In this example, PROC REG computes regression parameter estimates for the Fitness
data. (See Example 82.1 to for more information about how to create the Fitness
data set.) The parameter estimates are output to a data set and used as scoring coefficients. For the first part of this
example, PROC SCORE is used to score the Fitness
data, which are the same data used in the regression.
In the second part of this example, PROC SCORE is used to score a new data set, Fitness2
. For PROC SCORE, the TYPE= specification is PARMS, and the names of the score variables are found in the variable _MODEL_
, which gets its values from the model label. The following code produces Output 82.2.1 through Output 82.2.3:
proc reg data=Fitness outest=RegOut; OxyHat: model Oxygen=Age Weight RunTime RunPulse RestPulse; title 'Regression Scoring Example'; run;
proc print data=RegOut; title2 'OUTEST= Data Set from PROC REG'; run;
proc score data=Fitness score=RegOut out=RScoreP type=parms; var Age Weight RunTime RunPulse RestPulse; run;
proc print data=RScoreP; title2 'Predicted Scores for Regression'; run;
proc score data=Fitness score=RegOut out=RScoreR type=parms; var Oxygen Age Weight RunTime RunPulse RestPulse; run;
proc print data=RScoreR; title2 'Negative Residual Scores for Regression'; run;
Output 82.2.1 shows the PROC REG output. The column labeled “Parameter Estimates” lists the parameter estimates. These estimates are output to the RegOut
data set.
Output 82.2.1: Creating an OUTEST= Data Set with PROC REG
Regression Scoring Example |
Number of Observations Read | 12 |
---|---|
Number of Observations Used | 12 |
Analysis of Variance | |||||
---|---|---|---|---|---|
Source | DF | Sum of Squares |
Mean Square |
F Value | Pr > F |
Model | 5 | 509.62201 | 101.92440 | 15.80 | 0.0021 |
Error | 6 | 38.70060 | 6.45010 | ||
Corrected Total | 11 | 548.32261 |
Root MSE | 2.53970 | R-Square | 0.9294 |
---|---|---|---|
Dependent Mean | 48.38942 | Adj R-Sq | 0.8706 |
Coeff Var | 5.24847 |
Parameter Estimates | |||||
---|---|---|---|---|---|
Variable | DF | Parameter Estimate |
Standard Error |
t Value | Pr > |t| |
Intercept | 1 | 151.91550 | 31.04738 | 4.89 | 0.0027 |
Age | 1 | -0.63045 | 0.42503 | -1.48 | 0.1885 |
Weight | 1 | -0.10586 | 0.11869 | -0.89 | 0.4068 |
RunTime | 1 | -1.75698 | 0.93844 | -1.87 | 0.1103 |
RunPulse | 1 | -0.22891 | 0.12169 | -1.88 | 0.1090 |
RestPulse | 1 | -0.17910 | 0.13005 | -1.38 | 0.2176 |
Output 82.2.2 lists the RegOut
data set. Note that _TYPE_
=’PARMS’ and _MODEL_
=’OXYHAT’, which are from the label in the MODEL statement in PROC REG.
Output 82.2.2: OUTEST= Data Set from PROC REG Reproduced with PROC PRINT
Regression Scoring Example |
OUTEST= Data Set from PROC REG |
Obs | _MODEL_ | _TYPE_ | _DEPVAR_ | _RMSE_ | Intercept | Age | Weight | RunTime | RunPulse | RestPulse | Oxygen |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | OxyHat | PARMS | Oxygen | 2.53970 | 151.916 | -0.63045 | -0.10586 | -1.75698 | -0.22891 | -0.17910 | -1 |
Output 82.2.3 lists the data sets created by PROC SCORE. Since the SCORE= data set does not contain observations with _TYPE_
=’MEAN’ or _TYPE_
=’STD’, the data in the Fitness
data set are not standardized before scoring. The SCORE= data set contains the variable Intercept
, so this intercept value is used in computing the score. To produce the RScoreP
data set, the VAR statement in PROC SCORE includes only the independent variables from the model in PROC REG. As a result,
the OxyHat
variable contains predicted values. To produce the RScoreR
data set, the VAR statement in PROC SCORE includes both the dependent variables and the independent variables from the model
in PROC REG. As a result, the OxyHat
variable contains negative residuals (PREDICT–ACTUAL) as shown in Output 82.2.4. If the RESIDUAL option is specified, the variable OxyHat
contains positive residuals (ACTUAL–PREDICT). If the PREDICT option is specified, the OxyHat
variable contains predicted values.
Output 82.2.3: Predicted Scores from the OUT= Data Set Created by PROC SCORE
Regression Scoring Example |
Predicted Scores for Regression |
Obs | Age | Weight | Oxygen | RunTime | RestPulse | RunPulse | OxyHat |
---|---|---|---|---|---|---|---|
1 | 44 | 89.47 | 44.609 | 11.37 | 62 | 178 | 42.8771 |
2 | 40 | 75.07 | 45.313 | 10.07 | 62 | 185 | 47.6050 |
3 | 44 | 85.84 | 54.297 | 8.65 | 45 | 156 | 56.1211 |
4 | 42 | 68.15 | 59.571 | 8.17 | 40 | 166 | 58.7044 |
5 | 38 | 89.02 | 49.874 | 9.22 | 55 | 178 | 51.7386 |
6 | 47 | 77.45 | 44.811 | 11.63 | 58 | 176 | 42.9756 |
7 | 40 | 75.98 | 45.681 | 11.95 | 70 | 176 | 44.8329 |
8 | 43 | 81.19 | 49.091 | 10.85 | 64 | 162 | 48.6020 |
9 | 44 | 81.42 | 39.442 | 13.08 | 63 | 174 | 41.4613 |
10 | 38 | 81.87 | 60.055 | 8.63 | 48 | 170 | 56.6171 |
11 | 44 | 73.03 | 50.541 | 10.13 | 45 | 168 | 52.1299 |
12 | 45 | 87.66 | 37.388 | 14.03 | 56 | 186 | 37.0080 |
Output 82.2.4: Residual Scores from the OUT= Data Set Created by PROC SCORE
Regression Scoring Example |
Negative Residual Scores for Regression |
Obs | Age | Weight | Oxygen | RunTime | RestPulse | RunPulse | OxyHat |
---|---|---|---|---|---|---|---|
1 | 44 | 89.47 | 44.609 | 11.37 | 62 | 178 | -1.73195 |
2 | 40 | 75.07 | 45.313 | 10.07 | 62 | 185 | 2.29197 |
3 | 44 | 85.84 | 54.297 | 8.65 | 45 | 156 | 1.82407 |
4 | 42 | 68.15 | 59.571 | 8.17 | 40 | 166 | -0.86657 |
5 | 38 | 89.02 | 49.874 | 9.22 | 55 | 178 | 1.86460 |
6 | 47 | 77.45 | 44.811 | 11.63 | 58 | 176 | -1.83542 |
7 | 40 | 75.98 | 45.681 | 11.95 | 70 | 176 | -0.84811 |
8 | 43 | 81.19 | 49.091 | 10.85 | 64 | 162 | -0.48897 |
9 | 44 | 81.42 | 39.442 | 13.08 | 63 | 174 | 2.01935 |
10 | 38 | 81.87 | 60.055 | 8.63 | 48 | 170 | -3.43787 |
11 | 44 | 73.03 | 50.541 | 10.13 | 45 | 168 | 1.58892 |
12 | 45 | 87.66 | 37.388 | 14.03 | 56 | 186 | -0.38002 |
The second part of this example uses the parameter estimates to score a new data set. The following statements produce Output 82.2.5 and Output 82.2.6:
/* The FITNESS2 data set contains observations 13-16 from */ /* the FITNESS data set used in EXAMPLE 2 in the PROC REG */ /* chapter. */ data Fitness2; input Age Weight Oxygen RunTime RestPulse RunPulse; datalines; 45 66.45 44.754 11.12 51 176 47 79.15 47.273 10.60 47 162 54 83.12 51.855 10.33 50 166 49 81.42 49.156 8.95 44 180 ;
proc print data=Fitness2; title 'Regression Scoring Example'; title2 'New Raw Data Set to be Scored'; run;
proc score data=Fitness2 score=RegOut out=NewPred type=parms nostd predict; var Oxygen Age Weight RunTime RunPulse RestPulse; run;
proc print data=NewPred; title2 'Predicted Scores for Regression'; title3 'for Additional Data from FITNESS2'; run;
Output 82.2.5 lists the Fitness2
data set.
Output 82.2.5: Listing of the Fitness2
Data Set
Regression Scoring Example |
New Raw Data Set to be Scored |
Obs | Age | Weight | Oxygen | RunTime | RestPulse | RunPulse |
---|---|---|---|---|---|---|
1 | 45 | 66.45 | 44.754 | 11.12 | 51 | 176 |
2 | 47 | 79.15 | 47.273 | 10.60 | 47 | 162 |
3 | 54 | 83.12 | 51.855 | 10.33 | 50 | 166 |
4 | 49 | 81.42 | 49.156 | 8.95 | 44 | 180 |
PROC SCORE scores the Fitness2
data set by using the parameter estimates in the RegOut
data set. These parameter estimates result from fitting a regression equation to the Fitness
data set. The NOSTD option is specified, so the raw data are not standardized before scoring. (However, the NOSTD option
is not necessary here. The SCORE= data set does not contain observations with _TYPE_
=’MEAN’ or _TYPE_
=’STD’, so standardization is not performed.) The VAR statement contains the dependent variables and the independent variables
used in PROC REG. In addition, the PREDICT option is specified. This combination gives predicted values for the new score
variable. The name of the new score variable is OxyHat
, from the value of the _MODEL_
variable in the SCORE= data set. Output 82.2.6 shows the data set produced by PROC SCORE.
Output 82.2.6: Predicted Scores from the OUT= Data Set Created by PROC SCORE and Reproduced Using PROC PRINT
Regression Scoring Example |
Predicted Scores for Regression |
for Additional Data from FITNESS2 |
Obs | Age | Weight | Oxygen | RunTime | RestPulse | RunPulse | OxyHat |
---|---|---|---|---|---|---|---|
1 | 45 | 66.45 | 44.754 | 11.12 | 51 | 176 | 47.5507 |
2 | 47 | 79.15 | 47.273 | 10.60 | 47 | 162 | 49.7802 |
3 | 54 | 83.12 | 51.855 | 10.33 | 50 | 166 | 43.9682 |
4 | 49 | 81.42 | 49.156 | 8.95 | 44 | 180 | 47.5949 |