The COPULA Procedure (Experimental)

References

  • Cherubini, U., Luciano, E., and Vecchiato, W. (2004), Copula Methods in Finance, Chichester: John Wiley.

  • Devroye, L. (1986), Non-Uniform Random Variate Generation, New York: Springer-Verlag.

  • Galiani, S. S. (2003), Copula Functions and Their Application in Pricing and Risk Managing Multiname Credit Derivative Products, http://www.defaultrisk.com

  • Genest, C., Ghoudi, K., and Rivest, L. P. (1995), A Semiparametric Estimation Procedure of Dependence Parameters in Multivariate Families of Distributions, Biometrika, 82, 543–552.

  • Joe, H. and Xu, J. (1996), The Estimation Method of Inference Functions for Margins for Multivariate Models, Technical Report No. 166, University of British Columbia.

  • Joe, H. (1997), Multivariate Models and Dependence Concepts, London: Chapman and Hall.

  • Marshall, A. W. and I. Olkin (1988), Families of Multivariate Distributions, Journal of the American Statistical Association, 83, 834–841.

  • McNeil, A., Frey, R, and Embrechts, P. (2005), Quantitative Risk Management: Concepts, Techniques, and Tools, Princeton, NJ: Princeton University Press.

  • Mendes, B. V. M., de Melo, E. F. L., and Nelson, R. B. (2007), Robust Fits for Copula Models, Communications in Statistics Simulation and Computation, 36, 997–1008.

  • Nelson, R.B. (2006), An Introduction to Copulas, New York: Springer.

  • Nolan, J.P. (2010), Stable Distributions — Models for Heavy Tailed Data, Boston: Birkhäuser.

  • Rusechendorf, L. (2009), On the Distributional Transform, Sklar’s Theorem, and the Empirical Copula Process, Journal of Statistical Planning and Inference, 11, 3921–3927.

  • Sklar, A. (1959), Fonctions de Répartition à n Dimensions et Leurs Marges, Publications de l’Institut de Statistique de L’Université de Paris, 8, 229–231.

  • Wu, F., Valdez, E., and Sherris, M. (2007),Simulating from Exchangeable Archimedean Copulas, Communications in Statistics, 36, 1019–1034.