The QLIM Procedure

References

  • Abramowitz, M. and Stegun, A. (1970), Handbook of Mathematical Functions, New York: Dover Press.

  • Aigner, C., Lovell, C. A. K., Schmidt, P. (1977), “Formulation and Estimation of Stochastic Frontier Production Function Models,” Journal of Econometrics, 6:1 (July), 21–37

  • Aitchison, J. and Silvey, S. (1957), “The Generalization of Probit Analysis to the Case of Multiple Responses,” Biometrika, 44, 131–140.

  • Amemiya, T. (1978a), “The Estimation of a Simultaneous Equation Generalized Probit Model,” Econometrica, 46, 1193–1205.

  • Amemiya, T. (1978b), “On a Two-Step Estimate of a Multivariate Logit Model,” Journal of Econometrics, 8, 13–21.

  • Amemiya, T. (1981), Qualitative Response Models: A Survey, Journal of Economic Literature, 19, 483–536.

  • Amemiya, T. (1984), Tobit Models: A Survey, Journal of Econometrics, 24, 3–61.

  • Amemiya, T. (1985), Advanced Econometrics, Cambridge: Harvard University Press.

  • Battese, G. E. and Coelli, T. J. (1988) “Prediction of Firm-Level Technical Efficiencies with a Generalized Frontier Production Function and Panel Data,” Journal of Econometrics, 38, 387–99.

  • Ben-Akiva, M. and Lerman, S. R. (1987), Discrete Choice Analysis, Cambridge: MIT Press.

  • Bera, A. K., Jarque, C. M., and Lee, L.-F. (1984), “Testing the Normality Assumption in Limited Dependent Variable Models,” International Economic Review, 25, 563–578.

  • Berger, J. O. (1985), Statistical Decision Theory and Bayesian Analysis, 2nd ed., New York: Springer-Verlag.

  • Bloom, D. E. and Killingsworth, M. R. (1985), “Correcting for Truncation Bias Caused by a Latent Truncation Variable,” Journal of Econometrics, 27, 131–135.

  • Box, G. E. P. and Cox, D. R. (1964), An Analysis of Transformations, Journal of the Royal Statistical Society, Series B., 26, 211–252.

  • Cameron, A. C. and Trivedi, P. K. (1986), “Econometric Models Based on Count Data: Comparisons and Applications of Some Estimators,” Journal of Applied Econometrics, 1, 29–53.

  • Cameron, A. C. and Trivedi, P. K. (1998), Regression Analysis of Count Data, Cambridge: Cambridge University Press.

  • Christensen, L. and W. Greene, 1976, “Economies of Scale in U.S. Electric Power Generation,” Journal of Political Economy, 84, pp. 655-676.

  • Coelli, T. J., Prasada Rao, D. S., Battese, G. E. (1998), An Introduction to Efficiency and Productivity Analysis, London: Kluwer Academic Publisher.

  • Copley, P. A., Doucet, M. S., and Gaver, K. M. (1994), “A Simultaneous Equations Analysis of Quality Control Review Outcomes and Engagement Fees for Audits of Recipients of Federal Financial Assistance,” The Accounting Review, 69, 244–256.

  • Cox, D. R. (1970), Analysis of Binary Data, London: Metheun.

  • Cox, D. R. (1972), Regression Models and Life Tables, Journal of the Royal Statistical Society, Series B, 20, 187–220.

  • Cox, D. R. (1975), Partial Likelihood, Biometrika, 62, 269–276.

  • Deis, D. R. and Hill, R. C. (1998), “An Application of the Bootstrap Method to the Simultaneous Equations Model of the Demand and Supply of Audit Services,” Contemporary Accounting Research, 15, 83–99.

  • Estrella, A. (1998), “A New Measure of Fit for Equations with Dichotomous Dependent Variables,” Journal of Business and Economic Statistics, 16, 198–205.

  • Gallant, A. R. (1987), Nonlinear Statistical Models, New York: Wiley.

  • Gelman, A., Carlin, J., Stern, H., and Rubin, D. (2004), Bayesian Data Analysis, 2nd ed., London: Chapman & Hall.

  • Genz, A. (1992), Numerical Computation of Multivariate Normal Probabilities, Journal of Computational and Graphical Statistics, 1, 141–150.

  • Godfrey, L. G. (1988), Misspecification Tests in Econometrics, Cambridge: Cambridge University Press.

  • Gourieroux, C., Monfort, A., Renault, E., and Trognon, A. (1987), Generalized Residuals, Journal of Econometrics, 34, 5–32.

  • Greene, W. H. (1997), Econometric Analysis, Upper Saddle River, N.J.: Prentice Hall.

  • Gregory, A. W. and Veall, M. R. (1985), “On Formulating Wald Tests for Nonlinear Restrictions,” Econometrica, 53, 1465–1468.

  • Hajivassiliou, V. A. (1993), “Simulation Estimation Methods for Limited Dependent Variable Models,” in Handbook of Statistics, Vol. 11, ed. G. S. Maddala, C. R. Rao, and H. D. Vinod, New York: Elsevier Science Publishing.

  • Hajivassiliou, V. A., and McFadden, D. (1998), The Method of Simulated Scores for the Estimation of LDV Models, Econometrica, 66, 863–896.

  • Heckman, J. J. (1978), “Dummy Endogenous Variables in a Simultaneous Equation System,” Econometrica, 46, 931–959.

  • Hinkley, D. V. (1975), On Power Transformations to Symmetry, Biometrika, 62, 101–111.

  • Jondrow, J., Lovell, C. A. K., Materov, I. S., and Schmidt, P. (1982) “On The Estimation of Technical Efficiency in the Stochastic Frontier Production Function Model,” Journal of Econometrics, 19:2/3 (August), 233–38.

  • Kim, M. and Hill, R. C. (1993), “The Box-Cox Transformation-of-Variables in Regression,” Empirical Economics, 18, 307–319.

  • King, G. (1989b), Unifying Political Methodology: The Likelihood Theory and Statistical Inference, Cambridge: Cambridge University Press.

  • Kumbhakar, S. C. and Knox Lovell, C. A. (2000), Stochastic Frontier Anaysis, New York: Cambridge University Press.

  • Lee, L.-F. (1981), “Simultaneous Equations Models with Discrete and Censored Dependent Variables,” in Structural Analysis of Discrete Data with Econometric Applications, ed. C. F. Manski and D. McFadden, Cambridge: MIT Press

  • Long, J. S. (1997), Regression Models for Categorical and Limited Dependent Variables, Thousand Oaks, CA: Sage Publications.

  • McFadden, D. (1974), “Conditional Logit Analysis of Qualitative Choice Behavior,” in Frontiers in Econometrics, ed. P. Zarembka, New York: Academic Press.

  • McFadden, D. (1981), Econometric Models of Probabilistic Choice, in Structural Analysis of Discrete Data with Econometric Applications, ed. C. F. Manski and D. McFadden, Cambridge: MIT Press.

  • McKelvey, R. D. and Zavoina, W. (1975), “A Statistical Model for the Analysis of Ordinal Level Dependent Variables,” Journal of Mathematical Sociology, 4, 103–120.

  • Meeusen, W. and van Den Broeck, J. (1977), “Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error,” International Economic Review, 18:2(Jun), 435–444

  • Mroz, T. A. (1987), “The Sensitivity of an Empirical Model of Married Women’s Hours of Work to Economic and Statistical Assumptions,” Econometrica, 55, 765–799.

  • Mroz, T. A. (1999), “Discrete Factor Approximations in Simultaneous Equation Models: Estimating the Impact of a Dummy Endogenous Variable on a Continuous Outcome,” Journal of Econometrics, 92, 233–274.

  • Nawata, K. (1994), “Estimation of Sample Selection Bias Models by the Maximum Likelihood Estimator and Heckman’s Two-Step Estimator,” Economics Letters, 45, 33–40.

  • Parks, R. W. (1967), “Efficient Estimation of a System of Regression Equations When Disturbances Are Both Serially and Contemporaneously Correlated,” Journal of the American Statistical Association, 62, 500–509.

  • Phillips, C. B. and Park, J. Y. (1988), “On Formulating Wald Tests of Nonlinear Restrictions,” Econometrica, 56, 1065–1083.

  • Powers, D. A. and Xie, Y. (2000), Statistical Methods for Categorical Data Analysis, San Diego: Academic Press.

  • Roberts, G. O., Gelman, A., and Gilks, W. R. (1997), “Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms,” Annual of Applied Probability, 7, 110–120.

  • Roberts, G. O. and Rosenthal, J. S. (2001), “Optimal Scaling for Various Metropolis-Hastings Algorithms,” Statistical Science, 16, 351–367.

  • Schervish, M. J. (1995), Theory of Statistics, New York: Springer-Verlag.

  • Wooldridge, J. M. (2002), Econometric Analysis of Cross Section of Panel Data, Cambridge, MA: MIT Press.