The VARCOMP Procedure

References

  • Burdick, R. K., Borror, C. M., and Montgomery, D. C. (2003), “A Review of Methods for Measurement Systems Capability Analysis,” Journal of Quality Technology, 35, 342–354.

  • Burdick, R. K., Borror, C. M., and Montgomery, D. C. (2005), Design and Analysis of Gauge R&R Studies: Making Decisions with Confidence Intervals in Random and Mixed ANOVA Models, Philadelphia, PA and Alexandria, VA: SIAM and ASA.

  • Gaylor, D. W., Lucas, H. L., and Anderson, R. L. (1970), “Calculation of Expected Mean Squares by the Abbreviated Doolittle and Square Root Methods,” Biometrics, 26, 641–655.

  • Goodnight, J. H. (1978), Computing MIVQUE0 Estimates of Variance Components, Technical report, SAS Institute Inc, Cary, NC, SAS Technical Report R-105 Edition.

  • Goodnight, J. H. and Hemmerle, W. J. (1979), “A Simplified Algorithm for the W-Transformation in Variance Component Estimation,” Technometrics, 21, 265–268.

  • Graybill, F. A. and Wang, C. M. (1980), “Confidence Intervals on Nonnegative Linear Combinations of Variances,” Journal of the American Statistical Association, 75, 869–873.

  • Hartley, H. O., Rao, J. N. K., and LaMotte, L. (1978), “A Simple Synthesis-Based Method of Variance Component Estimation,” Biometrics, 34, 233–244.

  • Hemmerle, W. J. and Hartley, H. O. (1973), “Computing Maximum Likelihood Estimates for the Mixed AOV Model Using the W-Transformation,” Technometrics, 15, 819–831.

  • Hicks, C. R. (1973), Fundamental Concepts in the Design of Experiments, New York: Holt, Rinehart and Winston.

  • Hocking, R. R. (1983), “A Diagnostic Tool for Mixed Models with Applications to Negative Estimates of Variance Components,” in Proceedings of the Eighth Annual SAS Users Group International Conference, Cary, NC: SAS Institute Inc.

  • Hocking, R. R. (1984), Analysis of Linear Models, Monterey, CA: Brooks/Cole.

  • Houf, R. E. and Burman, D. B. (1988), “Statistical Analysis of Power Module Thermal Test Equipment Performance,” IEEE Transactions on Components Hybrids, and Manufacturing Technology, 11, 516–520.

  • Patterson, H. D. and Thompson, R. (1971), “Recovery of Inter-Block Information When Block Sizes Are Unequal,” Biometrika, 58, 545–554.

  • Rao, C. R. (1971), “Minimum Variance Quadratic Unbiased Estimation of Variance Components,” Journal of Multivariate Analysis, 1, 445–456.

  • Rao, C. R. (1972), “Estimation of Variance and Covariance Components in Linear Models,” Journal of the American Statistical Association, 67, 112–115.

  • Searle, S. R., Casella, G., and McCulloch, C. E. (1992), Variance Components, New York: John Wiley & Sons.

  • Weerahandi, S. (1993), “Generalized Confidence Intervals,” Journal of the American Statistical Association, 88, 899–905.