Bayesian inference on a cointegrated system begins by using the priors of obtained from the VECM(
) form. Bayesian vector error correction models can improve forecast accuracy for cointegrated processes.
The following statements fit a BVECM(2) form to the simulated data. You specify both the PRIOR= and ECM= options for the Bayesian vector error correction model. The VARMAX procedure output is shown in Figure 36.17.
/*--- Bayesian Vector Error-Correction Model ---*/ proc varmax data=simul2; model y1 y2 / p=2 noint prior=( lambda=0.5 theta=0.2 ) ecm=( rank=1 normalize=y1 ) print=(estimates); run;
Figure 36.17 shows the model type fitted to the data, the estimates of the adjustment coefficient (), the parameter estimates in terms of lag one coefficients (
), and lag one first differenced coefficients (
).
Figure 36.17: Parameter Estimates for the BVECM(2) Form
Type of Model | BVECM(2) |
---|---|
Estimation Method | Maximum Likelihood Estimation |
Cointegrated Rank | 1 |
Prior Lambda | 0.5 |
Prior Theta | 0.2 |
Alpha | |
---|---|
Variable | 1 |
y1 | -0.34392 |
y2 | 0.16659 |
Parameter Alpha * Beta' Estimates | ||
---|---|---|
Variable | y1 | y2 |
y1 | -0.34392 | 0.67262 |
y2 | 0.16659 | -0.32581 |
AR Coefficients of Differenced Lag | |||
---|---|---|---|
DIF Lag | Variable | y1 | y2 |
1 | y1 | -0.80070 | -0.59320 |
y2 | 0.33417 | -0.53480 |