The TRANSREG Procedure

References

  • Akaike, H. (1973), “Information Theory and an Extension of the Maximum Likelihood Principle,” in B. N. Petrov and F. Csáki, eds., Proceedings of the Second International Symposium on Information Theory, 267–281, Budapest: Akademiai Kiado.

  • Box, G. E. P. and Cox, D. R. (1964), “An Analysis of Transformations,” Journal of the Royal Statistical Society, Series B, 26, 211–234.

  • Breiman, L. and Friedman, J. H. (1985), “Estimating Optimal Transformations for Multiple Regression and Correlation,” Journal of the American Statistical Association, 77, 580–619, with discussion.

  • Brent, R. P. (1973), Algorithms for Minimization without Derivatives, Englewood Cliffs, NJ: Prentice-Hall, chapter 5.

  • Brinkman, N. D. (1981), “Ethanol Fuel: A Single-Cylinder Engine Study of Efficiency and Exhaust Emissions,” Society of Automotive Engineers Transactions, 90, 1410–1424.

  • Carroll, J. D. (1972), “Individual Differences and Multidimensional Scaling,” in R. N. Shepard, A. K. Romney, and S. B. Nerlove, eds., Multidimensional Scaling: Theory and Applications in the Behavioral Sciences, volume 1, New York: Seminar Press.

  • Craven, P. and Wahba, G. (1979), “Smoothing Noisy Data with Spline Functions,” Numerical Mathematics, 31, 377–403.

  • de Boor, C. (1978), A Practical Guide to Splines, New York: Springer-Verlag.

  • de Leeuw, J. (1986), Regression with Optimal Scaling of the Dependent Variable, Leiden, Netherlands: Department of Data Theory, University of Leiden.

  • de Leeuw, J., Young, F. W., and Takane, Y. (1976), “Additive Structure in Qualitative Data: An Alternating Least Squares Approach with Optimal Scaling Features,” Psychometrika, 41, 471–503.

  • Draper, N. R. and Smith, H. (1981), Applied Regression Analysis, 2nd Edition, New York: John Wiley & Sons.

  • Eilers, P. H. C. and Marx, B. D. (1996), “Flexible Smoothing with B-Splines and Penalties,” Statistical Science, 11, 89–121, with discussion.

  • Fisher, R. A. (1938), Statistical Methods for Research Workers, 10th Edition, Edinburgh: Oliver & Boyd.

  • Gabriel, K. R. (1981), “Biplot Display of Multivariate Matrices for Inspection of Data and Diagnosis,” in V. Barnett, ed., Interpreting Multivariate Data, London: John Wiley & Sons.

  • Gifi, A. (1990), Nonlinear Multivariate Analysis, New York: John Wiley & Sons.

  • Green, P. E. and Wind, Y. (1975), “New Way to Measure Consumers’ Judgments,” Harvard Business Review, 53, 107–117.

  • Hastie, T. J. and Tibshirani, R. J. (1986), “Generalized Additive Models,” Statistical Science, 3, 297–318.

  • Hurvich, C. M., Simonoff, J. S., and Tsai, C.-L. (1998), “Smoothing Parameter Selection in Nonparametric Regression Using an Improved Akaike Information Criterion,” Journal of the Royal Statistical Society, Series B, 60, 271–293.

  • Israels, A. Z. (1984), “Redundancy Analysis for Qualitative Variables,” Psychometrika, 49, 331–346.

  • Judge, G. G., Griffiths, W. E., Hill, R. C., and Lee, T.-C. (1980), The Theory and Practice of Econometrics, New York: John Wiley & Sons.

  • Khuri, A. I. and Cornell, J. A. (1987), Response Surfaces, New York: Marcel Dekker.

  • Kruskal, J. B. (1964), “Nonmetric Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric Hypothesis,” Psychometrika, 29, 1–27.

  • Kuhfeld, W. F. (2010), Marketing Research Methods in SAS, Technical report, SAS Institute Inc., http://support.sas.com/resources/papers/tnote/tnote_marketresearch.html.

  • Myers, R. H. (1976), Response Surface Methodology, Blacksburg: Virginia Polytechnic Institute and State University.

  • National Institute of Standards and Technology (1998), “Statistical Reference Data Sets,” http://www.itl.nist.gov/div898/strd/general/dataarchive.html, accessed June 6, 2011.

  • Press, W. H., Flannery, B. P., Teukolsky, S. A., and Vetterling, W. T. (1989), Numerical Recipes in PASCAL, Cambridge: Cambridge University Press.

  • Reinsch, C. H. (1967), “Smoothing by Spline Functions,” Numerische Mathematik, 10, 177–183.

  • SAS Institute Inc. (1993), Algorithms for the PRINQUAL and TRANSREG Procedures, Technical Report R-108, SAS Institute Inc., Cary, NC, http://support.sas.com/publishing/pubcat/techreports/59040.pdf.

  • Schiffman, S. S., Reynolds, M. L., and Young, F. W. (1981), Introduction to Multidimensional Scaling, New York: Academic Press.

  • Schwarz, G. (1978), “Estimating the Dimension of a Model,” Annals of Statistics, 6, 461–464.

  • Siegel, S. (1956), Nonparametric Statistics, New York: McGraw-Hill.

  • Smith, P. L. (1979), “Splines as a Useful and Convenient Statistical Tool,” American Statistician, 33, 57–62.

  • Stewart, D. K. and Love, W. A. (1968), “A General Canonical Correlation Index,” Psychological Bulletin, 70, 160–163.

  • van der Burg, E. and de Leeuw, J. (1983), “Non-linear Canonical Correlation,” British Journal of Mathematical and Statistical Psychology, 36, 54–80.

  • van Rijckevorsel, J. L. (1982), “Canonical Analysis with B-Splines,” in H. Caussinus, P. Ettinger, and R. Tomassone, eds., COMPUSTAT 1982, Part I, Vienna: Physica-Verlag.

  • Winsberg, S. and Ramsay, J. O. (1980), “Monotonic Transformations to Additivity Using Splines,” Biometrika, 67, 669–674.

  • Young, F. W. (1981), “Quantitative Analysis of Qualitative Data,” Psychometrika, 46, 357–388.

  • Young, F. W., de Leeuw, J., and Takane, Y. (1976), “Regression with Qualitative and Quantitative Variables: An Alternating Least Squares Approach with Optimal Scaling Features,” Psychometrika, 41, 505–529.