{s}=\left\{i \in I \mid s_{i} \leq s<e_{i}\right\}$ define the set of tasks that are running at each start time $s \in S$. The problem can be modeled as a mixed integer linear programming problem as follows:

maximize	$\sum_{i \in I} p_{i} x_{i}$	
subject to	$\sum_{i \in L_{s}} w_{i} x_{i} \leq C$	$s \in S$
$x_{i}$	$\in\{0,1\}$	$i \in I$

In this formulation, constraints (capacity) ensure that the running tasks do not exceed the resource capacity. To illustrate, consider the following five-task example with data: $p_{i}=(6,8,5,9,8), w_{i}=(8,5,3,4,3)$, $s_{i}=(1,3,5,7,8), e_{i}=(5,8,9,17,10)$, and $C=10$. The formulation leads to a constraint matrix that has a staircase structure that is determined by tasks coming on and offline:

```
\(\operatorname{maximize} 6 x_{1}+8 x_{2}+5 x_{3}+9 x_{4}+8 x_{5}\)
subject to \(8 x_{1} \quad \leq 10\)
 \(8 x_{1}+5 x_{2} \leq 10\)
 \(5 x_{2}+3 x_{3} \leq 10\)
 \(5 x_{2}+3 x_{3}+4 x_{4} \leq 10\)
 \(+3 x_{3}+4 x_{4}+3 x_{5} \leq 10\)
 \(x_{i} \in\{0,1\} \quad i \in I\)
```


## Lagrangian Decomposition

This formulation clearly has no decomposable structure. However, you can use a common modeling technique known as Lagrangian decomposition to bring the model into block-angular form. Lagrangian decomposition works by first partitioning the constraints into blocks. Then, each original variable is split into multiple copies of itself, one copy for each block in which the variable has a nonzero coefficient in the constraint matrix. Constraints are added to enforce the equality of each copy of the original variable. Then, the original constraints can be written in block-angular form by using the duplicate variables.

To apply Lagrangian decomposition to the resource allocation problem, define a set $B$ of blocks and let $S_{b}$ define the set of start times for a given block $b$, such that $S=\cup_{b \in B} S_{b}$. Given this partition of start times, let $B_{i}$ define the set of blocks in which task $i \in I$ is scheduled to be running. Now, for each task $i \in I$, define duplicate variables $x_{i}^{b}$ for each $b \in B_{i}$. Let $m_{i}$ define the minimum block index for each class of variable that represents task $i$. The problem can now be modeled in block-angular form as follows:
maximize $\quad \sum_{i \in I} p_{i} x_{i}^{m_{i}}$
subject to

$$
\begin{aligned}
x_{i}^{b} & =x_{i}^{m_{i}} & & i \in I, b \in B_{i} \backslash\left\{m_{i}\right\} \\
\sum_{i \in L_{s}} w_{i} x_{i}^{b} & \leq C & & \text { (linking) } \\
x_{i}^{b} & \in\{0,1\} & & i \in I, b \in S_{b}
\end{aligned}
$$

In this formulation, constraints (linking) ensure that the duplicate variables are equal to the original variables. Now, the five-task example has been transformed from a staircase structure to a block-angular structure:

$$
\begin{aligned}
& x_{i}^{b} \in\{0,1\} \quad i \in I, b \in B_{i}
\end{aligned}
$$

To show how to apply Lagrangian decomposition in PROC OPTMODEL, consider the following data set TaskData from Caprara, Furini, and Malaguti (2010) which consists of $|I|=2697$ tasks:

```
data TaskData;
 input profit weight start end;
 datalines;
100 74 1 12
 98 32 1 9
 73 27 1 22
 98 51 1
 234026842689
 36 85 2685 2687
 6544 2686 2689
 18 36 2687 2689
 88 57 2688 2689
;
```


## Using the MILP Solver Directly in PROC OPTMODEL

The following PROC OPTMODEL statements read in the data and solve the original staircase formulation by calling the MILP solver directly:

```
%macro SetupData(task_data=, capacity=);
 set TASKS;
 num capacity=&capacity;
 num profit{TASKS}, weight{TASKS}, start{TASKS}, end{TASKS};
 read data &task_data into TASKS=[_n_] profit weight start end;
 /* the set of start times */
 set STARTS = setof{i in TASKS} start[i];
 /* the set of tasks i that are active at a given start time s */
 set TASKS_START{s in STARTS}
 = {i in TASKS: start[i] <= s < end[i]};
%mend SetupData;
%macro ResourceAllocation_Direct(task_data=, capacity=);
 proc optmodel;
 %SetupData(task_data=&task_data,capacity=&capacity);
 /* select task i to come online from period [start to end) */
 var x{TASKS} binary;
 /* maximize the total profit of running tasks */
 max TotalProfit = sum{i in TASKS} profit[i] * x[i];
 /* enforce that the shared resource capacity is not exceeded */
 con CapacityCon{s in STARTS}:
 sum{i in TASKS_START[s]} weight[i] * x[i] <= capacity;
 solve;
 quit;
%mend ResourceAllocation_Direct;
%ResourceAllocation_Direct(task_data=TaskData, capacity=100);
```

The problem summary and solution summary are displayed in Figure 12.4.1.

Output 12.4.1 Problem Summary and Solution Summary


The iteration log, which contains the problem statistics, the progress of the solution, and the optimal objective value, is shown in Figure 12.4.2.

## Output 12.4.2 Log

NOTE: There were 2697 observations read from the data set WORK.TASKDATA.
NOTE: Problem generation will use 16 threads.
NOTE: The problem has 2697 variables ( 0 free, 0 fixed).
NOTE: The problem has 2697 binary and 0 integer variables.
NOTE: The problem has 2688 linear constraints ( $2688 \mathrm{LE}, 0 \mathrm{EQ}, \mathrm{O} \mathrm{GE}, \mathrm{O}$ range).
NOTE: The problem has 26880 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints ( $0 \mathrm{LE}, 0 \mathrm{EQ}, \mathrm{O} \mathrm{GE}, 0$ range).
NOTE: The OPTMODEL presolver is disabled for linear problems.
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 0 variables and 0 constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 2697 variables, 2688 constraints, and 26880 constraint coefficients.
NOTE: The MILP solver is called.

Node	Active	Sols	BestInteger	BestBound	Gap	Time
0	1	3	54182.0000000	145710	$62.82 \%$	4
0	1	3	54182.0000000	73230.2096818	$26.01 \%$	4
0	1	6	60619.0000000	69933.6883758	$13.32 \%$	7
0	1	7	61305.0000021	68114.1525673	$10.00 \%$	10
0	1	7	61305.0000021	66617.2266845	$7.97 \%$	13
0	1	7	61305.0000021	65606.3087011	$6.56 \%$	17
0	1	7	61305.0000021	64688.1924916	$5.23 \%$	22
0	1	7	61305.0000021	64178.3437213	$4.48 \%$	23
0	1	7	61305.0000021	63788.4375982	$3.89 \%$	23
0	1	7	61305.0000021	63555.2698638	$3.54 \%$	24
0	1	7	61305.0000021	63375.5809702	$3.27 \%$	24
0	1	7	61305.0000021	63246.3722859	$3.07 \%$	25
0	1	7	61305.0000021	63135.2853095	$2.90 \%$	25
0	1	7	61305.0000021	63060.2975525	$2.78 \%$	25
0	1	7	61305.0000021	62998.5109991	$2.69 \%$	25
0	1	7	61305.0000021	62939.7852238	$2.60 \%$	26
0	1	7	61305.0000021	62916.8478192	$2.56 \%$	26
0	1	7	61305.0000021	62878.7708461	$2.50 \%$	26
0	1	7	61305.0000021	62846.9075970	$2.45 \%$	26
0	1	7	61305.0000021	62828.4374813	$2.42 \%$	27
0	1	7	61305.0000021	62818.0388114	$2.41 \%$	27
0	1	7	61305.0000021	62809.0758271	$2.39 \%$	27
0	1	7	61305.0000021	62804.5910528	$2.39 \%$	27
0	1	8	61488.0000000	62804.5910528	$2.10 \%$	27
0	1	8	61488.0000000	62804.5910528	$2.10 \%$	28

NOTE: The MILP solver added 1260 cuts with 8646 cut coefficients at the root.

100	97	8	61488.0000000	62756.0802643	$2.02 \%$	85
105	101	9	61566.0000000	62742.8502536	$1.88 \%$	89
126	121	12	62476.0000000	62737.6251206	$0.42 \%$	98
157	146	13	62486.0000137	62731.3965146	$0.39 \%$	101
174	144	14	62501.0000132	62718.2341516	$0.35 \%$	103
195	146	15	62504.0000131	62695.8606054	$0.31 \%$	107
200	148	15	62504.0000131	62694.7921811	$0.30 \%$	108
223	141	16	62507.0000129	62683.1519312	$0.28 \%$	112
230	119	17	62517.0000128	62679.5328475	$0.26 \%$	113
268	60	18	62524.0000130	62571.9031406	$0.08 \%$	115
300	28	18	62524.0000130	62546.4671512	$0.04 \%$	115
324	6	18	62524.0000130	62529.1196051	$0.01 \%$	115

NOTE: Optimal within relative gap.
NOTE: Objective $=62524$.

## Using the Decomposition Algorithm in PROC OPTMODEL

To transform this data into block-angular form, first sort the task data to help reduce the number of duplicate variables needed in the reformulation as follows:

```
proc sort data=TaskData;
 by start end;
run;
```

Then, create the partition of constraints into blocks of size block_size as follows:

```
%macro ResourceAllocation_Decomp(task_data=, capacity=, block_size=);
 proc optmodel;
 %SetupData (task_data=&task_data,capacity=&capacity);
 /* partition into blocks of size blocks_size */
 num block_size = &block_size;
 num num_blocks = ceil(card(TASKS) / block_size);
 set BLOCKS = 1..num_blocks;
 /* the set of starts s for which task i is active */
 set STARTS_TASK{i in TASKS} = {s in STARTS: start[i] <= s < end[i]};
 /* partition the start times into blocks of size block_size */
 set STARTS_BLOCK{BLOCKS} init {};
 num block_id init 1;
 num block_count init 0;
 for{s in STARTS} do;
 STARTS_BLOCK[block_id] = STARTS_BLOCK[block_id] union {s};
 block_count = block_count + 1;
 if(mod(block_count, block_size) = 0) then
 block_id = block_id + 1;
 end;
```

Then, the following PROC OPTMODEL statements define the block-angular formulation and solve the problem by using the decomposition algorithm, the PRESOLVER=BASIC option, and block_size=40. Because this reformulation is equivalent to the original staircase formulation, disabling some of the advanced presolver techniques ensures that the model maintains block-angularity.

```
/* blocks in which task i is online */
set BLOCKS_TASK{i in TASKS} =
 {b in BLOCKS: card(STARTS_BLOCK[b] inter STARTS_TASK[i]) > 0};
/* minimum block id in which task i is online */
num min_block{i in TASKS} = min{b in BLOCKS_TASK[i]} b;
/* select task i to come online from period [start to end)
 in each block */
var x{i in TASKS, b in BLOCKS_TASK[i]} binary;
/* maximize the total profit of running tasks */
max TotalProfit = sum{i in TASKS} profit[i] * x[i,min_block[i]];
/* enforce that task selection is consistent across blocks */
con LinkDupVarsCon{i in TASKS, b in BLOCKS_TASK[i] diff {min_block[i]}}:
 x[i,b] = x[i,min_block[i]];
```

```
 /* enforce that the shared resource capacity is not exceeded */
 con CapacityCon{b in BLOCKS, s in STARTS_BLOCK[b]}:
 sum{i in TASKS_START[s]} weight[i] * x[i,b] <= capacity;
 /* define blocks for decomposition algorithm */
 for{b in BLOCKS, s in STARTS_BLOCK[b]} CapacityCon[b,s].block = b;
 solve with milp / presolver=basic decomp=();
 quit;
%mend ResourceAllocation_Decomp;
%ResourceAllocation_Decomp(task_data=TaskData, capacity=100, block_size=40);
```

The problem summary and solution summary are displayed in Figure 12.4.3. Compared to the original formulation, the number of variables and constraints is increased by the number of duplicate variables.

Output 12.4.3 Problem Summary and Solution Summary

The OPTMODEL Procedure	
Objective Sense Objective Function Objective Type	Maximization TotalProfit Linear
Number of Variables	3300
Bounded Above	0
Bounded Below	0
Bounded Below and Above	3300
Free	0
Fixed	0
Binary	3300
Integer	0
Number of Constraints	3291
Linear LE (<=)	2688
Linear EQ (=)	603
Linear GE (>=)	0
Linear Range	0
Constraint Coefficients	28086

Output 12.4.3 continued

Solution Summary	
Solver	MILP
Algorithm	Decomposition
Objective Function	TotalProfit
Solution Status	Optimal within Relative Gap
Objective Value	62524.000009
Iterations	53
Best Bound	62526.501053
Nodes	5
Relative Gap	0.0000399998
Absolute Gap	2.5010445286
Primal Infeasibility	8.9999997E-7
Bound Infeasibility	$5.7842335 \mathrm{E}-8$
Integer Infeasibility	$9.4285709 \mathrm{E}-8$

The iteration log, which contains the problem statistics, the progress of the solution, and the optimal objective value, is shown in Figure 12.4.4.

## Output 12.4.4 Log

```
NOTE: There were 2697 observations read from the data set WORK.TASKDATA.
NOTE: Problem generation will use 16 threads.
NOTE: The problem has 3300 variables (0 free, O fixed).
NOTE: The problem has 3300 binary and O integer variables.
NOTE: The problem has 3291 linear constraints (2688 LE, 603 EQ, O GE, O range).
NOTE: The problem has 28086 linear constraint coefficients.
NOTE: The problem has O nonlinear constraints (O LE, O EQ, O GE, O range).
NOTE: The MILP presolver value BASIC is applied.
NOTE: The MILP presolver removed O variables and O constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified O constraint coefficients.
NOTE: The presolved problem has 3300 variables, 3291 constraints, and 28086
 constraint coefficients.
NOTE: The MILP solver is called.
NOTE: The Decomposition algorithm is used.
NOTE: The DECOMP method value USER is applied.
NOTE: The decomposition subproblems consist of 68 disjoint blocks.
NOTE: The decomposition subproblems cover 3300 (100.00%) variables and 2688 (81.68%)
 constraints.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Decomposition algorithm is using up to 16 threads.
\begin{tabular}{lrrrrrrr}
Iter & Best & Master & Best & LP & IP & CPU & Real \\
& Bound & Objective & Integer & Gap & Gap & Time & Time
\end{tabular}
NOTE: Starting phase 1.
 1 0.0000
NOTE: Starting phase 2.
 145710.0000
 145710.0000
 122196.5339
 2134.0000
 98.54% 98.54%
 122196.5339 57100.0074 2134.0000
 2134.0000 51.50% 98.25% 29 6
 122196.5339 60495.5101 46176.0000
 50.49% 62.21% 30 7
 67392.1689 60960.2971 46176.0000 9.54% 31.48% 40
 64578.1085 61696.2311 46176.0000
 4.46% 28.50% 47 10
 63360.1939 62093.7197 46176.0000
 2.00% 27.12% 60 12
 63291.2501 62150.9167 46176.0000
 1.80% 27.04% 65 13
 63107.2180 62226.8333 46176.0000 1.40% 26.83% 69
 63040.2686 62244.5093 46176.0000 1.26% 26.75% 74 14
 63040.2686 62324.2667 57872.0000
 62852.9000 62324.2667 57872.0000
 0.84% 7.92% 82 17
 62845.6667 62382.0000 57872.0000
 62638.6667 62425.0000 57872.0000 0.34% 年.61% 92 18
 62608.6667 62440.6667 57872.0000 0.27%
 62583.3334 62528.3333 57872.0000
 62535.0001 62528.3333
 29 62532.3334 62528.3333 57872.0000
NOTE: The Decomposition algorithm stopped on the continuous RELOBJGAP option.
 62532.3334 62528.3333 62445.0000 0.01% 0.14% 121 23
NOTE: Starting branch and bound.
```

Output 12.4.4 continued


## Using a Hybrid Method in PROC OPTMODEL

The decomposition algorithm solves the problem in fewer nodes due to the stronger bound obtained by the reformulation. However, it takes longer than the direct method to find a good feasible solution. The fact that the direct method seems to quickly find good feasible solutions but has weaker bounds motivates the use of a hybrid algorithm. In the macro \%ResourceAllocation_Decomp, replace the statement,

```
solve with milp / presolver=basic decomp=();
```

with the following statements:

```
solve with milp / relobjgap=0.1;
solve with milp / presolver=basic primalin decomp=();
```

These statements use the direct method with RELOBJGAP $=0.1$ to find a good starting solution and then use that result to seed the initial columns of the decomposition algorithm.

The solution summaries are displayed in Figure 12.4.5.

## Output 12.4.5 Solution Summaries



Output 12.4.5 continued

Solution Summary	
Solver	MILP
Algorithm	Decomposition
Objective Function	TotalProfit
Solution Status	Optimal within Relative Gap
Objective Value	62524.000007
Iterations	29
Best Bound	62529.333388
Nodes	3
Relative Gap	0.0000852941
Absolute Gap	5.3333812158
Primal Infeasibility	8.9990996E-7
Bound Infeasibility	7.3809532E-8
Integer Infeasibility	$7.3809532 \mathrm{E}-8$

The iteration log, which contains the problem statistics, the progress of the solution, and the optimal objective value, is shown in Figure 12.4.6.

Output 12.4.6 Log

```
NOTE: There were 2697 observations read from the data set WORK.TASKDATA.
NOTE: Problem generation will use 16 threads.
NOTE: The problem has 3300 variables (0 free, 0 fixed).
NOTE: The problem has 3300 binary and 0 integer variables.
NOTE: The problem has 3291 linear constraints (2688 LE, 603 EQ, 0 GE, 0 range).
NOTE: The problem has 28086 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints (O LE, O EQ, O GE, 0 range).
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed }603\mathrm{ variables and }603\mathrm{ constraints.
NOTE: The MILP presolver removed }1206\mathrm{ constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 2697 variables, 2688 constraints, and 26880
 constraint coefficients.
NOTE: The MILP solver is called.
\begin{tabular}{rrrrrrr}
Node & Active & Sols & BestInteger & BestBound & Gap & Time \\
0 & 1 & 3 & 54609.0000000 & 145710 & \(62.52 \%\) & 4 \\
0 & 1 & 3 & 54609.0000000 & 73230.2096818 & \(25.43 \%\) & 4 \\
0 & 1 & 6 & 60619.0000000 & 69933.6883758 & \(13.32 \%\) & 7 \\
0 & 1 & 7 & 61365.0000021 & 68114.1525673 & \(9.91 \%\) & 10
\end{tabular}
NOTE: The MILP solver added 390 cuts with 2060 cut coefficients at the root.
NOTE: Optimal within relative gap.
NOTE: Objective = 61365.
```


## Output 12.4.6 continued

```
NOTE: The MILP presolver value BASIC is applied.
NOTE: The MILP presolver removed O variables and O constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 3300 variables, 3291 constraints, and 28086
 constraint coefficients.
NOTE: The MILP solver is called.
NOTE: The Decomposition algorithm is used.
NOTE: The DECOMP method value USER is applied.
NOTE: The decomposition subproblems consist of }68\mathrm{ disjoint blocks.
NOTE: The decomposition subproblems cover 3300 (100.00%) variables and 2688 (81.68%)
 constraints.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Decomposition algorithm is using up to 16 threads.
\begin{tabular}{lrrrrrrr}
Iter & Best & Master & Best & LP & IP & CPU & Real \\
& Bound & Objective & Integer & Gap & Gap & Time & Time
\end{tabular}
NOTE: Starting phase 1.
 1 0.0000
 0.0000
 .0.00e+00 . 3 0
NOTE: Starting phase 2.
\begin{tabular}{rrrrrrr}
145710.0000 & 61418.0000 & 61418.0000 & \(57.85 \%\) & \(57.85 \%\) & 4 & 0 \\
145710.0000 & 61455.0000 & 61455.0000 & \(57.82 \%\) & \(57.82 \%\) & 11 & 2 \\
145710.0000 & 61493.0000 & 61493.0000 & \(57.80 \%\) & \(57.80 \%\) & 14 & 3 \\
127317.6055 & 61493.0000 & 61493.0000 & \(51.70 \%\) & \(51.70 \%\) & 19 & 4 \\
127317.6055 & 61572.0000 & 61572.0000 & \(51.64 \%\) & \(51.64 \%\) & 22 & 4 \\
87503.5259 & 62019.0000 & 61572.0000 & \(29.12 \%\) & \(29.63 \%\) & 29 & 6 \\
65254.6113 & 62118.0000 & 61572.0000 & \(4.81 \%\) & \(5.64 \%\) & 33 & 6 \\
65254.6113 & 62286.0000 & 62200.0000 & \(4.55 \%\) & \(4.68 \%\) & 33 & 6 \\
63697.5000 & 62389.6667 & 62200.0000 & \(2.05 \%\) & \(2.35 \%\) & 41 & 8 \\
63404.5001 & 62516.3333 & 62200.0000 & \(1.40 \%\) & \(1.90 \%\) & 45 & 8 \\
63346.5001 & 62522.8333 & 62200.0000 & \(1.30 \%\) & \(1.81 \%\) & 49 & 9 \\
62946.3334 & 62523.8333 & 62200.0000 & \(0.67 \%\) & \(1.19 \%\) & 54 & 10 \\
62851.8334 & 62525.3333 & 62200.0000 & \(0.52 \%\) & \(1.04 \%\) & 58 & 10 \\
62688.8334 & 62525.3333 & 62200.0000 & \(0.26 \%\) & \(0.78 \%\) & 62 & 11 \\
62598.8334 & 62525.3333 & 62200.0000 & \(0.12 \%\) & \(0.64 \%\) & 67 & 11 \\
62541.3334 & 62528.3333 & 62200.0000 & \(0.02 \%\) & \(0.55 \%\) & 71 & 12 \\
62541.3334 & 62528.3333 & 62200.0000 & \(0.02 \%\) & \(0.55 \%\) & 75 & 13 \\
62541.3334 & 62528.3333 & 62484.0000 & \(0.02 \%\) & \(0.09 \%\) & 75 & 13 \\
62529.3334 & 62528.3333 & 62484.0000 & \(0.00 \%\) & \(0.07 \%\) & 79 & 13
\end{tabular}
NOTE: The Decomposition algorithm stopped on the continuous RELOBJGAP option.
NOTE: Starting branch and bound.
\begin{tabular}{rrrrrrrr}
Node & Active & Sols & \begin{tabular}{r}
Best \\
Integer
\end{tabular} & \begin{tabular}{rl}
Best \\
Bound
\end{tabular} & Gap & CPU & Real \\
0 & 1 & 7 & 62484.0000 & 62529.3334 & \(0.07 \%\) & 80 & 14 \\
2 & 2 & 8 & 62524.0000 & 62529.3334 & \(0.01 \%\) & 104 & 18
\end{tabular}
NOTE: The Decomposition algorithm used 16 threads.
NOTE: The Decomposition algorithm time is 18.58 seconds.
NOTE: Optimal within relative gap.
NOTE: Objective \(=62524\).
```

By using this hybrid method, you can take advantage of the direct method, which finds a good feasible solution quickly, and the strong bounds provided by the decomposition algorithm. The overall time to solve the model by using the hybrid method is faster than either of the other two.

## The Tradeoff between Coverage and Subproblem Difficulty

The reformulation of this resource allocation problem provides a nice example of the potential tradeoffs in modeling a problem for use with the decomposition algorithm. As seen in Example 12.2, the strength of the bound is an important factor in the overall performance of the algorithm, but it is not always correlated to the magnitude of the subproblem coverage. In this example, the block size determines the number of blocks. Moreover, it determines the number of linking variables that are needed in the reformulation. At one extreme, if the block size is set to be $|S|$, then the number of blocks is 1 , and the number of copies of original variables is 0 . Using one block would be equivalent to the original staircase formulation and would not yield a model conducive to decomposition. As the number of blocks is increased, the number of linking variables increases (the size of the master problem), the strength of the decomposition bound decreases, and the difficulty of solving the subproblems decreases. In addition, as the number of blocks and their relative difficulty change, the efficent utilization of your machine's parallel architecture can be affected.

The previous section used a block size of 40 . The following statement calls the decomposition algorithm and uses a block size of 130 :

```
%ResourceAllocation_Decomp(task_data=TaskData, capacity=100, block_size=130);
```

The solution summary is displayed in Figure 12.4.7.
Output 12.4.7 Solution Summary


The iteration log, which contains the problem statistics, the progress of the solution, and the optimal objective value, is shown in Figure 12.4.8.

## Output 12.4.8 Log

```
NOTE: There were 2697 observations read from the data set WORK.TASKDATA.
NOTE: Problem generation will use 16 threads.
NOTE: The problem has 2877 variables (0 free, 0 fixed).
NOTE: The problem has 2877 binary and O integer variables.
NOTE: The problem has 2868 linear constraints (2688 LE, 180 EQ, O GE, 0 range).
NOTE: The problem has 27240 linear constraint coefficients.
NOTE: The problem has O nonlinear constraints (O LE, O EQ, O GE, O range).
NOTE: The MILP presolver value BASIC is applied.
NOTE: The MILP presolver removed O variables and O constraints.
NOTE: The MILP presolver removed 0 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 2877 variables, 2868 constraints, and 27240
 constraint coefficients.
NOTE: The MILP solver is called.
NOTE: The Decomposition algorithm is used.
NOTE: The DECOMP method value USER is applied.
NOTE: The decomposition subproblems consist of 21 disjoint blocks.
NOTE: The decomposition subproblems cover 2877 (100.00%) variables and 2688 (93.72%)
 constraints.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Decomposition algorithm is using up to 16 threads.
\begin{tabular}{lrrrrrrr}
Iter & Best & Master & Best & LP & IP & CPU & Real \\
& Bound & Objective & Integer & Gap & Gap & Time & Time
\end{tabular}
NOTE: Starting phase 1.
 1 0.0000
 0.0000 . 0.00e+00 . 7 1
NOTE: Starting phase 2.
\begin{tabular}{rrrrrrr}
145710.0000 & 0.0000 & 0.0000 & \(100.00 \%\) & \(100.00 \%\) & 7 & 1 \\
126790.2482 & 0.0000 & 0.0000 & \(100.00 \%\) & \(100.00 \%\) & 14 & 3 \\
126790.2482 & 12735.0000 & 12735.0000 & \(89.96 \%\) & \(89.96 \%\) & 21 & 4 \\
102615.1164 & 57591.6667 & 12735.0000 & \(43.88 \%\) & \(87.59 \%\) & 46 & 9 \\
64261.1000 & 61854.1000 & 12735.0000 & \(3.75 \%\) & \(80.18 \%\) & 58 & 12 \\
63394.2500 & 62212.7500 & 12735.0000 & \(1.86 \%\) & \(79.91 \%\) & 63 & 13 \\
63394.2500 & 62382.5000 & 61668.0000 & \(1.60 \%\) & \(2.72 \%\) & 63 & 13 \\
62875.5000 & 62382.5000 & 61668.0000 & \(0.78 \%\) & \(1.92 \%\) & 69 & 14 \\
62622.0000 & 62444.0000 & 61668.0000 & \(0.28 \%\) & \(1.52 \%\) & 81 & 16 \\
62604.0000 & 62464.5000 & 61668.0000 & \(0.22 \%\) & \(1.50 \%\) & 86 & 17 \\
62579.5000 & 62496.5000 & 61668.0000 & \(0.13 \%\) & \(1.46 \%\) & 92 & 18 \\
62547.0000 & 62508.5000 & 61668.0000 & \(0.06 \%\) & \(1.41 \%\) & 98 & 19 \\
62524.0000 & 62523.0000 & 62523.0000 & \(0.00 \%\) & \(0.00 \%\) & 104 & 20
\end{tabular}
NOTE: The continuous bound was improved to 62523 due to objective granularity.
\begin{tabular}{rrrrrrrrrr}
17 & 62523.0010 & 62523.0010 & 62523.0000 & \(0.00 \%\) & \(0.00 \%\) & 104 & 20 \\
Node Active & Sols & Best & Best & Gap & CPU & Real \\
& & & Integer & Bound & & Time & Time \\
0 & 0 & 4 & 62523.0000 & 62523.0010 & \(0.00 \%\) & 104 & 20
\end{tabular}
NOTE: The Decomposition algorithm used 16 threads.
NOTE: The Decomposition algorithm time is 20.73 seconds.
NOTE: Optimal within relative gap.
NOTE: Objective \(=62523\).
```

This version of the model provides a stronger bound and yields better overall performance.

## Example 12.5: ATM Cash Management

This example describes an optimization model used in the management of cash flow for a bank's automated teller machine (ATM) network. The goal of the model is to determine a replenishment schedule for allocating cash inventory at bank branches to service a preassigned subset of ATMs. Given a history of withdrawals per day for each ATM, a prediction for the expected cash need is built using SAS forecasting tools. The modeling of this prediction depends on various seasonal factors, including the days of the week, the weeks of the month, holidays, typical salary disbursement days, location of the ATMs, and other demographic data. The prediction is a parametric mixture of models whose parameters depend on each ATM.

The optimization model performs a polynomial regression that minimizes the error (measured by the $L_{1}$ norm) between the predicted and actual withdrawals. The parameter settings in the regression determine the replenishment policy. The amount of cash allocated to each day is subject to a budget constraint. In addition, a constraint for each ATM limits the number of days the cash flow can be less than the predicted withdrawal. This situation is referred to as a cash-out. The goal is to determine a policy for cash distribution that balances the predicted inventory levels while satisfying the budget and cash-out constraints. By keeping too much cash on hand for ATM fulfillment, the bank incurs a loss of investment opportunity. Moreover, regulatory agencies in many nations enforce a minimum cash reserve ratio at branch banks; according to regulatory policy, the cash in ATMs or in transit does not contribute towards this threshold.

## Mixed Integer Nonlinear Programming Formulation

The most natural formulation for this model is in the form of a mixed integer nonlinear program (MINLP). Let $A$ denote the set of ATMs and $D$ denote the set of days used in the training data. The predictive model fit is defined by the following data for each ATM $a$ on each day $d: c_{a d}, c_{a d}^{x}, c_{a d}^{y}, c_{a d}^{z}, c_{a d}^{u}$. The model fit parameters define the variables $\left(x_{a}, y_{a}, u_{a}\right)$ for each ATM that, when applied to the predictive model, give the estimated cash flow need per day, per ATM. In addition, define a surrogate variable $f_{a d}$ for each ATM on each day that defines the cash inventory (replenished from the branch) minus withdrawals given by the fit. The variable $f_{a d}$ also represents the error in the regression model. Let $B_{d}$ define the budget per day, $K_{a}$ define the limit on cash-outs per ATM, and $w_{a d}$ define the historical withdrawals at a particular ATM on a particular day. Then the following MINLP models this problem:

$$
\begin{array}{rlrlrl}
\sum_{a \in A} \sum_{d \in D}\left|f_{a d}\right| & & & \\
\text { subject to } & & & \\
c_{a d}^{x} x_{a}+c_{a d}^{y} y_{a}+c_{a d}^{z} x_{a} y_{a}+c_{a d}^{u} u_{a}+c_{a d}-w_{a d} & =f_{a d} & & a \in A, d \in D & & \text { (cash) } \\
\sum_{a \in A}\left(f_{a d}+w_{a d}\right) & \leq B_{d} & d \in D & & & \text { (budget) } \\
\left|\left\{d \in D \mid f_{a d}<0\right\}\right| & \leq K_{a} & & a \in A & & \text { (count) } \\
x_{a}, y_{a} & \in[0,1] & & a \in A & & \\
u_{a} & \geq 0 & a \in A & & \\
& f_{a d} & \geq-w_{a d} & & a \in A, d \in D &
\end{array}
$$

Constraint (cash) defines the surrogate variable $f_{a d}$, which gives the estimated net cash flow. Inequalities (budget) and (count) ensure that the solution satisfies the budget and cash-out constraints, respectively.

To express this model in a more standard form, you can first use some standard model reformulations to linearize the absolute value and the cash-out constraint (count).

## Linearization of Absolute Value

A well-known reformulation for linearizing the absolute value of a variable is to introduce one variable for each side of the absolute value. The following systems are equivalent:

$$
\begin{array}{llll}
\text { minimize } & |y| \\
\text { subject to } & A y \leq b
\end{array} \quad \text { is equivalent to } \quad \begin{array}{ll}
\text { minimize } & y^{+}+y^{-} \\
\text {subject to } & A\left(y^{+}-y^{-}\right) \leq b \\
y^{+}, y^{-} & \geq 0
\end{array}
$$

Let $f_{a d}^{+}$and $f_{a d}^{-}$represent the positive and negative parts, respectively, of the net cash flow $f_{a d}$. Then, you can rewrite the model, removing the absolute value, as the following:

$$
\begin{array}{rlrl} 
& \sum_{a \in A} \sum_{d \in D}\left(f_{a d}^{+}+f_{a d}^{-}\right) & & \\
\text {minimize } & & & \\
& \text { subject to } & c_{a d}^{x} x_{a}+c_{a d}^{y} y_{a}+c_{a d}^{z} x_{a} y_{a}+c_{a d}^{u} u_{a}+c_{a d}-w_{a d} & =f_{a d}^{+}-f_{a d}^{-} \\
\sum_{a \in A}\left(f_{a d}^{+}-f_{a d}^{-}+w_{a d}\right) & \leq B_{d} & & d \in A, d \in D \\
\left|\left\{d \in D \mid\left(f_{a d}^{+}-f_{a d}^{-}\right)<0\right\}\right| & \leq K_{a} & & a \in A \\
x_{a}, y_{a} & \in[0,1] & & a \in A \\
u_{a} & \geq 0 & & a \in A \\
& f_{a d}^{+} \geq 0 & & a \in A, d \in D \\
& f_{a d}^{-} & \in\left[0, w_{a d}\right] & \\
& & a \in A, d \in D
\end{array}
$$

## Modeling the Cash-Out Constraints

To count the number of times a cash-out occurs, you need to introduce a binary variable to keep track of when this event occurs. Let $v_{a d}$ be an indicator variable that takes value 1 when the net cash flow is negative. You can model the implication $f_{a d}^{-}>0 \Rightarrow v_{a d}=1$, or its contrapositive $v_{a d}=0 \Rightarrow f_{a d}^{-} \leq 0$, by adding the constraint

$$
f_{a d}^{-} \leq w_{a d} v_{a d} \quad a \in A, d \in D
$$

Now, you can model the cash-out constraint by counting the number of days the net-cash flow is negative for each ATM, as follows:

$$
\sum_{d \in D} v_{a d} \leq K_{a} \quad a \in A
$$

The MINLP model can now be written as follows:

$$
\begin{array}{lrl}
\text { minimize } & \sum_{a \in A} \sum_{d \in D}\left(f_{a d}^{+}+f_{a d}^{-}\right) & \\
\text {subject to } & c_{a d}^{x} x_{a}+c_{a d}^{y} y_{a}+c_{a d}^{z} x_{a} y_{a}+c_{a d}^{u} u_{a}+c_{a d}-w_{a d} & =f_{a d}^{+}-f_{a d}^{-} \\
\sum_{a \in A}\left(f_{a d}^{+}-f_{a d}^{-}+w_{a d}\right) \leq B_{d} & & a \in A, d \in D \\
f_{a d}^{-} \leq w_{a d} v_{a d} & & a \in A, d \in D \\
\sum_{d \in D} v_{a d} \leq K_{a} & a \in A \\
x_{a}, y_{a} \in[0,1] & & a \in A \\
u_{a} \geq 0 & a \in A \\
& f_{a d}^{+} \geq 0 & a \in A, d \in D \\
f_{a d}^{-} \in\left[0, w_{a d}\right] & a \in A, d \in D \\
& v_{a d} \in\{0,1\} & a \in A, d \in D
\end{array}
$$

This MINLP is difficult to solve, in part because the prediction function is not convex. Another approach is to use mixed integer linear programming (MILP) to formulate an approximation of the problem, as described in the next section.

## Mixed Integer Linear Programming Approximation

Since the predictive model is a forecast, finding the optimal parameters that are based on nondeterministic data is not of primary importance. Rather, you want to provide as good a solution as possible in a reasonable amount of time. So, using MILP to approximate the MINLP is perfectly acceptable. In the original problem you have products of two continuous variables that are both bounded by 0 (lower bound) and 1 (upper bound). This arrangement enables you to create an approximate linear model using a few standard modeling reformulations.

## Discretization of Continuous Variables

The first step is to discretize one of the continuous variables $x_{a}$. The goal is to transform the product $x_{a} y_{a}$ of a continuous variable with another continuous variable instead to a continuous variable with a binary variable. By doing this, you can linearize the product form.
You must assume some level of approximation by defining a binary variable for each possible setting of the continuous variable to be chosen from some discrete set. For example, if you let $n=10$, then you allow $x$ to be chosen from the set $\{0.0,0.1,0.2,0.3, \ldots, 1.0\}$. Let $T=\{0,1,2, \ldots, n\}$ represent the possible steps and $c_{t}=t / n$. Then, you apply the following transformation to variable $x_{a}$ :

$$
\begin{aligned}
\sum_{t \in T} c_{t} x_{a t} & =x_{a} \\
\sum_{t \in T} x_{a t} & =1 \\
x_{a t} & \in\{0,1\} \quad t \in T
\end{aligned}
$$

The MINLP model can now be approximated as the following:
minimize

$$
\begin{array}{rl}
\sum_{a \in A} \sum_{d \in D}\left(f_{a d}^{+}+f_{a d}^{-}\right) & \\
c_{a d}^{x} \sum_{t \in T} c_{t} x_{a t}+c_{a d}^{y} y_{a}+ & \\
c_{a d}^{z} \sum_{t \in T} c_{t} x_{a t} y_{a}+c_{a d}^{u} u_{a}+c_{a d}-w_{a d} & =f_{a d}^{+}-f_{a d}^{-} \\
\sum_{t \in T} x_{a t} & =1 \\
\sum_{a \in A}\left(f_{a d}^{+}-f_{a d}^{-}+w_{a d}\right) & \leq B_{d} \\
f_{a d}^{-} \leq w_{a d} v_{a d} & \\
\sum_{d \in D} v_{a d} \leq K_{a} & a \in A, d \in D \\
y_{a} \in[0,1] & a \in A, d \in D \\
u_{a} \geq 0 & a \in A \\
f_{a d}^{+} \geq 0 & a \in A \\
f_{a d}^{-} \in\left[0, w_{a d}\right] & a \in A \\
v_{a d} \in\{0,1\} & a \in A, d \in D \\
x_{a t} \in\{0,1\} & a \in A, d \in D \\
& \\
& a \in A, d \in D \\
& a \in A, t \in T
\end{array}
$$

subject to

## Linearization of Products

You still need to linearize the product terms $x_{a t} y_{a}$ in the cash flow constraint. Since these terms are products of a bounded continuous variable and a binary variable, you can linearize them by introducing for each product another variable $z_{a t}$, which serves as a surrogate. In general, you know the following relationship between the original variables and their surrogates:

$$
\begin{array}{lllllll} 
& & & & x_{t} & \geq 0 & t \in T \\
z_{t} & = & t \in T \\
\sum_{t \in T} x_{t} & =1 & & \text { is equivalent to } & z_{t} & \leq x_{t} & t \in T \\
x_{t} & \in\{0,1\} & t \in T \\
y & \in[0,1] & & \sum_{t \in T} x_{t} & =1 & \\
& & \sum_{t \in T} z_{t} & =y & \\
x_{t} & \in\{0,1\} & t \in T \\
& y & \in[0,1]
\end{array}
$$

Using this relationship to replace each product form, you now can write the problem as an approximate MILP as follows:

$$
\begin{align*}
& \text { minimize } \\
& \text { subject to } \\
& \sum_{a \in A} \sum_{d \in D}\left(f_{a d}^{+}+f_{a d}^{-}\right) \\
& c_{a d}^{x} \sum_{t \in T} c_{t} x_{a t}+c_{a d}^{y} y_{a}+ \\
& c_{a d}^{z} \sum_{t \in T} c_{t} z_{a t}+c_{a d}^{u} u_{a}+c_{a d}-w_{a d}=f_{a d}^{+}-f_{a d}^{-} \\
& a \in A, d \in D \\
& \sum_{t \in T} x_{a t}=1 \\
& a \in A \\
& \sum_{a \in A}\left(f_{a d}^{+}-f_{a d}^{-}+w_{a d}\right) \leq B_{d} \quad d \in D  \tag{budget}\\
& f_{a d}^{-} \leq w_{a d} v_{a d} \quad a \in A, d \in D \\
& \sum_{d \in D} v_{a d} \leq K_{a} \quad a \in A \\
& z_{a t} \leq x_{a t} \quad a \in A, t \in T \\
& \sum_{t \in T} z_{a t}=y_{a} \quad a \in A \\
& z_{a t} \geq 0 \quad a \in A, t \in T \\
& y_{a} \in[0,1] \quad a \in A \\
& u_{a} \geq 0 \quad a \in A \\
& f_{a d}^{+} \geq 0 \quad a \in A, d \in D \\
& f_{a d}^{-} \in\left[0, w_{a d}\right] \quad a \in A, d \in D \\
& v_{a d} \in\{0,1\} \quad a \in A, d \in D \\
& x_{a t} \in\{0,1\} \quad a \in A, t \in T
\end{align*}
$$

## PROC OPTMODEL Code

Since it is difficult to solve the MINLP model directly, the approximate MILP formulation is attractive. Unfortunately, the size of the approximate MILP is much bigger than the associated MINLP. Direct methods for solving this MILP do not work well. However, the problem is nicely suited for the decomposition algorithm.

When you examine the structure of the MILP model, you see clearly that the constraints can be easily decomposed by ATM. In fact, the only set of constraints that involve decision variables across ATMs is the budget constraint (budget). That is, if you relax constraint (budget), you are left with independent blocks of constraints, one for each ATM.

To show how this is done in PROC OPTMODEL, consider the following data sets which describe an example with 20 ATMs over a period of 100 days. This particular example was submitted to MIPLIB 2010, which is a collection of difficult MILPs in the public domain (Koch et al. 2011).

The first data set, budget_data, provides the cash budget on each particular day:

```
data budget_data;
 input d $ budget;
 datalines;
DATEO 70079
DATE1 66418
DATE10 52656
DATE11 50439
DATE12 58688
DATE13 45002
DATE14 52369
...
;
```

The second data set, cashout_data, provides the limit on the number of cash-outs allowed at each ATM:

```
data cashout_data;
 input a $ cashOutLimit;
 datalines;
ATM0 31
ATM1 24
ATM2 41
ATM3 43
ATM4 29
ATM5 24
ATM6 52
ATM7 44
ATM8 35
ATM9 48
ATM10 31
ATM11 47
ATM12 26
ATM13 34
ATM14 29
ATM15 32
ATM16 33
ATM17 32
ATM18 43
ATM19 28
;
```

The final data set, polyfit_data, provides the polynomial fit coefficients for each ATM on each date. It also provides the historical cash withdrawals.

```
data polyfit_data;
 input a $ d $ cx cy cz cu c withdrawal;
 datalines;
\begin{tabular}{llrrrrrr}
ATMO & DATE0 & 2822 & 1984 & -1984 & 1045 & 1373 & 780 \\
ATMO & DATE1 & 1337 & 2530 & -2530 & 1510 & 174 & 2351 \\
ATMO & DATE2 & 2685 & -67 & 67 & 145 & 2820 & 2288 \\
ATMO & DATE3 & -595 & -3135 & 3135 & 581 & 3319 & 1357 \\
— & & & & & & & \\
ATM19 & DATE96 & -734 & 3392 & -3392 & 162 & 1648 & 914 \\
ATM19 & DATE97 & -1062 & 969 & -969 & 444 & 1746 & 2264
\end{tabular}
```

ATM19	DATE98	7676	2308	-2308	59	1388	972
ATM19	DATE99	3062	1308	-1308	1080	654	698
$;$							

The following PROC OPTMODEL statements read in the data and define the necessary sets and parameters:

```
proc optmodel;
 set<str> DATES;
 set<str> ATMS;
 /* cash budget per date */
 num budget{DATES};
 /* maximum amount of cash-outs allowed at each atm */
 num cashOutLimit{ATMS};
 /* historical withdrawal amount per atm each date */
 num withdrawal{ATMS, DATES};
 /* polynomial fit coefficients for predicted cash flow needed */
 num C {ATMS, DATES};
 num Cx{ATMS, DATES};
 num cy{ATMS, DATES};
 num CZ{ATMS, DATES};
 num cu{ATMS, DATES};
 /* number of points used in approximation of continuous range */
 num nSteps = 10;
 set STEPS = {0..nSteps};
 read data budget_data into DATES=[d] budget;
 read data cashout_data into ATMS=[a] cashOutLimit;
 read data polyfit_data into [a d] cx cy cz cu c withdrawal;
```

The following statements declare the variables:

```
var x{ATMS,STEPS} binary;
var v{ATMS,DATES} binary;
var z{ATMS,STEPS} >= 0 <= 1;
var y{ATMS} >= 0 <= 1;
var u{ATMS} >= 0;
var fPlus{ATMS,DATES} >= 0;
var fMinus{a in ATMS, d in DATES} >= 0 <= withdrawal[a,d];
```

The following statements declare the objective and constraints:

```
min CashFlowDiff =
 sum{a in ATMS, d in DATES} (fPlus[a,d] + fMinus[a,d]);
con BudgetCon{d in DATES}:
 sum{a in ATMS} (fPlus[a,d] - fMinus[a,d] + withdrawal[a,d])
 <= budget[d];
con CashFlowDefCon{a in ATMS, d in DATES}:
 cx[a,d] * sum{t in STEPS} (t/nSteps) * x[a,t] +
```

```
 cy[a,d] * y[a] +
 cz[a,d] * sum{t in STEPS} (t/nSteps) * z[a,t] +
 cu[a,d] * u[a] +
 c[a,d] - withdrawal[a,d] = fPlus[a,d] - fMinus[a,d];
con PickOneStepCon{a in ATMS}:
 sum{t in STEPS} x[a,t] = 1;
con CashOutLinkCon{a in ATMS, d in DATES}:
 fMinus[a,d] <= withdrawal[a,d] * v[a,d];
con CashOutLimitCon{a in ATMS}:
 sum{d in DATES} v[a,d] <= cashOutLimit[a];
con Linear1Con{a in ATMS, t in STEPS}:
 z[a,t] <= x[a,t];
con Linear2Con{a in ATMS }:
 sum{t in STEPS} z[a,t] = y[a];
```

The following statements define the block decomposition by ATM. The .block suffix expects numeric indices while the ATMS specified in the PROC OPTMODEL statements contain strings. You can create a mapping from the string identifier to a numeric identifier as follows:

```
/* create numeric block index */
num blockIndex {ATMS};
num index init 0;
for{a in ATMS} do;
 blockIndex[a] = index;
 index = index + 1;
end;
```

Then, each constraint can be added to its associated ATM block as follows:

```
/* define blocks for each ATM */
for{a in ATMS} do;
 PickOneStepCon[a].block = blockIndex[a];
 CashOutLimitCon[a].block = blockIndex[a];
 Linear2Con[a].block = blockIndex[a];
 for{d in DATES} do;
 CashFlowDefCon[a,d].block = blockIndex[a];
 CashOutLinkCon[a,d].block = blockIndex[a];
 end;
 for{t in STEPS} do;
 Linear1Con[a,t].block = blockIndex[a];
 end;
end;
```

The budget constraint links all ATMs and remains in the master problem. Finally, the following statements use DECOMP to solve the problem:

```
 /* set the number of threads and get performance details */
 performance details nthreads=12;
 /* solve with the decomposition algorithm */
 solve with milp / relobjgap=1e-5 decomp=();
quit;
```

The solution summary, performance information, and procedure task timing tables are displayed in Figure 12.5.1.

Output 12.5.1 Performance Information, Solution Summary, and Task Timing Table


The iteration log, which contains the problem statistics, the progress of the solution, and the optimal objective value, is shown in Figure 12.5.2.

## Output 12.5.2 Log

NOTE: There were 100 observations read from the data set WORK.BUDGET_DATA.
NOTE: There were 20 observations read from the data set WORK.CASHOUT_DATA.
NOTE: There were 2000 observations read from the data set WORK.POLYFIT_DATA.
NOTE: Problem generation will use 12 threads.
NOTE: The problem has 6480 variables ( 0 free, 0 fixed).
NOTE: The problem has 2220 binary and 0 integer variables.
NOTE: The problem has 4380 linear constraints ( $2340 \mathrm{LE}, 2040 \mathrm{EQ}, 0 \mathrm{GE}, 0$ range).
NOTE: The problem has 58878 linear constraint coefficients.
NOTE: The problem has 0 nonlinear constraints ( $0 \mathrm{LE}, 0 \mathrm{EQ}, 0 \mathrm{GE}, 0$ range).
NOTE: The MILP presolver value AUTOMATIC is applied.
NOTE: The MILP presolver removed 535 variables and 367 constraints.
NOTE: The MILP presolver removed 1249 constraint coefficients.
NOTE: The MILP presolver modified 0 constraint coefficients.
NOTE: The presolved problem has 5945 variables, 4013 constraints, and 57629 constraint coefficients.
NOTE: The MILP solver is called.
NOTE: The Decomposition algorithm is used.
NOTE: The DECOMP method value USER is applied.
NOTE: The decomposition subproblems consist of 20 disjoint blocks.
NOTE: The decomposition subproblems cover 5945 (100.00\%) variables and 3913 ( $97.51 \%$ ) constraints.
NOTE: The deterministic parallel mode is enabled.
NOTE: The Decomposition algorithm is using up to 12 threads.

Iter	Best	Master	Best	LP	IP	CPU	Real
	Bound	Objective	Integer	Gap	Gap	Time	Time

NOTE: Starting phase 1.

1	0.0000	1.1767		$1.18 \mathrm{e}+00$		134	37
2	0.0000	0.0000		$0.00 \mathrm{e}+00$		134	37
arting phase 2.							
.	162509.9620	$2.6082 e+06$	$2.6790 \mathrm{e}+06$	$2.45 e+06$	$2.52 e+06$	134	37
3	$2.1868 \mathrm{e}+06$	$2.6082 e+06$	$2.6790 \mathrm{e}+06$	19.27\%	$22.51 \%$	185	48
4	$2.4556 e+06$	2.4839e+06	$2.6790 \mathrm{e}+06$	1.15\%	9.10\%	226	54
5	$2.4630 \mathrm{e}+06$	$2.4642 e+06$	$2.6790 \mathrm{e}+06$	0.05\%	8.77\%	262	61
6	$2.4631 \mathrm{e}+06$	2.4631e+06	$2.6790 \mathrm{e}+06$	0.00\%	8.76\%	289	65

NOTE: The Decomposition algorithm stopped on the continuous RELOBJGAP option.

$2.4631 e+06$	$2.4631 e+06$	$2.4640 e+06$	$0.00 \%$	$0.04 \%$	289	65

NOTE: Starting branch and bound.

Node	Active	Sols	Best   Integer	Best   Bound	Gap	CPU   Time	Real   Time
0	1	2	$2.4640 e+06$	$2.4631 e+06$	$0.04 \%$	289	65
10	6	2	$2.4640 e+06$	$2.4635 e+06$	$0.02 \%$	665	139
19	7	3	$2.4638 e+06$	$2.4631 e+06$	$0.03 \%$	1002	216
20	7	3	$2.4638 e+06$	$2.4631 e+06$	$0.03 \%$	1036	221
30	13	3	$2.4638 e+06$	$2.4635 e+06$	$0.01 \%$	1395	280
40	15	3	$2.4638 e+06$	$2.4635 e+06$	$0.01 \%$	1688	323
44	3	4	$2.4636 e+06$	$2.4635 e+06$	$0.00 \%$	1864	348

NOTE: The Decomposition algorithm used 12 threads.
NOTE: The Decomposition algorithm time is 348.39 seconds.
NOTE: Optimal within relative gap.
NOTE: Objective $=2463556.36$.

## References

Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993), Network Flows, Prentice-Hall, New Jersey.
Barnhart, C., Hane, C. A., and Vance, P. H. (2000), "Using Branch-and-Price-and-Cut to Solve OriginDestination Integer Multicommodity Flow Problems," Operations Research, 48, 318-326.
URL http://www.jstor.org/stable/223148
Caprara, A., Furini, F., and Malaguti, E. (2010), Exact Algorithms for the Temporal Knapsack Problem, Technical Report OR-10-7, Department of Electronics, Computer Science, and Systems, University of Bologna, Bologna, Italy.

Dantzig, G. B. and Wolfe, P. (1960), "Decomposition Principle for Linear Programs," Operations Research, 8, 101-111.
URL http://www.jstor.org/stable/167547
Galati, M. (2009), Decomposition in Integer Linear Programming, Ph.D. thesis, Lehigh University.
Gamrath, G. (2010), Generic Branch-Cut-and-Price, Diploma thesis, Technische Universität Berlin.
Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R. E., Danna, E., Gamrath, G., Gleixner, A. M., Heinz, S., Lodi, A., Mittelmann, H., Ralphs, T., Salvagnin, D., Steffy, D. E., and Wolter, K. (2011), "MIPLIB 2010," Mathematical Programming Computation, 3, 103-163.

URL http://mpc.zib.de/index.php/MPC/article/view/56/28
Ralphs, T. K. and Galati, M. V. (2006), "Decomposition and Dynamic Cut Generation in Integer Linear Programming," Mathematical Programming, 106, 261-285.
URL http://dx.doi.org/10.1007/s10107-005-0606-3
Vanderbeck, F. and Savelsbergh, M. W. P. (2006), "A Generic View of Dantzig-Wolfe Decomposition in Mixed Integer Programming," Operations Research Letters, 34, 296-306.
URL http://dx.doi.org/10.1016/j.orl.2005.05.009

## Chapter 13 The OPTMILP Option Tuner

## Contents

Overview: The OPTMILP Option Tuner ..... 559
Getting Started: The OPTMILP Option Tuner ..... 560
Syntax: The OPTMILP Option Tuner ..... 562
Functional Summary ..... 563
PERFORMANCE Statement ..... 563
TUNER Statement ..... 564
Details: The OPTMILP Option Tuner ..... 566
Data Input and Output ..... 566
Default Set of Tuning Options ..... 568
Full Set of Tuning Options ..... 568
Tuner Log ..... 569
ODS Tables ..... 569
Examples: The OPTMILP Option Tuner ..... 572
Example 13.1: Tuning the Default Set of Options for a Single Problem ..... 572
Example 13.2: Tuning a Defined Set of Options for Multiple Problems ..... 575
References ..... 579

## Overview: The OPTMILP Option Tuner

The OPTMILP procedure provides many solver techniques and algorithms including branch-and-bound, cutting planes, and heuristics. It also provides control options that you can adjust to improve the performance of these techniques. Although the default values of the control options have been tuned to work well for most instances, you might need to adjust one or more option values for a specific problem. The OPTMILP option tuner is a tool that enables you to explore alternative (and potentially better) option configurations for your optimization problems.

To use the tuner, you specify a single problem or set of problems to be solved and a list of options to be tuned. You can specify initial values for the options to be tuned. The tuner then uses a heuristic local search technique to generate a sequence of configurations. A configuration is a set of the specified options to be tuned along with a fixed value for each option. The tuner attempts to locate configurations that enable the OPTMILP procedure to process problems more quickly than the default option values or specified initial values.

## Getting Started: The OPTMILP Option Tuner

This example illustrates how to use the OPTMILP option tuner.
The standard set of MILP benchmark cases is called MIPLIB (Bixby et al. 1998, Achterberg, Koch, and Martin 2003) and can be found at http://miplib.zib.de/. Suppose you want to solve the problems air04 and air05 from this set. You have stored the SAS data sets air04.dat and air05.dat, both in MPS format, in library a. Suppose you want to tune the CUTCLIQUE=, CUTGOMORY=, and HEURISTICS options in these two problems.

The following DATA step generates the data set probs, which contains the list of problems to be solved, and the data set optvals, which contains the list of options to be tuned:

```
data probs;
 input name $1-8;
 datalines;
a.air04
a.air05
;
data optvals;
 input option $1-10;
 datalines;
cutclique
cutgomory
heuristics
;
```

The following statements call the OPTMILP procedure and enable the option tuner:

```
proc optmilp maxtime=1800;
 tuner maxtime=7200 problems=probs optionvalues=optvals tunerout=out;
 performance nthreads=4;
run;
```

The MAXTIME $=$ option in the PROC OPTMILP statement sets the maximum running time that the procedure can use to solve one problem with one option configuration. The MAXTIME= option in the TUNER statement sets a limit on the total time that the option tuner can use to solve the problems on the list by using the generated sequence of configurations. The PROBLEMS= option specifies the name of the SAS data set that contains the list of problems to be solved. The OPTIONVALUES= option specifies the name of the SAS data set that contains the list of options to be tuned. The TUNEROUT= option specifies the name of the SAS data set that contains detailed results of the tuning process. The NTHREADS= option in the PERFORMANCE statement specifies the number of threads that the procedure can use to perform calculations. The ODS OUTPUT statement creates an output data set from the TunerResults table.

For more information about the options available in the PROC OPTMILP statement, see the section "PROC OPTMILP Statement" on page 410. For more information about the PERFORMANCE statement, see the section "PERFORMANCE Statement" on page 17.

Figure 13.1 shows a selection of tuning results that include the initial option configuration, the best option configurations, and the worst option configurations.

Figure 13.1 PROC OPTMILP Output


Figure 13.1 continued

Tuner Results							
	C	C	C		C	C	C
	$\bigcirc$	$\bigcirc$	$\bigcirc$		$\bigcirc$	$\bigcirc$	$\bigcirc$
	n	n	n		n	n	n
	f	f	f		$f$	f	f
	i	i	i		i	i	i
	g	g	g		g	g	g
	0	1	2		3	4	5
cutclique	-1	2	0		1	0	0
cutgomory	-1	2	1		0	2	0
heuristics	-1	2	-1		1	1	0
Run Time (Mean)	5.808352	5.599335	5.608351	5.657001		5.723804	5.725461
Run Time (Sum)	11.637	11.217	11.247	11.325		11.481	11.467
Num of Failed	0	0	0		0	0	0
Tuner Results							
							C
	C		C	C		C	$\bigcirc$
	$\bigcirc$		$\bigcirc$	$\bigcirc$		$\bigcirc$	n
	n		n	n		n	f
	f		f	f		f	i
	i		i	i		i	g
	g		g	g		g	
							1
	6		7	8		9	0
cutclique	-1	-1	1	1		2	-1
cutgomory	-1		0	0		1	-1
heuristics	1		2	3		2	3
Run Time (Mean)	6.028758	6.154259	96.16	54256		302673	6.367922
Run Time (Sum)	12.058	12.309		. 338		12.62	12.745
Num of Failed	0		0	0		0	0

## Syntax: The OPTMILP Option Tuner

You can specify the following statements for the option tuner in the OPTMILP procedure:
PROC OPTMILP < options > ;
PERFORMANCE < performance-options> ;
TUNER < tuner-options> ;

## Functional Summary

Table 13.1 summarizes the options available for the TUNER statement in the OPTMILP procedure.
Table 13.1 Options for the TUNER Statement

Option	Description
GOAL $=$	Specifies the goal of the tuning process   LOGFREQ $=$
Specifies the frequency of printing in the log	
LOGLEVEL $=$	Specifies the detail of tuner progress printed in log   MAXCONFIGS $=$   Specifies the maximum number of tuning configura-   tions
MAXTIME $=$	Specifies the maximum tuning time
OPTIONMODE $=$	Specifies which set of options to tune
OPTIONVALUES $=$	Specifies the input data set that contains a list of op-   tions to be tuned
PROBLEMS $=$	Specifies the input data set that contains a list of tun-   ing problems
TUNEROUT $=$	Specifies the output data set that contains detailed tun-   ing results

The options available for the PROC OPTMILP statement are documented in the section "Functional Summary" on page 409 in Chapter 10, "The OPTMILP Procedure."

## PERFORMANCE Statement

PERFORMANCE < performance-options > ;
The PERFORMANCE statement specifies performance options for multithreaded (SMP) and distributed (MPP) computing, passes variables around the distributed computing environment, and requests detailed performance results of the OPTLP procedure.

With the PERFORMANCE statement, you can also control whether the OPTMILP procedure executes in SMP or MPP mode.

The PERFORMANCE statement for multithreaded computing mode is documented in the section "PERFORMANCE Statement" on page 17 in Chapter 3, "Shared Concepts and Topics." The OPTMILP option tuner supports only the nondeterministic mode of the PARALLELMODE= option in the PERFORMANCE statement.

The PERFORMANCE statement for distributed computing mode is documented in Chapter 3, "Shared Concepts and Topics" (SAS High-Performance Analytics Server: User's Guide).
NOTE: Distributed computing mode requires SAS ${ }^{\circledR}$ High-Performance Analytics software.

## TUNER Statement

> TUNER < tuner-options > ;

You can specify the following options.
GOAL=number | string
specifies a goal for the option tuner. Table 13.2 describes the valid values of the GOAL= option.
Table 13.2 Values of GOAL= Option

number	string	Description
0	GEOMEAN	Minimizes the geometric mean of the solution   times of the tuning problems
1	SUM	Minimizes the sum of the solution times of the   tuning problems

Every attempt to solve a tuning problem with an option configuration is counted toward the measure specified by the GOAL= option.

The default is GEOMEAN. If only one problem is used for option tuning, then GOAL=GEOMEAN and GOAL=SUM are equivalent.

## MAXCONFIGS=number

specifies the maximum number of option configurations that the tuner can evaluate in each problem in the PROBLEMS = data set. The value of number can be any nonnegative integer up to the largest four-byte signed integer, which is $2^{31}-1$. The default is $2^{31}-1$.

## MAXTIME=number

specifies the maximum time allowed for the tuner to evaluate option configurations in tuning problems. The default is 36,000 seconds.

It is recommended that you specify a value of number large enough so that the tuner can run several different option configurations. This value depends on two quantities: the number of tuning problems and the OPTMILP procedure's average run time for the tuning problems. To prevent the procedure from spending too much time running a single configuration in a single problem, it is recommended that you limit the time the procedure spends solving each combination of problem and configuration. You can do this by specifying the MAXTIME= option in the PROC OPTMILP statement. If you prefer not to stop the option tuner based on elapsed time, you can specify the MAXCONFIGS= option.

OPTIONMODE=number | string
specifies which set of options to tune. Table 13.3 describes the valid values of the OPTIONMODE= option.

Table 13.3 Values of OPTIONMODE= Option

number	string	Description
-1	AUTOMATIC	Uses an option set determined by the tuner   0
NONE	Solves the problems specified by the   PROBLEMS = option without tuning any	
1	USER	OPTMILP options
2	FULL	Uses the option set specified by the   OPTIONVALUES= option   Uses the full set of solver options that are   available for tuning

The tuner interprets the OPTIONMODE= option in accordance with the following logic:

1. If you specify neither the OPTIONMODE= nor OPTIONVALUES= option, the tuner runs with OPTIONMODE=AUTOMATIC.
2. If you specify the OPTIONVALUES= option, you are not required to specify the OPTIONMODE= option, but you can specify OPTIONMODE=USER. Specifying any other value for the OPTIONMODE= option causes the tuner to terminate with an error.
3. If you do not specify the OPTIONVALUES= option, you can specify either OPTIONMODE=FULL or OPTIONMODE=AUTOMATIC. Specifying OPTIONMODE=USER causes the tuner to terminate with an error.

## OPTIONVALUES=SAS-data-set

## OPTVALS=SAS-data-set

specifies an input data set that contains a list of options to be tuned and ranges of values over which each option should be tuned. You can specify an initial tuning value for each option in the list. If you do not specify a range for a tuning option, the tuner uses the default range of that option. If you do not specify an initial value for a tuning option, the tuner uses the default value of that option. If the option's default value is not in the specified tuning range, the tuner uses the first (smallest) value in the tuning range. If the data set that is specified by the OPTIONVALUES= option is not found, a default set of options is used. See the section "Variables in the OPTIONVALUES= Data Set" on page 567 and the section "Default Set of Tuning Options" on page 568 for more information.

Note: An option value that you specify in the PROC OPTMILP statement is applied to all tuning problems, unless you specify that option in the OPTIONVALUES= data set. In that case, the value that you specify in the PROC OPTMILP statement is ignored.

## LOGFREQ=number

specifies how often tuning information is printed in the log. The value of number represents the number of problems solved by the tuner between log updates. The value of number can be any nonnegative integer. Specifying LOGFREQ $=0$ disables $\log$ updates. The default is 1 .

## LOGLEVEL=number | string

controls the amount of information that the tuner displays in the SAS log. Table 13.4 describes the valid values of the LOGLEVEL= option.

Table 13.4 Values of LOGLEVEL= Option

number	string	Description
0	NONE	Disables tuner-related messages in the SAS log
1	BASIC	Displays a tuner summary after stopping
2	MODERATE	Prints a tuner summary and a tuning log by using   the interval dictated by the LOGFREQ= option

The default is MODERATE.
PROBLEMS=SAS-data-set
PROBS=SAS-data-set
specifies the input data set that contains a list of MILP problems to be used for option tuning. This list includes the name of each problem, its library location, and (optionally) its objective sense. See the section "Variables in the PROBLEMS= Data Set" on page 566 for more information. The tuning problems should be stored in MPS-format SAS data sets. To perform option tuning on a single problem, you can omit the PROBLEMS= option in the TUNER statement and specify the DATA= option in the PROC OPTMILP statement. For more information about this option, see the section "Data Set Options" on page 411.

TUNEROUT=SAS-data-set
TOUT=SAS-data-set
specifies the output data set that contains detailed results for each tuning problem over all the option configurations that are evaluated. See the section "Variables in the TUNEROUT= Data Set" on page 567 for more information.

## Details: The OPTMILP Option Tuner

## Data Input and Output

This subsection describes the input data sets specified by the PROBLEMS = and OPTIONVALUES= options and the output data set specified by the TUNEROUT= option.

## Variables in the PROBLEMS= Data Set

The PROBLEMS = data set contains the following variables:

## NAME

specifies a list of names of MPS-format data sets. Each data set contains a MILP problem to be used in option tuning. The format of each name must be libref.filename. If no libref is specified, the tuner searches for the file in WORK.

## OBJSENSE

specifies whether the objective sense for a tuning problem is MIN or MAX. The values of this variable provide or overwrite the objective sense for the corresponding SAS data set. This variable is optional.

## Variables in the OPTIONVALUES= Data Set

The OPTIONVALUES $=$ data set contains the following variables:

## OPTION

specifies a list of control options to be tuned by solving the problems specified in the PROBLEMS= data set.

## VALUES

specifies a comma-delimited list of values for each control option that the tuner can use to generate configurations. If you do not specify a list of values for an option, the tuner uses all valid values of that option. This variable is optional. For double-value options like STRONGITER, if you do not provide discrete values, such as $(1,2,3.5,100)$, then they are not tuned.

## INITIAL

specifies an initial value for each option to be tuned. This variable is optional. If this variable is missing, the tuner uses the default value of the option as the initial value. If the default value of the option is not in the list specified by the VALUES variable, the tuner uses the first entry in the VALUES list for that option.

## Variables in the TUNEROUT= Data Set

The TUNEROUT= data set contains the following variables:

## RANK

specifies the rank of each option configuration, based on the criteria specified by the GOAL= option.

## PROBLEM

specifies a list of data set names. Each named data set contains one of the problems that are used by the tuner.

## Option configurations

name each variable for a tuning option and contain the option value used for the current option configuration.

## Solution information

specifies solution information for each option configuration that the tuner evaluates. This information includes the status, solution status, objective value, relative gap, absolute gap, nodes, and solution time. For more information about these terms, see the section "Macro Variable _OROPTMILP_" on page 432.

## Default Set of Tuning Options

Table 13.5 lists the options and values that the tuner uses when OPTIONMODE=AUTOMATIC.
Table 13.5 Default Set of Tuning Options

Option	Values
CONFLICTSEARCH $=$	$-1,0$
CUTGOMORY $=$	$-1,0$
CUTMILIFTED $=$	$-1,0$
CUTSTRATEGY $=$	$-1,0,1,2$
CUTZEROHALF $=$	$-1,0$
HEURISTICS $=$	$-1,0,1,2,3$
NODESEL $=$	$-1,0,1,2$
PRESOLVER $=$	$-1,0,1,2,3$
PROBE $=$	$-1,0$
VARSEL $=$	$-1,3$

For more information about these options, see the section "Functional Summary" on page 409 in Chapter 10, "The OPTMILP Procedure."

## Full Set of Tuning Options

When OPTIONMODE=FULL, the tuner tunes the set of options listed in Table 13.6 over an automatically determined range.

Table 13.6 Full Set of Tuning Options

ALLCUTS =	CUTMIR=
CONFLICTSEARCH=	CUTSFACTOR=
CUTCLIQUE=	CUTSTRATEGY=
CUTFLOWCOVER=	CUTZEROHALF=
CUTFLOWPATH=	HEURISTICS=
CUTGOMORY=	NODESEL=
CUTGUB=	PRESOLVER=
CUTIMPLIED=	PROBE=
CUTKNAPSACK=	SCALE=
CUTLAP=	STRONGITER=
CUTMILIFTED=	VARSEL=

For more information about these options, see the section "Functional Summary" on page 409 in Chapter 10, "The OPTMILP Procedure."

## Tuner Log

The following information about the option tuner is printed in the tuner log:
SolveCalls indicates the number of problems the tuner has completed.
Configurations indicates the number of configurations the tuner has completed.
BestTime indicates the geometric mean or sum of the solve times (over all tuning problems) of the current best option configuration.

Time indicates the time (in seconds) used by the tuner.
The LOGFREQ= and LOGLEVEL= options can be used to control the amount of information printed in the tuner log. Figure 13.2 shows a sample tuner log.

Figure 13.2 Sample Option Tuner Log

```
NOTE: The Option Tuning algorithm (the Tuner) is enabled.
NOTE: The non-deterministic parallel mode is enabled.
NOTE: The Tuner is using up to 4 threads.
 SolveCalls Configurations BestTime Time
 10 4 5.67 15.93
 20 10 5.67 27.63
 30 15 5.67 41.29
 40 20 5.67 53.91
 50 24 5.67 68.06
 60 30 5.67 81.53
 70 35 5.67 94.69
NOTE: The data set WORK.OUT has 78 observations and 12 variables.
```


## ODS Tables

The tuner creates several Output Delivery System (ODS) tables by default unless you specify a value other than 1 for the PRINTLEVEL= option in the PROC OPTMILP statement. The names of these tables are listed in Table 13.7. The PerformanceInfo table appears under shared or distributed parallel mode. The TunerInfo and TunerSummary tables contain the tuner's input summary and results summary, respectively. The TunerResults table contains the option values, the geometric mean and summation of the solution times, and the number of failed solution attempts for the initial option configuration, the best option configurations, and the worst option configurations. You can create output data sets from these tables by specifying the ODS OUTPUT statement. For more information about ODS, see SAS Output Delivery System: User's Guide.

Table 13.7 ODS Tables Produced by the OPTMILP Option Tuner

ODS Table Name	Description
PerformanceInfo	Performance information
Timing	Timing report
TunerInfo	Summary of option tuning input
TunerResults	Option tuning results   TunerSummary
Summary of option tuning re-   sults	

Figure 13.3 shows an example PerformanceInfo table when the tuner is called with multiple threads.
Figure 13.3 Example Tuner Output: Performancelnfo


Figure 13.4 shows an example Timing table when the tuner is called with multiple threads.
Figure 13.4 Example Tuner Output: Timing


Figure 13.5 shows an example TunerInfo table.
Figure 13.5 Example Tuner Output: TunerInfo

Tuner Information	
Target Solver	
Number of Tuning Options	MILP
Number of Tuning Instances	3
Tuning Option Set	2
Performance Goal	USER
Tuner Time Limit	GEOMEAN
Tuner Configurations Limit	2147483647

Figure 13.6 shows an example TunerResults table.
Figure 13.6 Example Tuner Output: TunerResults

Tuner Results							
	C	C	C		C	c	C
	$\bigcirc$	$\bigcirc$	$\bigcirc$		$\bigcirc$	$\bigcirc$	$\bigcirc$
	n	n	n		n	n	n
	f	$f$	f		f	f	f
	i	i	i		i	i	i
	g	g	g		g	9	g
	0	1	2		3	4	5
cutclique	-1	0	-1		0	0	0
cutgomory	-1	2	0	-1	1	1	-1
heuristics	-1	0	1		2	0	3
Run Time (Mean)	5.981747	5.701321	5.707707	5.714656		5.714656	5.715718
Run Time (Sum)	11.964	11.418	11.435	11.45		11.45	11.452
Num of Failed	0	0	0		0	0	0
Tuner Results							
							C
	C	C	C	C		C	$\bigcirc$
	$\bigcirc$	$\bigcirc$	0	$\bigcirc$		$\bigcirc$	n
	n	n	ก	n		n	f
	$f$	$f$	f	f		f	i
	i	i	i	i		i	g
	g	-	$g$	g		g	
							1
	6	7	7	8		9	0
cutclique	1	-1		-1		1	1
cutgomory	1	1	1	1		1	0
heuristics	3	0	0	1		-1	1
Run Time (Mean)	6.296905	6.31372	26.314	0536		401778	6.653233
Run Time (Sum)	12.605	12.635		638		12.807	13.308
Num of Failed	0	0	0	0		0	0

Figure 13.7 shows an example TunerSummary table.
Figure 13.7 Example Tuner Output: TunerSummary

Tuner Summary	
Actual Tuning Time	107.67
Initial Run Time (geomean)	5.98
Initial Run Time (sum)	11.96
Best Run Time (geomean)	5.70
Best Run Time (sum)	11.42
Number of Improved Configurations	24
Number of Tested Configurations	40

## Examples: The OPTMILP Option Tuner

## Example 13.1: Tuning the Default Set of Options for a Single Problem

This example demonstrates how to tune the default set of tuning options by using a single problem. The problem is the air04 problem from the MIPLIB 2003 problem set introduced in the section "Getting Started: The OPTMILP Option Tuner" on page 560. The SAS data set that defines the problem (in MPS format) is in a file named air04.dat.

Because you are using only one problem to perform option tuning, you do not need to create a PROBLEMS= data set. Because you are tuning the default set of options, you do not need to create an OPTIONVALUES= data set. The following statements call the OPTMILP option tuner and the MAXCONFIGS= option instead of the MAXTIME $=$ option to determine the stopping criterion:

```
proc optmilp data=air04 maxtime=300;
 tuner maxconfigs=200 printfreq=2 tout=out;
 performance nthreads=2;
run;
```

The output data set is shown in Figure 13.1.1.

Output 13.1.1 Single Problem with Default Tuning Options: Output


Output 13.1.1 continued


## Example 13.2: Tuning a Defined Set of Options for Multiple Problems

This example demonstrates how to specify a set of tuning options and tune them for multiple problems.
The following DATA step creates a PROBLEMS= data set named probs that contains the list of tuning problems. This data set is the same as in the section "Getting Started: The OPTMILP Option Tuner" on page 560 .

The following DATA step creates an OPTIONVALUES= data set named optvals that is different from the default set described in the section "Default Set of Tuning Options" on page 568:

```
data optvals;
 input option $1-10 values $12-28 initial $30-31;
 datalines;
cutclique -1, 0, 2 -1
cutgomory
 1
heuristics
;
```

The optvals data set contains a nondefault list of tuning values for the CUTCLIQUE= option in addition to initial values for the CUTCLIQUE= and CUTGOMORY= options. The options for which sets of tuning values are not specified (in this case, the CUTGOMORY $=$ and HEURISTICS $=$ options) are tuned for all available values. The options for which initial values are not specified (in this case, the HEURISTICS= option) are tuned with the default initial value.

The following statements call the OPTMILP option tuner and then print the ODS table TunerResults and the TUNEROUT= data set:

```
proc optmilp maxtime=60;
 tuner problems=probs optionvalues=optvals optionmode=user
 maxtime=120 tunerout=tout;
 performance nthreads=4;
run;
title "Tuner Output";
proc print data=tout;
run;
```

The output is shown in Figure 13.2.1.

Output 13.2.1 Multiple Problems with Specified Tuning Options: Output

The OPTMILP Procedure						
Tuner Results						
	C	C	C	C	C	C
	$\bigcirc$	$\bigcirc$	$\bigcirc$	$\bigcirc$	-	$\bigcirc$
	n	n	n	n		n
	f	f	$f$	f	f	f
	i	i	i	i	i	i
	g	g	g	g	g	g
	0	1	2	3	3	5
cutclique	0	0	0	0	0	0
cutgomory	-1	-1	1	1	1	-1
heuristics	-1	3	0	3	3 -1	2
Run Time (Mean)	5.674735	5.6270495	5.704002	5.722245	5.723145	5.731514
Run Time (Sum)	11.388	11.28	11.419	11.466	611.466	11.48
Num of Failed	0	0	0	0	0	0
Tuner Results						
						C
	C	C	C	C	C	$\bigcirc$
	$\bigcirc$	$\bigcirc$	-	$\bigcirc$	$\bigcirc$	n
	n	n	n	n	n	f
	f	f	f	f	f	i
	i	i	i	i	i	g
	g	g	g	g	g	
						1
	6	7	7	8	9	0
cutclique	2	-1		2	0	2
cutgomory	1	-1		-1	2	2
heuristics	2	2	2	1	2	2
Run Time (Mean)	6.377241	6.449139	96.4	6392	6.60572	6.645542
Run Time (Sum)	12.762	12.901		. 932	13.213	13.292
Num of Failed	0	0	0	0	0	0

Output 13.2.1 continued

	Tuner Output												
								$\bar{S}$					
								0					
								L					S
								U		R	A		0
								T		E	B		L
								I	-	L	S		U
		-			h			0	0	A	0		T
		I	c	c	e			N	B	T	L		I
		N	u	u	u	-		-	$J$	I	U		0
		S	t	$t$	$r$	S		S	E	V	T		N
	-	T	c	$g$	i	T		T	C	E	E	N	-
	R	A	1	$\bigcirc$	$s$	A		A	T	-	-	0	T
	A	N	i	m	t	T		T	I	G	G	D	I
0	N	C	q	0	i	U		U	V	A	A	E	M
b	K	E	u	$r$	c	S		S	E	P	P	S	E
s	-	-	e	Y	s	-		-	-	-	-	-	-
1	0	air04	0	-1		OK	TIME	LIM_NOSOL	1.7977E308	1.8E308	1.7977 E 308	0	6.16200
2	0	air05	0	-1		OK	TIME	LIM_SOL	26849	0.037538	971.391	1	5.22600
3	1	air04	0	-1	3	OK	TIME	LIM_NOSOL	1.7977 E 308	1.8 E 308	1.7977E308	0	6.02200
4	1	air05	0	-1	3	OK	TIME	LIM_SOL	26849	0.037538	971.391	1	5.25800
5	2	air04	0	1	0	OK	TIME	LIM_NOSOL	1.7977 E 308	1.8E308	1.7977 E 308	0	5.96000
6	2	air05	0	1	0	OK	TIME	LIM_NOSOL	1.7977 E 308	1.8E308	1.7977 E 308	1	5.45900
7	3	air04	0	1	3	OK	TIME	LIM_NOSOL	1.7977 E 308	1.8E308	1.7977E308	0	6.08400
8	3	air05	0	1	3	OK	TIME	LIM_SOL	26849	0.037538	971.391	1	5.38200
9	4	air04	0	0	-1	OK	TIME	LIM_NOSOL	1.7977 E 308	1.8 E 308	1.7977 E 308	0	6.06900
10	4	air05	0	0		OK	TIME	LIM_SOL	26849	0.037538	971.391	1	5.39700
11	5	air04	0	-1	2	OK	TIME	LIM_NOSOL	1.7977E308	1.8 E 308	1.7977E308	0	6.05200
12	5	air05	0	-1	2	OK	TIME	LIM_SOL	26849	0.037538	971.391	1	5.42800
13	6	air04	0	-1	0	OK	TIME	LIM_NOSOL	1.7977E308	1.8E308	1.7977 E 308	0	6.05300
14	6	air05	0	-1	0	OK	TIME	LIM_NOSOL	1.7977 E 308	1.8E308	1.7977 E 308	1	5.46000
15	7	air04	0	1	1	OK	TIME	LIM_NOSOL	1.7977 E 308	1.8E308	1.7977 E 308	0	6.14700
16	7	air05	0	1	1	OK	TIME	LIM_NOSOL	1.7977E308	1.8E308	1.7977 E 308	1	5.38100
17	8	air04	0	2	0	OK	TIME	LIM_NOSOL	1.7977 E 308	1.8E308	1.7977 E 308	0	6.14600
18	8	air05	0	2	0	OK	TIME	LIM_NOSOL	1.7977 E 308	1.8E308	1.7977 E 308	1	5.39800
19	9	air04	0	1	-1	OK	TIME	LIM_NOSOL	1.7977 E 308	1.8E308	1.7977E308	0	6.09900
20	9	air05	0	1		OK	TIME_	LIM_SOL	26849	0.037538	971.391	1	5.44400
21	10	air04	2	-1	3	OK	TIME	LIM_NOSOL	1.7977E308	1.8 E 308	1.7977E308	0	6.13100
22	10	air05	2	-1	3	OK	TIME	LIM_SOL	26849	0.037538	971.391	0	5.42900
23	11	air04	0	1	2	OK	TIME_	LIM_NOSOL	1.7977E308	1.8 E 308	1.7977E308	0	6.09900
24	11	air05	0	1	2	OK	TIME_	LIM_SOL	26849	0.037538	971.391	1	5.46000
25	12	air04	0	0	0	OK	TIME	LIM_NOSOL	1.7977 E 308	1.8E308	1.7977 E 308	0	6.08500
26	12	air05	0	0	0	OK	TIME_	LIM_NOSOL	1.7977 E 308	1. 8E308	1.7977 E 308	1	5.53900
27	13	air04	-1	2	-1	OK	TIME_	LIM_NOSOL	1.7977 E 308	1.8E308	1.7977 E 308	0	5.94400
28	13	air05	-1	2	-1	OK	TIME_	LIM_SOL	26849	0.034897	905.350	0	5.83400
29	14	air04	-1	-1	-1	OK	TIME_	LIM_NOSOL	1.7977E308	1.8E308	1.7977 E 308	0	6.03600
30	14	air05	-1	-1	-1	OK	TIME_	LIM_SOL	26849	0.034897	905.350	0	5.80200
31	15	air04	0	0	2	OK	TIME_	LIM_NOSOL	1.7977 E 308	1.8 E 308	1.7977 E 308	0	6.22300
32	15	air05	0	0	2	OK	TIME_	LIM_SOL	26849	0.037538	971.391	1	5.63200
33	16	air04	-1	-1	0	OK	TIME_	LIM_NOSOL	1.7977 E 308	1.8E308	1.7977 E 308	0	6.10000
34	16	air05	-1	-1	0	OK	TIME_	LIM_NOSOL	1.7977 E 308	1. 8E308	1.7977 E 308	0	5.77100
35	17	air04	2	-1	0	OK	TIME_	LIM_NOSOL	1.7977 E 308	1. 8E308	1.7977 E 308	0	6.17700

Output 13.2.1 continued


## References

Achterberg, T., Koch, T., and Martin, A. (2003), "MIPLIB 2003," on the MIPLIB Web page: http://miplib.zib.de/.

Bixby, R. E., Ceria, S., McZeal, C. M., and Savelsbergh, M. W. P. (1998), "An Updated Mixed Integer Programming Library: MIPLIB 3.0," Optima, 58, 12-15.

Hutter, F., Hoos, H. H., Leyton-Brown, K., and Stützle, T. (2009), "ParamILS: An Automatic Algorithm Configuration Framework," Journal of Artificial Intelligence Research, 36, 267-306.

## Chapter 14

The MPS-Format SAS Data Set

## Contents

Overview: MPS-Format SAS Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581
Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
Order of Sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 582
Sections Format: MPS-Format SAS Data Set . . . . . . . . . . . . . . . . . . . . . . . . . 583
NAME Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
ROWS Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583
COLUMNS Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
RHS Section (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
RANGES Section (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
BOUNDS Section (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
BRANCH Section (Optional) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
QSECTION Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 589
ENDATA Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
Details: MPS-Format SAS Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590
Converting an MPS/QPS-Format File: \%MPS2SASD . . . . . . . . . . . . . . . . . 590
Length of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
Examples: MPS-Format SAS Data Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
Example 14.1: MPS-Format Data Set for a Product Mix Problem . . . . . . . . . . . 591
Example 14.2: Fixed-MPS-Format File . . . . . . . . . . . . . . . . . . . . . . . . . 593
Example 14.3: Free-MPS-Format File . . . . . . . . . . . . . . . . . . . . . . . . . 593
Example 14.4: Using the \%MPS2SASD Macro . . . . . . . . . . . . . . . . . . . . 594
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

## Overview: MPS-Format SAS Data Set

The MPS file format is a format commonly used in industry for describing linear programming (LP) and integer programming (IP) problems (Murtagh 1981; IBM 1988). It can be extended to the QPS format (Maros and Mészáros 1999), which describes quadratic programming (QP) problems. MPS-format and QPS-format files are in text format and have specific conventions for the order in which the different pieces of the mathematical model are specified. The MPS-format SAS data set corresponds closely to the format of an MPS-format or QPS-format file and is used to describe linear programming, mixed integer programming, and quadratic programming problems for SAS/OR.

## Observations

An MPS-format data set contains six variables: field1, field2, field3, field4, field5, and field6. The variables field4 and field6 are numeric type; the others are character type. Among the character variables, only the value of field1 is case-insensitive and leading blanks are ignored. Values of field2, field3, and field5 are case-sensitive and leading blanks are NOT ignored. Not all variables are used in a particular observation.

Observations in an MPS-format SAS data set are grouped into sections. Each section starts with an indicator record, followed by associated data records. Indicator records specify the names of sections and the format of the following data records. Data records contain the actual data values for a section.

## Order of Sections

Sections of an MPS-format SAS data set must be specified in a fixed order.
Sections of linear programming problems are listed in the following order:

- NAME
- ROWS
- COLUMNS
- RHS (optional)
- RANGES (optional)
- BOUNDS (optional)
- ENDATA

Sections of quadratic programming problems are listed in the following order:

- NAME
- ROWS
- COLUMNS
- RHS (optional)
- RANGES (optional)
- BOUNDS (optional)
- QSECTION
- ENDATA

Sections of mixed integer programming problems are listed in the following order:

- NAME
- ROWS
- COLUMNS
- RHS (optional)
- RANGES (optional)
- BOUNDS (optional)
- BRANCH (optional)
- ENDATA


## Sections Format: MPS-Format SAS Data Set

The following subsections describe the format of the records for each section of the MPS-format data set. Note that each section contains two types of records: an indicator record and multiple data records. The following subsections of this documentation describe the two different types of records for each section of the MPS data set.

## NAME Section

The NAME section contains only a single record identifying the name of the problem.

Field1	Field2	Field3	Field4	Field5	Field6
NAME	Blank	Input   model   name	$\cdot$	Blank	$\cdot$

## ROWS Section

The ROWS section contains the name and type of the rows (linear constraints or objectives). The type of each row is specified by the indicator code in field1 as follows:

- MIN: minimization objective
- MAX: maximization objective
- $\mathbf{N}$ : objective
- G: $\geq$ constraint
- L: $\leq$ constraint
- $\mathbf{E}:=$ constraint
- Indicator record:

Field1	Field2	Field3	Field4	Field5	Field6
ROWS	Blank	Blank	.	Blank	.

- Data record:

Field1	Field2	Field3	Field4	Field5	Field6
Indicator   code	Row   name	Blank	$\cdot$	Blank	$\cdot$

## Notes:

1. At least one objective row should be specified in the ROWS section. It is possible to specify multiple objective rows. However, among all the data records indicating the objective, only the first one is regarded as the objective row, while the rest are ignored. If a type- N row is taken as the objective row, minimization is assumed.
2. Duplicate entries of field2 in the ROWS section are not allowed. In other words, row name is unique. The variable field2 in the ROWS section cannot take a missing value.

## COLUMNS Section

The COLUMNS section defines the column (i.e., variable or decision variable) names of the problem. It also specifies the coefficients of the columns for each row.

- Indicator record:

Field1	Field2	Field3	Field4	Field5	Field6
COLUMNS	Blank	Blank	$\cdot$	Blank	.

- Data record:

Field1	Field2	Field3	Field4	Field5	Field6
Blank	Column	Row	Matrix	Row	Matrix
	name	name	element	name	element
	(e.g., col)	(e.g.,	in row	(e.g.,	in row
		rowi)	rowi,	rowj)	rowj,
			column		column
			col		col

## Notes:

1. All elements belonging to one column must be grouped together.
2. A missing coefficient value is ignored. A data record with missing values in both field4 and field6 is ignored.
3. Duplicate entries in each pair of column and row are not allowed.
4. When a sequence of data records have an identical value in field2, you can specify the value in the first occurrence and omit the value by giving a missing value in the other records. The value in field2 of the first data record in the section cannot be missing.

## Mixed Integer Programs

Mixed integer programming (MIP) problems require you to specify which variables are constrained to be integers. Integer variables can be specified in the COLUMNS section with the use of special marker records in the following form:

Field1	Field2	Field3	Field4	Field5	Field6
Blank	Marker	'MARKER'	$\cdot$	'INTORG'	$\cdot$
	name	(including		or 'IN-	
		the quotation		TEND'	
		marks)		(including	
				the quotation	
			marks)		

A marker record with field5 that contains the value 'INTORG' indicates the start of integer variables. In the marker record that indicates the end of integer variables, field5 must be 'INTEND'. An alternative way to specify integer variables without using the marker records is described in the section "BOUNDS Section (Optional)" on page 587.

## Notes:

1. INTORG and INTEND markers must appear in pairs in the COLUMNS section. The marker pairs can appear any number of times.
2. The marker name in field2 should be different from the preceding and following column names.
3. All variables between the INTORG and INTEND markers are assumed to be binary unless you specify a different lower bound and/or upper bound in the BOUNDS section.

## RHS Section (Optional)

The RHS section specifies the right-hand-side value for the rows. Any row unspecified in this section is considered to have an RHS value of 0 . Missing the entire RHS section implies that all RHS values are 0 .

- Indicator record:

Field1	Field2	Field3	Field4	Field5	Field6
RHS	Blank	Blank	.	Blank	.

- Data record:

Field1	Field2	Field3	Field4	Field5	Field6
Blank	RHS	Row	RHS	Row	RHS
	name	name	value for	name	value for
		(e.g.,	row rowi	$($ (e.g.,	row rowj
		rowi)		rowj)	

## Notes:

1. The rows that have an RHS element defined in this section need not be specified in the same order in which the rows were specified in the ROWS section. However, a row in the RHS section should be defined in the ROWS section.
2. It is possible to specify multiple RHS vectors, which are labeled by different RHS names. Normally, the first RHS vector encountered in the RHS section is used, and all other RHS vectors are discarded. All the elements of the selected RHS vector must be specified before other RHS vectors are introduced. Within a specific RHS vector, for a given row, duplicate assignments of RHS values are not allowed.
3. An RHS value assigned to the objective row is ignored by PROC OPTLP and PROC OPTMILP, while it is taken as a constant term of the objective function by PROC OPTQP.
4. A missing value in field4 or field6 is ignored. A data record with missing values in both field4 and field6 is ignored.
5. When a sequence of data records have an identical value in field2, you can specify the value in the first occurrence and omit the value by giving a missing value in the other records. If the value in field2 of the first data record in the section is missing, it means the name of the first vector is the missing value.

## RANGES Section (Optional)

The RANGES section specifies the range of the RHS value for the constraint rows. With range specification, a row can be constrained from above and below.

For a constraint row $c$, if $b$ is the RHS value and $r$ is the range for this row, then the equivalent constraints are given in Table 14.1, depending on the type of row and the sign of $r$.

Table 14.1 Range Effect

Type of Row	Sign of $r$	Equivalent Constraints
$\mathbf{G}$	$\pm$	$b \leq c \leq b+\|r\|$
$\mathbf{L}$	$\pm$	$b-\|r\| \leq c \leq b$
$\mathbf{E}$	+	$b \leq c \leq b+r$
$\mathbf{E}$	-	$b+r \leq c \leq b$

- Indicator record:

Field1	Field2	Field3	Field4	Field5	Field6
RANGES	Blank	Blank	$\cdot$	Blank	.

- Data record:

Field1	Field2	Field3	Field4	Field5	Field6
Blank	Range   name	Row   name	Range for	Row	Range for
		(e.g.,   rowi)	RHS of   row rowi	(e.g.,   rowj)	RHS of   row rowj

## Notes:

1. Range assignment for an objective row (i.e., MAX, MIN, or $\mathbf{N}$ row) is not allowed.
2. The rows that have a range element defined in this section need not be specified in the same order in which the rows were specified in the ROWS or RHS section. However, a row in the RANGES section should be defined in the ROWS section.
3. It is possible to specify multiple range vectors, which are labeled by different range names. Normally, the first range vector encountered in the RANGES section is used, and all other range vectors are discarded. All the elements in a range vector must be specified before other range vectors are introduced. Within the specific range vector, for a given range, duplicate assignments of range values are not allowed.
4. A missing value in field4 or field6 is ignored. A data record with missing values in both field4 and field6 is ignored.
5. When a sequence of data records have an identical value in field2, you can specify the value in the first occurrence and omit the value by giving a missing value in the other records. If the value in field2 of the first data record in the section is missing, it means the name of the first vector is the missing value.

## BOUNDS Section (Optional)

The BOUNDS section specifies bounds for the columns.

- Indicator record:

Field1	Field2	Field3	Field4	Field5	Field6
BOUNDS	Blank	Blank	.	Blank	.

- Data record:

Field1	Field2	Field3	Field4	Field5	Field6
Bound type	Bound   name	Column   name	Bound   for the   column	Blank	Blank

## Notes:

1. If you do not specify any bound for a column, then the upper bound is $+\infty$ for a continuous variable, and 1 for an integer variable, that is specified in the COLUMNS section. The lower bound is 0 by default.
2. General bound types include LO, UP, FX, FR, MI, and PL. Suppose the bound for a column identified in field3 is specified as $b$ in field4. Table 14.2 explains the effects of different bound types.

Table 14.2 Bound Type Rules

Bound Type	Ignore $b$	Resultant Lower Bound	Resultant Upper Bound
LO	No	$b$	unspecified
UP	No	unspecified	$b$
FX	No	$b$	$b$
FR	Yes	$-\infty$	$+\infty$
MI	Yes	$-\infty$	unspecified
PL	Yes	unspecified	$+\infty$

If a bound (lower or upper) is not explicitly specified, then it takes the default values according to Note 1. There is one exception: if the upper bound is specified as a negative value $(b<0)$ and the lower bound is unspecified, then the lower bound is set to $-\infty$.

Mixed integer programming problems can specify integer variables in the BOUNDS section. Table 14.3 shows bound types defined for MIP.

Table 14.3 Bound Type Rules

Bound Type	Ignore $b$	Variable Type	Value
BV	Yes	binary	0 or 1
LI	No	integer	$[b, \infty)$
UI	No	integer	$(-\infty, b]$

3. The columns that have bounds do not need to be specified in the same order in which the columns were specified in the COLUMNS section. However, all columns in the BOUNDS section should be defined in the COLUMNS section.
4. It is possible to specify multiple bound vectors, which are labeled by different bound names. Normally, the first bound vector encountered in the BOUNDS section is used, and all other bound vectors are discarded. All the elements of the selected bound vector must be specified before other bound vectors are introduced.
5. When data records in a sequence have an identical value in field2, you can specify the value in the first occurrence and omit the value by giving a missing value in the other records. If the value in field2 of the first data record in the section is missing, it means the name of the first vector is the missing value.
6. Within a particular BOUNDS vector, for a given column, if a bound (lower or upper) is explicitly specified by the bound type rules listed in Table 14.2, any other specification is considered to be an error.
7. If the value in field1 is LO, UP, $\mathbf{F X}, \mathbf{L I}$, or UI, then a data record with a missing value in field4 is ignored.

## BRANCH Section (Optional)

Sometimes you want to specify branching priorities or directions for integer variables to improve performance. Variables with higher priorities are branched on before variables with lower priorities. The branch direction is used to decide which branch to take first at each node. For more information, see the section "Branching Priorities" on page 425.

- Indicator record:

Field1	Field2	Field3	Field4	Field5	Field6
BRANCH	Blank	Blank	.	Blank	.

- Data record:

Field1	Field2	Field3	Field4	Field5	Field6
Branch	Blank	First	First	Second	Second
direction		column	column	column	column
		name	priority	name	priority

## Notes:

1. Valid directions include UP (up branch), DN (down branch), RD (rounding) and $\mathbf{C B}$ (closest bound). If field1 is blank, the solver automatically decides the direction.
2. If field4 is missing, then the name defined in field3 is ignored. Similarly, if field6 is missing, then the name defined in field5 is ignored.
3. The priority value in field4 and field6 must be nonnegative. Zero is the lowest priority and is also the default.

## QSECTION Section

The QSECTION section is needed only to describe quadratic programming problems. It specifies the coefficients of the quadratic terms in the objective function.

- Indicator record:

Field1	Field2	Field3	Field4	Field5	Field6
QSECTION	Blank	Blank	$\cdot$	Blank	$\cdot$
or   QUADOBJ					

- Data record:

Field1	Field2	Field3	Field4	Field5	Field6
Blank	Column   name	Column   name	Coefficient	Blank	$\cdot$
			in   objective   function		

## Notes:

1. The QSECTION section is required for PROC OPTQP and should not appear for PROC OPTLP. For PROC OPTQP, there should be at least one valid data record in the QSECTION section. For PROC OPTLP, an error is reported when the submitted data set contains a QSECTION section.
2. The variables field2 and field3 contain the names of the columns that form a quadratic term in the objective function. They must have been defined in the COLUMNS section. They need not refer to the same column. Zero entries should not be specified.
3. Duplicate entries of a quadratic term are not allowed. This means the combination of (field2, field3) must be unique, where $(k, j)$ and $(j, k)$ are considered to be the same combination.
4. If field4 of one data record is missing or takes a value of zero, then this data record is ignored.

## ENDATA Section

The ENDATA section simply declares the end of all records. It contains only one indicator record, where field1 takes the value ENDATA and the values of the remaining variables are blank or missing.

## Details: MPS-Format SAS Data Set

## Converting an MPS/QPS-Format File: \%MPS2SASD

As described in the section "Overview: MPS-Format SAS Data Set" on page 581, the MPS or QPS format is a standard file format for describing linear, integer, and quadratic programming problems. The MPS/QPS format is defined for plain text files, whereas in the SAS System it is more convenient to read data from SAS data sets. Therefore, a facility is required to convert MPS/QPS-format text files to MPS-format SAS data sets. The SAS macro \%MPS2SASD serves this purpose.

In the MPS/QPS-format text file, a record refers to a single line of text that is divided into six fields. MPS/QPS files can be read and printed in both fixed and free format. In fixed MPS/QPS format, each field of a data record must occur in specific columns:

Field	Field 1	Field 2	Field 3	Field 4	Field 5	Field 6
Columns	$2-3$	$5-12$	$15-22$	$25-36$	$40-47$	$50-61$

In free format, fields of a record are separated by a space. Both fixed and free format have limitations. If users need to use row names or column names longer than 8 characters, then there is not enough space to hold them in fixed format. If users use a space as a part of a row name or column name, such as "ROW NAME", then free-format MPS format interprets this symbol as two fields, "ROW" and "NAME".

You can insert a comment record, denoted by an asterisk (*) in column 1, anywhere in an MPS/QPS file. Also, if a dollar sign (\$) is the first character in field 3 or field 5 of any record, the information from that point to the end of the record is treated as a comment. All comments are ignored by the \%MPS2SASD macro, described as follows.

## \%MPS2SASD Macro Parameters

\%MPS2SASD (MPSFILE='infilename', OUTDATA=mpsdata, MAXLEN=n, FORMAT=FIXED/FREE);

## MPSFILE= 'infilename'

specifies the path and name of the input MPS-format file. The input file is a plain text file, normally with either an ".mps" extension for linear programming problems or a ".qps" extension for quadratic programming problems. This parameter is required; there is no default value.

## OUTDATA=mpsdata

specifies the name of the output MPS-format SAS data set. This parameter is optional; the default value is mpsdata.

## MAXLEN=n

specifies length of the variables field2, field3, and field5 in the output MPS-format SAS data set. This parameter is optional; the default value is 8 .

FORMAT=FIXED/FREE
specifies the format of the input MPS file. Valid values can be either FIXED or FREE. This parameter is optional; the default value is the one, if any, specified by the flat file and FIXED otherwise.

## Length of Variables

In an MPS-format SAS data set, normally the variables field2, field3, and field5 hold the names of the rows and columns. The length of these character variables is limited to the maximum size of a SAS character variable. This enables you to use sufficiently long names for the rows and columns in your model.

In a SAS data set generated by the \%MPS2SASD macro, the length of the variables field2, field3, and field5 is fixed to be 8 ASCII characters by default. This length fits the fixed-format MPS/QPS file well since field 2 , field 3, and field 5 are fixed at 8 characters. However, the free-format MPS/QPS files might have longer row names or longer column names. The $\%$ MPS2SASD macro provides a parameter MAXLEN = n. Using this parameter, you can set the variables field2, field3, and field5 to have a length of n characters in the output SAS data set.

The parameter MAXLEN works only when the given MPS file is in free format. For a fixed-format MPS file, this parameter is ignored and the length of field2, field3, and field5 is 8 characters by default.

## Examples: MPS-Format SAS Data Set

## Example 14.1: MPS-Format Data Set for a Product Mix Problem

Consider a simple product mix problem where a furniture company tries to find an optimal product mix of four items: a desk $\left(x_{1}\right)$, a chair $\left(x_{2}\right)$, a cabinet $\left(x_{3}\right)$, and a bookcase $\left(x_{4}\right)$. Each item is processed in a stamping department (STAMP), an assembly department (ASSEMB), and a finishing department (FINISH). The time each item requires in each department is given in the input data. Because of resource limitations,
each department has an upper limit on the time available for processing. Furthermore, because of labor constraints, the assembly department must work at least 300 hours. Finally, marketing tells you not to make more than 75 chairs, to make at least 50 bookcases, and to find the range over which the selling price of a bookcase can vary without changing the optimal product mix.

This problem can be expressed as the following linear program:

$$
\begin{array}{rrlll}
\max & 95 x_{1}+41 x_{2}+84 x_{3}+76 x_{4} & & & \\
\text { subject to } & 3 x_{1}+1.5 x_{2}+2 x_{3}+2 x_{4} & \leq 800 & (\text { STAMP }) \\
& 10 x_{1}+6 x_{2}+8 x_{3}+7 x_{4} & \leq 1200 & (\text { ASSEMB }) \\
& 10 x_{1}+6 x_{2}+8 x_{3}+7 x_{4} & \geq 300 & \text { (ASSEMB) } \\
& 10 x_{1}+8 x_{2}+8 x_{3}+7 x_{4} & \leq 800 & \text { (FINISH) } \\
x_{2} & \leq & 75 & \\
x_{4} & \geq & 50 & \\
& x_{i} & \geq & 0 & i=1,2,3
\end{array}
$$

The following DATA step saves the problem specification as an MPS-format SAS data set:


## Example 14.2: Fixed-MPS-Format File

The following file, example_fix.mps, contains the data from Example 14.1 in the form of a fixed-MPSformat file. The indicator codes MAX and MIN are not available for objective rows in fixed MPS format, so the PROFIT row is specified as type N. Minimization is assumed for type-N rows; for a maximization objective, the objective coefficients must be replaced with values of the opposite sign.

* THIS IS AN NAME	EXAMPLE FOR FIXED MPS FORMAT.			
ROWS				
N PROFIT				
1 STAMP				
L ASSEMB				
L FINISH				
COLUMNS				
DESK	STAMP	3.00000	ASSEMB	10.00000
DESK	FINISH	10.00000	PROFIT	-95.00000
CHAIR	STAMP	1.50000	ASSEMB	6.00000
CHAIR	FINISH	8.00000	PROFIT	-41.00000
CABINET	STAMP	2.00000	ASSEMB	8.00000
CABINET	FINISH	8.00000	PROFIT	-84.00000
BOOKCSE	STAMP	2.00000	ASSEMB	7.00000
BOOKCSE	FINISH	7.00000	PROFIT	-76.00000
RHS				
TIME	STAMP	800.00000	ASSEMB	1200.0000
TIME	FINISH	800.00000		
RANGES				
T1	ASSEMB	900.00000		
BOUNDS				
UP BND	CHAIR	75.00000		
LO BND	BOOKCSE	50.00000		
ENDATA				

## Example 14.3: Free-MPS-Format File

In free format, fields in data records other than the first record have no predefined positions. They can be written anywhere except column 1, with each field separated from the next by one or more blanks (a tab cannot be used as a field separator). However, the fields must appear in the same sequence as in the fixed format. The following file, example_free.mps, is an example. It describes the same problem as in Example 14.2.

```
* THIS IS AN EXAMPLE FOR FREE MPS FORMAT.
NAME PROD_MIX FREE
ROWS
 N PROFIT
 L STAMP
 I ASSEMB
 L FINISH
```

```
\begin{tabular}{llccc}
COLUMNS & & & & \\
DESK & STAMP & 3.00000 & ASSEMB & 10.00000 \\
DESK & FINISH & 10.00000 & PROFIT & -95.00000 \\
CHAIR & STAMP & 1.50000 & ASSEMB & 6.00000 \\
CHAIR & FINISH & 8.00000 & PROFIT & -41.00000 \\
CABINET & STAMP & 2.00000 & ASSEMB & 8.00000 \\
CABINET & FINISH & 8.00000 & PROFIT & -84.00000 \\
BOOKCSE & STAMP & 2.00000 & ASSEMB & 7.00000 \\
BOOKCSE FINISH & 7.00000 & PROFIT & -76.00000 \\
RHS \\
TIME & & & & \\
TIME & FINMP & 800.00000 & ASSEMB & 1200.0000 \\
RANGES & & 800.00000 & & \\
T1 & ASSEMB & 900.00000 & & \\
BOUNDS & & & &
\end{tabular}
```


## Example 14.4: Using the \%MPS2SASD Macro

We illustrate the use of the \%MPS2SASD macro in this example, assuming the files example_fix.mps and example_free.mps are in your current SAS working directory.

The MPS2SASD macro function has one required parameter, MPSFILE= 'infilename', which specifies the path and name of the MPS/QPS-format file. With this single parameter, the macro reads the file, converts the records, and saves the conversion to the default MPS-format SAS data set MPSDATA.

Running the following statements converts the fixed-format MPS file shown in Example 14.2 to the MPSformat SAS data set MPSDATA:

```
%mps2sasd(mpsfile='example_fix.mps');
proc print data=mpsdata;
run;
```

Output 14.4.1 displays the MPS-format SAS data set MPSDATA.

Output 14.4.1 The MPS-Format SAS Data Set MPSDATA

Obs	field1	field2	field3	field4	field5	field6
1	NAME		PROD_MIX	.		.
2	ROWS			.		.
3	N	PROFIT		.		.
4	L	STAMP		.		.
5	L	ASSEMB		.		.
6	L	FINISH		.		.
7	COLUMNS			.		.
8		DESK	STAMP	3.0	ASSEMB	10
9		DESK	FINISH	10.0	PROFIT	-95
10		CHAIR	STAMP	1.5	ASSEMB	6
11		CHAIR	FINISH	8.0	Profit	-41
12		CABINET	STAMP	2.0	ASSEMB	8
13		CABINET	FINISH	8.0	Profit	-84
14		BOOKCSE	STAMP	2.0	ASSEMB	7
15		BOOKCSE	FINISH	7.0	PROFIT	-76
16	RHS			.		.
17		TIME	STAMP	800.0	ASSEMB	1200
18		TIME	FINISH	800.0		.
19	RANGES			.		.
20		T1	ASSEMB	900.0		.
21	BOUNDS			.		.
22	UP	BND	CHAIR	75.0		.
23	LO	BND	BOOKCSE	50.0		.
24	Endata			.		-

Running the following statement converts the free-format MPS file shown in Example 14.3 to the MPSformat SAS data set MPSDATA:

```
%mps2sasd(mpsfile='example_free.mps');
```

The data set is identical to the one shown in Output 14.4.1.
In the following statement, when the free-format MPS file is converted, the length of the variables field2, field3, and field5 in the SAS data set MPSDATA is explicitly set to 10 characters:

```
%mps2sasd(mpsfile='example_free.mps', maxlen=10, format=free);
```

If you want to save the converted data to a SAS data set other than the default data set MPSDATA, you can use the parameter OUTDATA $=$ mpsdata. The following statement reads data from the file example_fix.mps and writes the converted data to the data set PRODMIX:

```
%mps2sasd(mpsfile='example_fix.mps', outdata=PRODMIX);
```


## References

IBM (1988), Mathematical Programming System Extended/370 (MPSX/370) Version 2 Program Reference Manual, volume SH19-6553-0, IBM.

Maros, I. and Mészáros, C. (1999), "A Repository of Convex Quadratic Programming Problems," Optimization Methods and Software, 11-12, 671-681.

Murtagh, B. A. (1981), Advanced Linear Programming: Computation and Practice, New York: McGrawHill.

## Subject Index

active nodes
OPTMILP procedure, 422
OPTMODEL procedure, MILP solver, 250
active-set method
overview, 305
active-set primal-dual algorithm, 299
_ACTIVITY_ variable
DUALOUT= data set, 364, 421, 475
aggregation operators
OPTMODEL procedure, 34
algorithm, 511
Bard function, 145
basis, 179, 358
_BLOCK_ variable
BLOCKS = data set, 513
block-angular structure
decomposition algorithm, 494, 534, 539
block-diagonal structure
decomposition algorithm, 495, 510, 514, 528
blocks
decomposition algorithm, 494, 512
BLOCKS $=$ data set
blocks, 513
DECOMP statement, 513
decomposition algorithm, 513
variables, 513
branch-and-bound
control options, 251, 423
branch-and-price
decomposition algorithm, 513
branching priorities
OPTMILP procedure, 425
OPTMODEL procedure, MILP solver, 252
branching priority
MPS-format SAS data set, 589
branching variable
OPTMILP procedure, 422
OPTMODEL procedure, MILP solver, 250
CLOSEFILE statement
OPTMODEL procedure, 110
column generation
decomposition algorithm, 513
columns, 106
complementarity
OPTMODEL procedure, 103
concurrent LP, 187, 371
constrained optimization
overview, 302
constraint bodies
OPTMODEL procedure, 119
constraint declaration
OPTMODEL procedure, 49
constraint status
LP solver, 188
constraints
OPTMODEL procedure, 26, 116
control flow
OPTMODEL procedure, 109
conversions
OPTMODEL procedure, 141
converting MPS-format file
examples, 594
MPS2SASD macro, 590
coverage
decomposition algorithm, 495, 515, 525, 546
cutting planes
OPTMILP procedure, 425
OPTMODEL procedure, MILP solver, 253
data, 354, 411
data set input/output
OPTMODEL procedure, 105
declaration statements
OPTMODEL procedure, 48
DECOMP statement
BLOCKS = data set, 513
definitions of BLOCKS = data set variables, 513
decomposition algorithm
block-angular structure, 494, 534, 539
block-diagonal structure, 495,510,514, 528
blocks, 494, 512
BLOCKS = data set, 513
branch-and-price, 513
column generation, 513
coverage, 495, 515, 525, 546
decomposition algorithm, 513
details, 512
examples, 517
introductory example, 495
Lagrangian decomposition, 534, 535
LP solver, 180
master problem, 494, 495, 513
MILP solver, 249
OPTLP procedure, 360
OPTMILP procedure, 419
overview, 493
pricing out variables, 513
relaxation, 494, 525
separable region, 494
subproblem, 494, 495, 512, 513
decomposition algorithm examples
ATM cash management, 548
block-diagonal structure, 528
generalized assignment problem, 522
multicommodity flow, 517
resource allocation, 534
deterministic solution results, 18
dual value
OPTMODEL procedure, 124
DUALIN= data set
OPTLP procedure, 361
variables, 361
DUALOUT= data set
OPTLP procedure, 363, 364
OPTMILP procedure, 421
OPTQP procedure, 474, 475
variables, $363,364,421,474,475$
examples, see MPS-format examples, see OPTLP examples, see OPTMODEL examples, see OPTQP examples, see QP examples
converting MPS-format file, 594
fixed MPS-format file, 593
free MPS-format file, 593
MPS-format SAS data set, 591
expressions
OPTMODEL procedure, 38
facility location
MILP solver examples, 270
feasibility tolerance, 177, 356
feasible region, 103
OPTMODEL procedure, 26
feasible solution, 103
OPTMODEL procedure, 26
FILE statement
OPTMODEL procedure, 110
first-order necessary conditions
local minimum, 105
fixed MPS-format file
examples, 593
FOR statement
OPTMODEL procedure, 109
formatted output
OPTMODEL procedure, 109
free MPS-format file
examples, 593
function expressions
OPTMODEL procedure, 41
functional summary
OPTMODEL procedure, 44
global solution, 104
identifier expressions
OPTMODEL procedure, 40
IF expression, 93
IIS option
OPTLP procedure, 375
OPTMODEL procedure, LP solver, 189
impure functions
OPTMODEL procedure, 35
index sets, 34
implicit set slicing, 142
index-set-item, 42
OPTMODEL procedure, 42
INITIAL variable
OPTIONVALUES= data set, 567
integer variables
OPTMODEL procedure, 124
interior point algorithm
overview, 304
interior point primal-dual algorithm, 299
intermediate variable, 165
irreducible infeasible set
OPTLP procedure, 375
OPTMODEL procedure, LP solver, 189
iteration $\log$
crossover algorithm, 186, 370
interior point solver, 185,370
LP solver, 184-186
network simplex solver, 185, 369
OPTLP procedure, 368-370
primal and dual simplex solvers, 184,368
Karush-Kuhn-Tucker conditions, 105
key columns, 106, 107
key set, 63
Lagrange multipliers, 104
Lagrangian decomposition
decomposition algorithm, 534, 535
Lagrangian function, 104
_LBOUND_ variable
PRIMALOUT= data set, 362, 421, 474
linear programming, see also OPTMODEL
procedure, see also OPTLP procedure
OPTMODEL procedure, 27
list form
PRINT statement, 76
local minimum
first-order necessary conditions, 105
second-order necessary conditions, 105
local solution, 103

LP solver
concurrent LP, 187
constraint status, 188
iteration log, 184-186
problem statistics, 187
variable status, 188
LP solver examples
diet problem, 192
finding an irreducible infeasible set, 205
generalized networks, 216
maximum flow, 220
production, inventory, distribution, 223
shortest path, 232
two-person zero-sum game, 202
using the network simplex solver, 208
_L_RHS_ variable
DUALOUT= data set, 364, 421, 475
\%MPS2SASD
MPS2SAD, 467
MPS2SASD, 470
macro variable
_OROPTMODEL_, 143, 190, 311, 337
macro variable
_OROPTMILP_, 432
OROPTLP
_OROPTLP_, 376
OROPTMODEL
_OROPTMODEL_, 257
OROPTQP
_OROPTQP_, 481
master problem
decomposition algorithm, 494, 495, 513
matrix form
PRINT statement, 76
memory limit, 20
method, 505
migration to PROC OPTMODEL
from PROC NETFLOW, 216, 220, 223, 232
from PROC NLP, 161
MILP solver
problem statistics, 256
MILP solver examples
branching priorities, 277
facility location, 270, 444
miplib, 440
multicommodity problems, 264
scheduling, 260, 451
simple integer linear program, 435
traveling salesman problem, 280
model building
PROC OPTMODEL, 11
model update
OPTMODEL procedure, 132

MPS format, 84
MPS-format file, 590
MPS-format SAS data set, 581
bound type, 587
branching priority, 589
converting MPS-format file, 594
examples, 591
length of variables, 591
range, 586
row type, 583
sections, 583
variables, 582
MPS2SASD macro
converting MPS-format file, 590
multicommodity problems
MILP solver examples, 264
multiple subproblems
OPTMODEL procedure, 136
multithreaded parallel computing, 17
multithreading
OPTLP procedure, 360
OPTMILP option tuner, 563
OPTMILP procedure, 419
OPTQP procedure, 472
NAME variable
PROBLEMS = data set, 566
NLP solver
solver termination messages, 310
NLP solver examples
solving highly nonlinear optimization problems, 313
solving large-scale NLP problems, 320
solving NLP problems with range constraints, 317
solving NLP problems with several local minima, 322
solving unconstrained and bound-constrained optimization problems, 315
node selection
OPTMILP procedure, 424
OPTMODEL procedure, MILP solver, 251
nondeterministic solution results, 18
numerical difficulties, 20
_OBJCOEF_ variable
PRIMALOUT= data set, 421
_VAR_ variable
PRIMALOUT= data set, 362,474
objective declarations
OPTMODEL procedure, 28, 51
objective functions
OPTMODEL procedure, 26, 28, 51
objective value

OPTMODEL procedure, 26
objectives
OPTMODEL procedure, 28
_OBJ_ID_ variable
DUALOUT= data set, 363, 421, 474
PRIMALOUT= data set, 362, 420, 473
OBJSENSE variable
PROBLEMS = data set, 567
ODS table names
OPTLP procedure, 371
OPTMILP procedure, 428
OPTMODEL procedure, 112
OPTQP procedure, 477
PERFORMANCE statement, 19
ODS variable names
OPTMODEL procedure, 113
online documentation, 4
operators
OPTMODEL procedure, 38
optimal solution
OPTMODEL procedure, 26
optimal value
OPTMODEL procedure, 26
optimality conditions
OPTMODEL procedure, 102
optimization
introduction, 7
optimization modeling language, 25
optimization variable
OPTMODEL procedure, 26
optimization variables
OPTMODEL procedure, 28
option tuner, see OPTMILP option tuner
OPTION variable
OPTIONVALUES= data set, 567
OPTIONVALUES= data set
INITIAL variable, 567
OPTION variable, 567
OPTMILP option tuner, 567
VALUES variable, 567
variables, 567
OPTLP examples
diet optimization problem, 384
finding an irreducible infeasible set, 395
oil refinery problem, 379
reoptimizing after adding a new constraint, 391
reoptimizing after modifying the objective function, 387
reoptimizing after modifying the right-hand side, 389
using the interior point solver, 383
using the network simplex solver, 400
OPTLP procedure
basis, 358
concurrent LP, 371
crossover, 359
data, 354
decomposition algorithm, 360
definitions of DUALIN= data set variables, 361
definitions of DUALOUT = data set variables, 363, 364
definitions of DUALOUT=data set variables, 363, 364
definitions of PRIMALIN data set variables, 361
definitions of PRIMALIN= data set variables, 361
definitions of PRIMALOUT= data set variables, 362, 363
dual infeasibility, 360
DUALIN= data set, 361
duality gap, 359
DUALOUT= data set, 363, 364
feasibility tolerance, 356
functional summary, 353
IIS option, 375
interior point algorithm, 366
introductory example, 350
iteration log, 368-370
memory limit, 20
multithreaded parallel computing, 17
multithreading, 360
network simplex algorithm, 366
numerical difficulties, 20
ODS table names, 371
_OROPTLP_ macro variable, 376
preprocessing, 356
presolver, 356
pricing, 358
primal infeasibility, 360
PRIMALIN= data set, 361
PRIMALOUT= data set, 362, 363
problem statistics, 374
queue size, 359
scaling, 359
solver, 355
OPTMILP option tuner, 419
examples, 560, 572
functional summary, 563
multithreading, 563
OPTIONVALUES = data set, 567
overview, 559
PROBLEMS = data set, 566
syntax, 562
TUNEROUT= data set, 567
OPTMILP option tuner examples
default tuning options, 572
multiple problems, 575
single problem, 572
user-defined tuning options, 575
OPTMILP procedure
active nodes, 422
branch-and-bound, 423
branching priorities, 425
branching variable, 422
cutting planes, 425
data, 411
decomposition algorithm, 419
definitions of DUALOUT= data set variables, 421
definitions of DUALOUT=data set variables, 421
definitions of PRIMALIN= data set variables, 420
definitions of PRIMALOUT= data set variables, 420, 421
DUALOUT= data set, 421
functional summary, 409
introductory example, 406
memory limit, 20
multithreaded parallel computing, 17
multithreading, 419
node selection, 424
numerical difficulties, 20
ODS table names, 428
_OROPTMILP_macro variable, 432
presolve, 425
PRIMALIN $=$ data set, 420
PRIMALOUT= data set, 420, 421
probing, 425
problem statistics, 432
variable selection, 424
OPTMODEL examples
matrix square root, 144
model construction, 147
multiple subproblems, 153
reading from and creating a data set, 145
set manipulation, 152
SUBMIT statement, 157
traveling salesman problem, 157
OPTMODEL expression extensions, 92
aggregation expression, 95
OPTMODEL procedure
aggregation operators, 34
CLOSEFILE statement, 110
complementarity, 103
constraint bodies, 119
constraints, 116
control flow, 109
conversions, 141
data set input/output, 105
declaration statements, 48
dual value, 124
expressions, 38
feasible region, 103
feasible solution, 103
FILE statement, 110
first-order necessary conditions, 105
FOR statement, 109
formatted output, 109
function expressions, 41
functional summary, 44
global solution, 104
identifier expressions, 40
impure functions, 35
index sets, 42
integer variables, 124
Karush-Kuhn-Tucker conditions, 105
Lagrange multipliers, 104
Lagrangian function, 104
local solution, 103
macro variable _OROPTMODEL_, 143
memory limit, 20
model update, 132
multiple subproblems, 136
multithreaded parallel computing, 17
numerical difficulties, 20
objective declarations, 28, 51
ODS table names, 112
ODS variable names, 113
operators, 38
optimality conditions, 102
optimization variables, 28
options classified by function, 44
overview, 25
parameters, 33,51
presolver, 131
primary expressions, 40
PRINT statement, 110
programming statements, 57
PUT statement, 109
range constraints, 126
reduced costs, 130
RESET OPTIONS statement, 138
second-order necessary conditions, 105
second-order sufficient conditions, 105
_SOLUTION_STATUS_ parameter, 143
_STATUS_ parameter, 143
strict local solution, 104
suffix names, 119, 121
table of syntax elements, 44
threaded processing, 142
variable declaration, 28, 56
OPTMODEL procedure, DECOMP algorithm method, 505
OPTMODEL procedure, DECOMP_SUBPROB algorithm
algorithm, 511

OPTMODEL procedure, LP solver
basis, 179
feasibility tolerance, 177
functional summary, 174
IIS option, 189
introductory example, 172
macro variable _OROPTMODEL_, 190
network simplex algorithm, 181
preprocessing, 177
presolver, 177
pricing, 179
queue size, 179
scaling, 179
solver, 176
solver2, 176
OPTMODEL procedure, MILP solver
active nodes, 250
branch-and-bound, 251
branching priorities, 252
branching variable, 250
cutting planes, 253
functional summary, 239
introductory example, 238
node selection, 251
_OROPTMODEL_ macro variable, 257
presolve, 252
probing, 252
variable selection, 252
OPTMODEL procedure, NLP solver
details, 302
functional summary, 297
introductory examples, 289
macro variable _OROPTMODEL_, 311
solver, 299
technique, 299
OPTMODEL procedure, QP solver
functional summary, 332
macro variable _OROPTMODEL_, 337
OPTQP examples
covariance matrix, 486
data fitting, 483
estimation, 483
linear least squares, 483
Markowitz model, 486
portfolio optimization, 486
portfolio selection with transactions, 489
short-sell, 488
OPTQP procedure
output data sets, 473
definitions of DUALOUT= data set variables, 474, 475
definitions of DUALOUT=data set variables, 474, 475
definitions of PRIMALOUT= data set variables, 473, 474
dual infeasibility, 472
duality gap, 472
DUALOUT= data set, 474, 475
examples, 483
functional summary, 470
interior point algorithm overview, 475
iteration log, 470
memory limit, 20
\%MPS2SASD macro, 467, 470
multithreaded parallel computing, 17
multithreading, 472
numerical difficulties, 20
ODS table names, 477
_OROPTQP_ macro variable, 481
overview, 463
primal infeasibility, 472
PRIMALOUT= data set, 473, 474
problem statistics, 480
_OROPTMODEL_ macro variable, 190, 311, 337
overview
optimization, 7
OPTMODEL procedure, 25
OPTQP procedure, 463
parallel execution
parallel execution, 514
parameters, 36
initialization, 37
OPTMODEL procedure, 33, 51
parameter declarations, 51
parameter options, 52
_SOLUTION_STATUS_parameter, 143
_STATUS_parameter, 143
PDIGITS $=$ option, 111
PERFORMANCE statement
ODS table names, 19
positive semidefinite matrix, 328, 464
presolve
OPTMILP procedure, 425
OPTMODEL procedure, MILP solver, 252
presolver, 177, 356
pricing, 179, 358
pricing out variables
decomposition algorithm, 513
PRIMALIN= data set
OPTLP procedure, 361
OPTMILP procedure, 420
variables, 361, 420
PRIMALOUT= data set
OPTLP procedure, 362, 363
OPTMILP procedure, 420, 421
OPTQP procedure, 473, 474
variables, 362, 363, 420, 421, 473, 474
primary expressions
OPTMODEL procedure, 40
PRINT statement
list form, 76
matrix form, 76
OPTMODEL procedure, 110
probing
OPTMILP procedure, 425
OPTMODEL procedure, MILP solver, 252
PROBLEM variable
TUNEROUT= data set, 567
PROBLEMS = data set
NAME variable, 566
OBJSENSE variable, 567
OPTMILP option tuner, 566
variables, 566
PROC OPTMODEL
model building, 11
programming statements
control, 57
general, 57
input/output, 57
looping, 57
model, 57
OPTMODEL procedure, 57
PUT statement
OPTMODEL procedure, 109
PWIDTH= option, 111
QP Solver
examples, 339
interior point algorithm overview, 334
iteration log, 336
QP solver
problem statistics, 336
QP solver examples
covariance matrix, 342
data fitting, 339
estimation, 339
linear least squares, 339
Markowitz model, 342
portfolio optimization, 342
portfolio selection with transactions, 345
short-sell, 344
QPS format, 85
QPS format file, 590
quadratic programming
quadratic matrix, 327,464
queue size, 179,359
range constraints
OPTMODEL procedure, 126
RANK variable

TUNEROUT= data set, 567
_R_COST_ variable
PRIMALOUT= data set, 363
READ DATA statement trim option, 81
reduced costs
OPTMODEL procedure, 130
relaxation
decomposition algorithm, 494, 525
RESET OPTIONS statement
OPTMODEL procedure, 138
_RHS_variable
DUALOUT= data set, 364, 421, 475
_RHS_ID_ variable
DUALOUT= data set, 363, 421, 474
PRIMALOUT= data set, 362, 420, 473
_ROW_ variable
BLOCKS = data set, 513
DUALIN= data set, 361
DUALOUT= data set, 363, 421, 474
scalar types, 35, 51
scaling, 179, 359
scheduling
MILP solver examples, 260
second-order necessary conditions, 105
local minimum, 105
second-order sufficient conditions, 105
strict local minimum, 105
separable region decomposition algorithm, 494
set types, 52
_SOLUTION_STATUS_parameter
OPTMODEL procedure, 143
SOLVE WITH LP statement
crossover, 180
dual infeasibility, 180
duality gap, 180
primal infeasibility, 180
SOLVE WITH QP statement
dual infeasibility, 333
duality gap, 333
primal infeasibility, 333
solver, 176
_STATUS_parameter
OPTMODEL procedure, 143
_STATUS_ variable
DUALIN= data set, 361
DUALOUT= data set, 364, 475
PRIMALIN= data set, 361
PRIMALOUT= data set, 362, 474
strict local minimum
second-order sufficient conditions, 105
strict local solution, 104
subproblem
decomposition algorithm, 494, 495, 512, 513
suffix names
OPTMODEL procedure, 119,121
suffixes, 107, 121
threaded processing
OPTMODEL procedure, 142
traveling salesman problem
MILP solver examples, 280
trim option
READ DATA statement, 81
TUNEROUT = data set
option configurations, 567
OPTMILP option tuner, 567
PROBLEM variable, 567
RANK variable, 567
solution information, 567
variables, 567
tuples, 35
_TYPE_ variable
DUALOUT = data set, 363, 421, 474
PRIMALOUT= data set, 362, 420, 473
_UBOUND_ variable
PRIMALOUT= data set, 362, 421, 474
unconstrained optimization
OPTMODEL procedure, 26
_U_RHS_ variable
DUALOUT= data set, 364, 421, 475
_VALUE_ variable
DUALOUT= data set, 364, 475
PRIMALIN= data set, 420
PRIMALOUT= data set, 362, 421, 474
VALUES variable
OPTIONVALUES= data set, 567
_VAR_ variable
PRIMALIN= data set, 361,420
PRIMALOUT= data set, 362, 420, 473
variable declaration
OPTMODEL procedure, 28, 56
variable selection
OPTMILP procedure, 424
OPTMODEL procedure, MILP solver, 252
variable status
LP solver, 188

## Syntax Index

## ABSOBJGAP= option

DECOMP statement, 502
PROC OPTMILP statement, 412
SOLVE WITH MILP statement, 242
ALGORITHM2= option
PROC OPTLP statement, 356
SOLVE WITH LP statement, 176
ALGORITHM = option
DECOMP_SUBPROB statement, 511
PROC OPTLP statement, 355
SOLVE WITH LP statement, 176
SOLVE WITH NLP statement, 299
AND aggregation expression
OPTMODEL expression extensions, 92
assignment statement
OPTMODEL procedure, 58

## BASIS= option

PROC OPTLP statement, 358
SOLVE WITH LP statement, 179

## BLOCKS= option

DECOMP statement, 502
CALL statement
OPTMODEL procedure, 58
CARD function
OPTMODEL expression extensions, 92
CDIGITS $=$ option
PROC OPTMODEL statement, 46
CLOSEFILE statement
OPTMODEL procedure, 58
COL keyword
CREATE DATA statement, 60,62
READ DATA statement, 81
COMPRESSFREQ= option
DECOMP statement, 502
CONFLICTSEARCH= option
PROC OPTMILP statement, 415
SOLVE WITH MILP statement, 245
CONSTRAINT option
EXPAND statement, 69
CONSTRAINT statement
OPTMODEL procedure, 49
CONTINUE statement
OPTMODEL procedure, 59
CREATE DATA statement
COL keyword, 60, 62
OPTMODEL procedure, 59
CROSS expression

OPTMODEL expression extensions, 92
CROSSOVER= option
PROC OPTLP statement, 359
SOLVE WITH LP statement, 180
CUTCLIQUE= option
PROC OPTMILP statement, 417
SOLVE WITH MILP statement, 247
CUTFLOWCOVER= option
PROC OPTMILP statement, 417
SOLVE WITH MILP statement, 248
CUTFLOWPATH= option
PROC OPTMILP statement, 417
SOLVE WITH MILP statement, 248
CUTGOMORY = option
PROC OPTMILP statement, 418
SOLVE WITH MILP statement, 248
CUTGUB= option
PROC OPTMILP statement, 418
SOLVE WITH MILP statement, 248
CUTIMPLIED $=$ option
PROC OPTMILP statement, 418
SOLVE WITH MILP statement, 248
CUTKNAPSACK= option
PROC OPTMILP statement, 418
SOLVE WITH MILP statement, 248
CUTLAP= option
PROC OPTMILP statement, 418
SOLVE WITH MILP statement, 248
CUTMILIFTED $=$ option
PROC OPTMILP statement, 418
SOLVE WITH MILP statement, 248
CUTMIR = option
PROC OPTMILP statement, 418
SOLVE WITH MILP statement, 248
CUTOFF= option
PROC OPTMILP statement, 412
SOLVE WITH MILP statement, 242
CUTS = option
PROC OPTMILP statement, 418
SOLVE WITH MILP statement, 249
CUTSFACTOR= option
PROC OPTMILP statement, 418
SOLVE WITH MILP statement, 248
CUTSTRATEGY = option
PROC OPTMILP statement, 418
SOLVE WITH MILP statement, 249
CUTZEROHALF $=$ option
PROC OPTMILP statement, 418

SOLVE WITH MILP statement, 249
DATA = option
PROC OPTLP statement, 354
PROC OPTMILP statement, 411
PROC OPTQP statement, 470
DECOMP_MASTER_IP=() option
SOLVE WITH MILP statement, 249
DECOMP_MASTER_IP statement DECOMP option, 507
OPTMILP procedure, 419
DECOMP_MASTER=() option
SOLVE WITH LP statement, 180
SOLVE WITH MILP statement, 249
DECOMP_MASTER statement
DECOMP option, 506
OPTLP procedure, 360
OPTMILP procedure, 419
DECOMP option
DECOMP_MASTER_IP statement, 507
DECOMP_MASTER statement, 506
DECOMP statement, 501
DECOMP_SUBPROB statement, 509
syntax, 498
DECOMP=() option
SOLVE WITH LP statement, 180
SOLVE WITH MILP statement, 249
DECOMP statement
ABSOBJGAP $=$ option, 502
BLOCKS = option, 502
COMPRESSFREQ= option, 502
DECOMP option, 501
INITVARS $=$ option, 502
LOGFREQ= option, 503
LOGLEVEL= option, 503
MASTER_IP_BEG= option, 504
MASTER_IP_END $=$ option, 504
MASTER_IP_FREQ=option, 504
MAXBLOCKS = option, 504
MAXCOLSPASS = option, 505
MAXITER= option, 505
MAXTIME $=$ option, 505
METHOD = option, 505
OPTLP procedure, 360
OPTMILP procedure, 419
RELOBJGAP $=$ option, 505
DECOMP_SUBPROB=() option
SOLVE WITH LP statement, 181
SOLVE WITH MILP statement, 249
DECOMP_SUBPROB statement
DECOMP option, 509
OPTLP procedure, 360
OPTMILP procedure, 419
DECOMP $=$ option

METHOD= option, 505
DECOMP_MASTER statement
INITPRESOLVER= option, 507
DECOMP_MASTER_IP statement
PRIMALIN= option, 508
DECOMP_SUBPROB statement
ALGORITHM= option, 511
INITPRESOLVER= option, 512
PRIMALIN = option, 512
SOL= option, 511
SOLVER= option, 511
DETAILS option
PERFORMANCE statement, 18
DIFF expression
OPTMODEL expression extensions, 93
DO statement
END keyword, 64
OPTMODEL procedure, 64
DO statement, iterative
END keyword, 65
OPTMODEL procedure, 65
UNTIL keyword, 65
WHILE keyword, 65
DO UNTIL statement
END keyword, 66
OPTMODEL procedure, 66
DO WHILE statement
END keyword, 67
OPTMODEL procedure, 67
DROP statement
OPTMODEL procedure, 67
DUALIN $=$ option
PROC OPTLP statement, 354
DUALOUT= option
PROC OPTLP statement, 354
PROC OPTMILP statement, 411
DUALOUT=option
PROC OPTQP statement, 470
ELSE keyword
IF statement, 72
EMPHASIS $=$ option
PROC OPTMILP statement, 412
SOLVE WITH MILP statement, 242
END keyword
DO statement, 64
DO statement, iterative, 65
DO UNTIL statement, 66
DO WHILE statement, 67
ERRORLIMIT = option
PROC OPTMODEL statement, 46
EXPAND statement
CONSTRAINT option, 69
FIX option, 69

IIS option, 69
IMPVAR option, 69
OBJECTIVE option, 69
OMITTED option, 69
OPTMODEL procedure, 68
SOLVE option, 68
VAR option, 69
FD= option
PROC OPTMODEL statement, 46
FDIGITS $=$ option
PROC OPTMODEL statement, 46
FEASTOL= option
PROC OPTLP statement, 356
PROC OPTMILP statement, 412
SOLVE WITH LP statement, 177
SOLVE WITH MILP statement, 242
SOLVE WITH NLP statement, 300
FILE statement
OPTMODEL procedure, 70
FIX option
EXPAND statement, 69
FIX statement
OPTMODEL procedure, 71
FOR statement
OPTMODEL procedure, 72
FORMAT=option
MPS2SASD Macro Parameters, 591
function expressions
OF keyword, 41
GOAL= option
TUNER statement (OPTMILP), 564

## HEURISTICS = option

PROC OPTMILP statement, 415
SOLVE WITH MILP statement, 245
IF expression
OPTMODEL expression extensions, 93
IF statement
ELSE keyword, 72
OPTMODEL procedure, 72
THEN keyword, 72
IIS option
EXPAND statement, 69
IIS $=$ option
PROC OPTLP statement, 355
SOLVE WITH LP statement, 176
IMPVAR option
EXPAND statement, 69
IMPVAR statement
OPTMODEL procedure, 50
IN expression
OPTMODEL expression extensions, 94

IN keyword
index sets, 42
index sets
IN keyword, 42
index set expression, 95
index-set-item, 42
INIT keyword
NUMBER statement, 52
SET statement, 52
STRING statement, 52
VAR statement, 56
INITPRESOLVER= option
DECOMP_MASTER statement, 507
DECOMP_SUBPROB statement, 512
INITVAR option
PROC OPTMODEL statement, 46
INITVARS $=$ option
DECOMP statement, 502
INTER aggregation expression
OPTMODEL expression extensions, 95
INTER expression
OPTMODEL expression extensions, 95
INTFUZZ= option
PROC OPTMODEL statement, 47
INTO keyword
READ DATA statement, 79
INTTOL= option
PROC OPTMILP statement, 412
SOLVE WITH MILP statement, 243
LEAVE statement
OPTMODEL procedure, 73
LOGFREQ= option
DECOMP statement, 503
PROC OPTLP statement, 356
PROC OPTMILP statement, 412
PROC OPTQP statement, 470
SOLVE WITH LP statement, 177
SOLVE WITH MILP statement, 243
SOLVE WITH NLP statement, 299
SOLVE WITH QP statement, 332
TUNER statement (OPTMILP), 565
LOGLEVEL= option
DECOMP statement, 503
PROC OPTLP statement, 357
PROC OPTMILP statement, 413
SOLVE WITH LP statement, 177
SOLVE WITH MILP statement, 243
TUNER statement (OPTMILP), 565
LTRIM option
READ DATA statement, 81
MASTER_IP_BEG= option
DECOMP statement, 504

MASTER_IP_END= option
DECOMP statement, 504
MASTER_IP_FREQ= option
DECOMP statement, 504
MAX aggregation expression
OPTMODEL expression extensions, 96
MAX statement
OPTMODEL procedure, 51
MAXBLOCKS $=$ option
DECOMP statement, 504
MAXCOLSPASS = option
DECOMP statement, 505
MAXCONFIGS $=$ option
TUNER statement (OPTMILP), 564
MAXITER= option
DECOMP statement, 505
PROC OPTLP statement, 357
PROC OPTQP statement, 471
SOLVE WITH LP statement, 178
SOLVE WITH NLP statement, 300
SOLVE WITH QP statement, 333
MAXLABLEN= option
PROC OPTMODEL statement, 47
MAXLEN=option
MPS2SASD Macro Parameters, 591
MAXNODES = option
PROC OPTMILP statement, 413
SOLVE WITH MILP statement, 243
MAXSOLS $=$ option
PROC OPTMILP statement, 413
SOLVE WITH MILP statement, 243
MAXTIME $=$ option
DECOMP statement, 505
PROC OPTLP statement, 357
PROC OPTMILP statement, 413
PROC OPTQP statement, 471
SOLVE WITH LP statement, 178
SOLVE WITH MILP statement, 243
SOLVE WITH NLP statement, 301
SOLVE WITH QP statement, 333
TUNER statement (OPTMILP), 564
METHOD = option
DECOMP statement, 505
DECOMP= option, 505
MIN aggregation expression
OPTMODEL expression extensions, 96
MIN statement
OPTMODEL procedure, 51
MISSCHECK option
PROC OPTMODEL statement, 47
MPS2SASD Macro Parameters
FORMAT=option, 591
MAXLEN=option, 591
MPSFILE=option, 591

OUTDATA=option, 591
MPSFILE=option
MPS2SASD Macro Parameters, 591
MS option
SOLVE WITH NLP statement, 299
MSBNDRANGE $=$ option
SOLVE WITH NLP statement, 298
MSDISTTOL= option
SOLVE WITH NLP statement, 298
MSGLIMIT = option
PROC OPTMODEL statement, 47
MSLOGLEVEL= option
SOLVE WITH NLP statement, 300
MSMAXSTARTS $=$ option
SOLVE WITH NLP statement, 298
MSMAXTIME= option
SOLVE WITH NLP statement, 298
MSPRINTLEVEL= option
SOLVE WITH NLP statement, 300
MULTISTART option
SOLVE WITH NLP statement, 299
NODESEL= option
PROC OPTMILP statement, 416
SOLVE WITH MILP statement, 246
NOINITVAR option
PROC OPTMODEL statement, 46
NOMISSCHECK option
PROC OPTMODEL statement, 47
NOTRIM option
READ DATA statement, 81
null statement
OPTMODEL procedure, 74
NUMBER statement
INIT keyword, 52
OPTMODEL procedure, 51
OBJECTIVE keyword
SOLVE statement, 86
OBJECTIVE option
EXPAND statement, 69
OBJLIMIT= option
SOLVE WITH NLP statement, 301
OBJSENSE= option
PROC OPTLP statement, 354
PROC OPTMILP statement, 411
PROC OPTQP statement, 471
OF keyword
function expressions, 41
OMITTED option
EXPAND statement, 69
OPTIONMODE= option
TUNER statement (OPTMILP), 564
OPTIONVALUES $=$ option

TUNER statement (OPTMILP), 565
OPTLP procedure, 353
DECOMP_MASTER statement, 360
DECOMP statement, 360
DECOMP_SUBPROB statement, 360
PERFORMANCE statement, 17, 360
OPTMILP option tuner
PERFORMANCE statement, 563
OPTMILP procedure, 409
DECOMP_MASTER_IP statement, 419
DECOMP_MASTER statement, 419
DECOMP statement, 419
DECOMP_SUBPROB statement, 419
PERFORMANCE statement, 17, 419
TUNER statement, 419, 564
OPTMODEL expression extensions
AND aggregation expression, 92
CARD function, 92
CROSS expression, 92
DIFF expression, 93
IF expression, 93
IN expression, 94
index set expression, 95
INTER aggregation expression, 95
INTER expression, 95
MAX aggregation expression, 96
MIN aggregation expression, 96
OR aggregation expression, 96
PROD aggregation expression, 97
range expression, 97
set constructor expression, 98
set literal expression, 98
SETOF aggregation expression, 99
SLICE expression, 99
SUM aggregation expression, 100
SYMDIFF expression, 101
tuple expression, 101
UNION aggregation expression, 102
UNION expression, 101
WITHIN expression, 102
OPTMODEL Procedure, 42
OPTMODEL procedure
assignment statement, 58
CALL statement, 58
CLOSEFILE statement, 58
CONSTRAINT statement, 49
CONTINUE statement, 59
CREATE DATA statement, 59
DO statement, 64
DO statement, iterative, 65
DO UNTIL statement, 66
DO WHILE statement, 67
DROP statement, 67
EXPAND statement, 68

FILE statement, 70
FIX statement, 71
FOR statement, 72
IF statement, 72
IMPVAR statement, 50
LEAVE statement, 73
MAX statement, 51
MIN statement, 51
null statement, 74
NUMBER statement, 51
PERFORMANCE statement, 17, 74
PRINT statement, 74
PUT statement, 78
QUIT Statement, 79
READ DATA statement, 79
RESET OPTIONS statement, 83
RESTORE statement, 83
SAVE MPS statement, 84
SAVE QPS statement, 85
SET statement, 51
SOLVE statement, 86
STOP statement, 88
STRING statement, 51
SUBMIT statement, 88
UNFIX statement, 91
USE PROBLEM statement, 92
VAR statement, 56
OPTMODEL procedure, LP solver syntax, 174
OPTMODEL procedure, MILP solver, 239
OPTMODEL procedure, NLP solver syntax, 297
OPTMODEL procedure, QP solver syntax, 332
OPTQP procedure, 469
PERFORMANCE statement, 17, 472
OPTTOL= option
PROC OPTLP statement, 357
PROC OPTMILP statement, 413
SOLVE WITH LP statement, 178
SOLVE WITH MILP statement, 244
SOLVE WITH NLP statement, 301
OPTVALS = option
TUNER statement (OPTMILP), 565
OR aggregation expression
OPTMODEL expression extensions, 96
OUTDATA=option
MPS2SASD Macro Parameters, 591
_PAGE_ keyword
PRINT statement, 75
PUT statement, 79
PARALLELMODE $=$ option
PERFORMANCE statement, 18

PDIGITS $=$ option
PROC OPTMODEL statement, 47
PERFORMANCE statement, 17
DETAILS option, 18
OPTLP procedure, 360
OPTMILP option tuner, 563
OPTMILP procedure, 419
OPTMODEL procedure, 74
OPTQP procedure, 472
PARALLELMODE= option, 18
PMATRIX= option
PROC OPTMODEL statement, 47
PRESOLVER= option
PROC OPTLP statement, 356
PROC OPTMILP statement, 411
PROC OPTMODEL statement, 47
PROC OPTQP statement, 471
SOLVE WITH LP statement, 177
SOLVE WITH MILP statement, 241
SOLVE WITH QP statement, 333
PRESTOL= option
PROC OPTMODEL statement, 48
PRICETYPE= option
PROC OPTLP statement, 358
SOLVE WITH LP statement, 179
PRIMALIN option
SOLVE WITH MILP statement, 242
PRIMALIN = option
DECOMP_MASTER_IP statement, 508
DECOMP_SUBPROB statement, 512
PROC OPTLP statement, 355
PROC OPTMILP statement, 411
PRIMALOUT= option
PROC OPTLP statement, 355
PROC OPTMILP statement, 411
PROC OPTQP statement, 471
PRINT statement
OPTMODEL procedure, 74
_PAGE_ keyword, 75
PRINTFREQ $=$ option
PROC OPTLP statement, 356
PROC OPTMILP statement, 412
PROC OPTQP statement, 470
SOLVE WITH LP statement, 177
SOLVE WITH MILP statement, 243
SOLVE WITH NLP statement, 299
SOLVE WITH QP statement, 332
PRINTLEVEL2= option
PROC OPTLP statement, 357
PROC OPTMILP statement, 413
SOLVE WITH LP statement, 177
SOLVE WITH MILP statement, 243
PRINTLEVEL= option
PROC OPTLP statement, 357

PROC OPTMILP statement, 413
PROC OPTMODEL statement, 48
PROC OPTQP statement, 471
PRIORITY $=$ option
PROC OPTMILP statement, 416
SOLVE WITH MILP statement, 246
PROBE= option
PROC OPTMILP statement, 414
SOLVE WITH MILP statement, 244
PROBLEMS = option
TUNER statement (OPTMILP), 566
PROBS= option
TUNER statement (OPTMILP), 566
PROC OPTLP statement
ALGORITHM2= option, 356
ALGORITHM = option, 355
BASIS = option, 358
CROSSOVER= option, 359
DATA= option, 354
DUALIN = option, 354
DUALOUT= option, 354
FEASTOL= option, 356
IIS= option, 355
LOGFREQ= option, 356
LOGLEVEL= option, 357
MAXITER= option, 357
MAXTIME= option, 357
OBJSENSE= option, 354
OPTTOL= option, 357
PRESOLVER= option, 356
PRICETYPE= option, 358
PRIMALIN = option, 355
PRIMALOUT= option, 355
PRINTFREQ= option, 356
PRINTLEVEL2= option, 357
PRINTLEVEL= option, 357
QUEUESIZE= option, 359
SAVE_ONLY_IF_OPTIMAL option, 355
SCALE= option, 359
SOL= option, 355
SOLVER2= option, 356
SOLVER= option, 355
STOP_DG= option, 359
STOP_DI= option, 360
STOP_PI= option, 360
TIMETYPE= option, 358
PROC OPTMILP statement
ABSOBJGAP $=$ option, 412
CONFLICTSEARCH= option, 415
CUTCLIQUE= option, 417
CUTFLOWCOVER= option, 417
CUTFLOWPATH= option, 417
CUTGOMORY $=$ option, 418
CUTGUB $=$ option, 418

CUTIMPLIED= option, 418
CUTKNAPSACK= option, 418
CUTLAP= option, 418
CUTMILIFTED $=$ option, 418
CUTMIR= option, 418
CUTOFF= option, 412
CUTS $=$ option, 418
CUTSFACTOR= option, 418
CUTSTRATEGY $=$ option, 418
CUTZEROHALF= option, 418
DATA= option, 411
DUALOUT= option, 411
EMPHASIS = option, 412
FEASTOL= option, 412
HEURISTICS $=$ option, 415
INTTOL= option, 412
LOGFREQ= option, 412
LOGLEVEL= option, 413
MAXNODES = option, 413
MAXSOLS = option, 413
MAXTIME $=$ option, 413
NODESEL= option, 416
OBJSENSE= option, 411
OPTTOL= option, 413
PRIMALIN= option, 411
PRIMALOUT= option, 411
PRINTFREQ= option, 412
PRINTLEVEL2 $=$ option, 413
PRINTLEVEL= option, 413
PRIORITY = option, 416
PROBE= option, 414
RELOBJGAP $=$ option, 414
SCALE= option, 414
STRONGITER= option, 416
STRONGLEN= option, 416
TARGET= option, 414
TIMETYPE= option, 414
VARSEL= option, 416
PROC OPTMODEL statement
statement options, 46
PROC OPTQP statement
DATA= option, 470
DUALOUT=option, 470
LOGFREQ= option, 470
MAXITER= option, 471
MAXTIME $=$ option, 471
OBJSENSE= option, 471
PRESOLVER= option, 471
PRIMALOUT = option, 471
PRINTFREQ $=$ option, 470
PRINTLEVEL= option, 471
SAVE_ONLY_IF_OPTIMAL option, 472
STOP_DG= option, 472
STOP_DI= option, 472

STOP_PI= option, 472
TIMETYPE= option, 472
PROD aggregation expression
OPTMODEL expression extensions, 97
PUT statement
_PAGE_ keyword, 79
PWIDTH= option
PROC OPTMODEL statement, 48
QUEUESIZE= option
PROC OPTLP statement, 359
SOLVE WITH LP statement, 179
QUIT Statement
OPTMODEL procedure, 79
range expression
OPTMODEL expression extensions, 97
READ DATA statement
COL keyword, 81
INTO keyword, 79
LTRIM option, 81
NOTRIM option, 81
OPTMODEL procedure, 79
RTRIM option, 81
TRIM option, 81
RELAXINT keyword
SOLVE statement, 86
RELOBJGAP = option
DECOMP statement, 505
PROC OPTMILP statement, 414
SOLVE WITH MILP statement, 244
RESET OPTIONS statement
OPTMODEL procedure, 83
RESTORE statement
OPTMODEL procedure, 83
RTRIM option
READ DATA statement, 81
SAVE MPS statement
OPTMODEL procedure, 84
SAVE QPS statement
OPTMODEL procedure, 85
SAVE_ONLY_IF_OPTIMAL option
PROC OPTLP statement, 355
PROC OPTQP statement, 472
SCALE= option
PROC OPTLP statement, 359
PROC OPTMILP statement, 414
SOLVE WITH LP statement, 179
SOLVE WITH MILP statement, 244
SEED= option
SOLVE WITH NLP statement, 299
set constructor expression
OPTMODEL expression extensions, 98
set literal expression

OPTMODEL expression extensions, 98
SET statement
INIT keyword, 52
OPTMODEL procedure, 51
SETOF aggregation expression
OPTMODEL expression extensions, 99
SLICE expression
OPTMODEL expression extensions, 99
SOL= option
DECOMP_SUBPROB statement, 511
PROC OPTLP statement, 355
SOLVE WITH LP statement, 176
SOLTYPE= option
SOLVE WITH NLP statement, 300
SOLVE option
EXPAND statement, 68
SOLVE statement
OBJECTIVE keyword, 86
OPTMODEL procedure, 86
RELAXINT keyword, 86
WITH keyword, 86
SOLVE WITH LP statement
ALGORITHM2= option, 176
ALGORITHM= option, 176
BASIS = option, 179
CROSSOVER= option, 180
DECOMP_MASTER=() option, 180
DECOMP=() option, 180
DECOMP_SUBPROB=() option, 181
FEASTOL= option, 177
IIS= option, 176
LOGFREQ= option, 177
LOGLEVEL= option, 177
MAXITER= option, 178
MAXTIME $=$ option, 178
OPTTOL= option, 178
PRESOLVER= option, 177
PRICETYPE $=$ option, 179
PRINTFREQ= option, 177
PRINTLEVEL2 $=$ option, 177
QUEUESIZE= option, 179
SCALE= option, 179
SOL= option, 176
SOLVER2= option, 176
SOLVER= option, 176
STOP_DG= option, 180
STOP_DI= option, 180
STOP_PI= option, 180
TIMETYPE= option, 178
SOLVE WITH MILP statement
ABSOBJGAP= option, 242
CONFLICTSEARCH= option, 245
CUTCLIQUE= option, 247
CUTFLOWCOVER= option, 248

CUTFLOWPATH= option, 248
CUTGOMORY= option, 248
CUTGUB= option, 248
CUTIMPLIED= option, 248
CUTKNAPSACK= option, 248
CUTLAP= option, 248
CUTMILIFTED= option, 248
CUTMIR= option, 248
CUTOFF= option, 242
CUTS = option, 249
CUTSFACTOR= option, 248
CUTSTRATEGY= option, 249
CUTZEROHALF $=$ option, 249
DECOMP_MASTER_IP=() option, 249
DECOMP_MASTER=() option, 249
DECOMP=() option, 249
DECOMP_SUBPROB=() option, 249
EMPHASIS = option, 242
FEASTOL= option, 242
HEURISTICS = option, 245
INTTOL= option, 243
LOGFREQ= option, 243
LOGLEVEL= option, 243
MAXNODES = option, 243
MAXSOLS $=$ option, 243
MAXTIME= option, 243
NODESEL= option, 246
OPTTOL= option, 244
PRESOLVER= option, 241
PRIMALIN option, 242
PRINTFREQ= option, 243
PRINTLEVEL2 $=$ option, 243
PRIORITY = option, 246
PROBE= option, 244
RELOBJGAP= option, 244
SCALE= option, 244
STRONGITER= option, 246
STRONGLEN= option, 246
TARGET= option, 244
TIMETYPE= option, 244
VARSEL= option, 246
SOLVE WITH NLP statement
ALGORITHM = option, 299
FEASTOL= option, 300
LOGFREQ= option, 299
MAXITER $=$ option, 300
MAXTIME= option, 301
MS option, 299
MSBNDRANGE= option, 298
MSDISTTOL= option, 298
MSLOGLEVEL= option, 300
MSMAXSTARTS $=$ option, 298
MSMAXTIME= option, 298
MSPRINTLEVEL= option, 300

MULTISTART option, 299
OBJLIMIT= option, 301
OPTTOL= option, 301
PRINTFREQ= option, 299
SEED= option, 299
SOLTYPE= option, 300
SOLVER = option, 299
TECH= option, 299
TECHNIQUE= option, 299
TIMETYPE= option, 301
SOLVE WITH QP statement
LOGFREQ= option, 332
MAXITER= option, 333
MAXTIME $=$ option, 333
PRESOLVER= option, 333
PRINTFREQ= option, 332
STOP_DG= option, 333
STOP_DI= option, 333
STOP_PI= option, 333
TIMETYPE= option, 333
SOLVER2= option
PROC OPTLP statement, 356
SOLVE WITH LP statement, 176
SOLVER= option
DECOMP_SUBPROB statement, 511
PROC OPTLP statement, 355
SOLVE WITH LP statement, 176
SOLVE WITH NLP statement, 299
STOP statement
OPTMODEL procedure, 88
STOP_DG= option
PROC OPTLP statement, 359
PROC OPTQP statement, 472
SOLVE WITH LP statement, 180
SOLVE WITH QP statement, 333
STOP_DI= option
PROC OPTLP statement, 360
PROC OPTQP statement, 472
SOLVE WITH LP statement, 180
SOLVE WITH QP statement, 333
STOP_PI= option
PROC OPTLP statement, 360
PROC OPTQP statement, 472
SOLVE WITH LP statement, 180
SOLVE WITH QP statement, 333
STRING statement
INIT keyword, 52
OPTMODEL procedure, 51
STRONGITER= option
PROC OPTMILP statement, 416
SOLVE WITH MILP statement, 246
STRONGLEN= option
PROC OPTMILP statement, 416
SOLVE WITH MILP statement, 246

SUBMIT statement
OPTMODEL procedure, 88
SUM aggregation expression
OPTMODEL expression extensions, 100
SYMDIFF expression
OPTMODEL expression extensions, 101
TARGET= option
PROC OPTMILP statement, 414
SOLVE WITH MILP statement, 244
TECH= option
SOLVE WITH NLP statement, 299
TECHNIQUE= option
SOLVE WITH NLP statement, 299
THEN keyword
IF statement, 72
TIMETYPE $=$ option
PROC OPTLP statement, 358
PROC OPTMILP statement, 414
PROC OPTQP statement, 472
SOLVE WITH LP statement, 178
SOLVE WITH MILP statement, 244
SOLVE WITH NLP statement, 301
SOLVE WITH QP statement, 333
TOUT= option
TUNER statement (OPTMILP), 566
TRIM option
READ DATA statement, 81
TUNER statement
OPTMILP procedure, 419
TUNER statement (OPTMILP), 564
GOAL= option, 564
LOGFREQ= option, 565
LOGLEVEL= option, 565
MAXCONFIGS = option, 564
MAXTIME $=$ option, 564
OPTIONMODE= option, 564
OPTIONVALUES= option, 565
OPTVALS = option, 565
PROBLEMS = option, 566
PROBS= option, 566
TOUT= option, 566
TUNEROUT= option, 566
TUNEROUT= option
TUNER statement (OPTMILP), 566
tuple expression
OPTMODEL expression extensions, 101
UNFIX statement
OPTMODEL procedure, 91
UNION aggregation expression
OPTMODEL expression extensions, 102
UNION expression
OPTMODEL expression extensions, 101

## UNTIL keyword

DO statement, iterative, 65
USE PROBLEM statement
OPTMODEL procedure, 92
VAR option
EXPAND statement, 69
VAR statement
INIT keyword, 56
OPTMODEL procedure, 56
VARFUZZ= option
PROC OPTMODEL statement, 48
VARSEL= option
PROC OPTMILP statement, 416
SOLVE WITH MILP statement, 246
WHILE keyword
DO statement, iterative, 65
WITH keyword
SOLVE statement, 86
WITHIN expression
OPTMODEL expression extensions, 102

## Your Turn

We welcome your feedback.

- If you have comments about this book, please send them to yourturn@sas.com. Include the full title and page numbers (if applicable).
- If you have comments about the software, please send them to suggest@sas.com.


## SAS Publishing Delivers!

Whether you are new to the work force or an experienced professional, you need to distinguish yourself in this rapidly changing and competitive job market. SAS ${ }^{\bullet}$ Publishing provides you with a wide range of resources to help you set yourself apart. Visit us online at support.sas.com/bookstore.

## SAS ${ }^{\circ}$ Press

Need to learn the basics? Struggling with a programming problem? You'll find the expert answers that you need in example-rich books from SAS Press. Written by experienced SAS professionals from around the world, SAS Press books deliver real-world insights on a broad range of topics for all skill levels.

support.sas.com/saspress

## SAS ${ }^{\circ}$ Documentation

To successfully implement applications using SAS software, companies in every industry and on every continent all turn to the one source for accurate, timely, and reliable information: SAS documentation. We currently produce the following types of reference documentation to improve your work experience:

- Online help that is built into the software.
- Tutorials that are integrated into the product.
- Reference documentation delivered in HTML and PDF - free on the Web.
- Hard-copy books.


## support.sas.com/publishing

## SAS ${ }^{\circledR}$ Publishing News

Subscribe to SAS Publishing News to receive up-to-date information about all new SAS titles, author podcasts, and new Web site features via e-mail. Complete instructions on how to subscribe, as well as access to past issues, are available at our Web site.
support.sas.com/spn


[^1]
[^0]:    ${ }^{1}$ If the QP solver detects nonconvexity (nonconcavity) for a minimization (maximization) problem, the NLP solver is called instead.

[^1]:    SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration Other brand and product names are trademarks of their respective companies. © 2009 SAS Institute Inc. All rights reserved. 518177_1US.0109

