The path diagram for the one-factor model with parallel tests is shown in Figure 17.29.
The hypothesis differs from
in that
F1
and F2
have a perfect correlation in . This is indicated by the fixed value 1.0 for the double-headed path that connects
F1
and F2
in Figure 17.29. Again, you need only minimal modification of the preceding specification for to specify the path diagram in Figure 17.29, as shown in the following statements:
proc calis data=lord; path W <=== F1 = beta1, X <=== F1 = beta1, Y <=== F2 = beta2, Z <=== F2 = beta2; pvar F1 = 1.0, F2 = 1.0, W X = 2 * theta1, Y Z = 2 * theta2; pcov F1 F2 = 1.0; run;
The only modification of the preceding specification is in the PCOV statement, where you put a constant 1 for the covariance
between F1
and F2
. An annotated fit summary is displayed in Figure 17.30.
The chi-square value is 37.3337 (df=6, p<0.0001). This indicates that you can reject the hypothesized model H1 at the 0.01 -level. The standardized root mean square error (SRMSR) is 0.0286, the adjusted GFI (AGFI) is 0.9509, and Bentler’s comparative
fit index is 0.9785. All these indicate good model fit. However, the RMSEA is 0.0898, which does not support an acceptable
model for the data.
The estimation results are displayed in Figure 17.31.
The goodness-of-fit tests for the four hypotheses are summarized in the following table.
Number of |
Degrees of |
||||
---|---|---|---|---|---|
Hypothesis |
Parameters |
|
Freedom |
p-value |
|
|
4 |
37.33 |
6 |
< .0001 |
1.0 |
|
5 |
1.93 |
5 |
0.8583 |
0.8986 |
|
8 |
36.21 |
2 |
< .0001 |
1.0 |
|
9 |
0.70 |
1 |
0.4018 |
0.8986 |
Recall that the estimates of for
and
are almost identical, about 0.90, indicating that the speeded and unspeeded tests are measuring almost the same latent variable.
However, when
was set to 1 in
and
(both one-factor models), both hypotheses were rejected. Hypotheses
and
(both two-factor models) seem to be consistent with the data. Since
is obtained by adding four constraints (for the requirement of parallel tests) to
(the full model), you can test
versus
by computing the differences of the chi-square statistics and their degrees of freedom, yielding a chi-square of 1.23 with
four degrees of freedom, which is obviously not significant. In a sense, the chi-square difference test means that representing
the data by
would not be significantly worse than representing the data by
. In addition, because
offers a more precise description of the data (with the assumption of parallel tests) than
, it should be chosen because of its simplicity. In conclusion, the two-factor model with parallel tests provides the best
explanation of the data.