The MODECLUS Procedure

References

  • Gitman, I. (1973), “An Algorithm for Nonsupervised Pattern Classification,” IEEE Transactions on Systems, Man, and Cybernetics.

  • Hartigan, J. A. and Hartigan, P. M. (1985), “The Dip Test of Unimodality,” Annals of Statistics, 13, 70–84.

  • Huizinga, D. H. (1978), A Natural or Mode Seeking Cluster Analysis Algorithm, Technical Report 78-1, Behavioral Research Institute, 2305 Canyon Blvd., Boulder, CO 80302.

  • Koontz, W. L. G. and Fukunaga, K. (1972a), “Asymptotic Analysis of a Nonparametric Clustering Technique,” IEEE Transactions on Computers, C-21, 967–974.

  • Koontz, W. L. G. and Fukunaga, K. (1972b), “A Nonparametric Valley-Seeking Technique for Cluster Analysis,” IEEE Transactions on Computers, C-21, 171–178.

  • Koontz, W. L. G., Narendra, P. M., and Fukunaga, K. (1976), “A Graph-Theoretic Approach to Nonparametric Cluster Analysis,” IEEE Transactions on Computers, C-25, 936–944.

  • Minnotte, M. C. (1992), A Test of Mode Existence with Applications to Multimodality, Ph.D. thesis, Rice University, Department of Statistics, Houston, TX.

  • Mizoguchi, R. and Shimura, M. (1980), “A Nonparametric Algorithm for Detecting Clusters Using Hierarchical Structure,” IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-2, 292–300.

  • Müller, D. W. and Sawitzki, G. (1991), “Excess Mass Estimates and Tests for Multimodality,” Journal of the American Statistical Association, 86, 738–746.

  • Polonik, W. (1993), Measuring Mass Concentrations and Estimating Density Contour Clusters—An Excess Mass Approach, Technical Report 7, Beitraege zur Statistik, Universitaet Heidelberg.

  • Sarle, W. S. (1982), “Cluster Analysis by Least Squares,” in Proceedings of the Seventh Annual SAS Users Group International Conference, 651–653, Cary, NC: SAS Institute Inc.

  • Scott, D. W. (1992), Multivariate Density Estimation: Theory, Practice, and Visualization, New York: John Wiley & Sons.

  • Silverman, B. W. (1986), Density Estimation for Statistics and Data Analysis, New York: Chapman & Hall.

  • Struve, O. and Zebergs, V. (1962), Astronomy of the Twentieth Century, New York: Macmillan.

  • Tukey, P. A. and Tukey, J. W. (1981), “Data-Driven View Selection: Agglomeration and Sharpening,” in V. Barnett, ed., Interpreting Multivariate Data, 215–243, Chichester: John Wiley & Sons.

  • Wong, M. A. and Lane, T. (1983), “A kth Nearest Neighbor Clustering Procedure,” Journal of the Royal Statistical Society, Series B, 45, 362–368.

  • Wong, M. A. and Schaack, C. (1982), “Using the kth Nearest Neighbor Clustering Procedure to Determine the Number of Subpopulations,” American Statistical Association 1982 Proceedings of the Statistical Computing Section, 40–48.