The CORRESP Procedure

References

  • Benzécri, J. P. (1973), L’analyse des données: T. 2, l’analyse des correspondances, Paris: Dunod.

  • Benzécri, J. P. (1979), “Sur le calcul des taux d’inertie dans l’analyse d’un questionnaire, addendum et erratum à [BIN. MULT.],” Cahiers de l’Analyse des Données, 4, 377–378.

  • Burt, C. (1950), “The Factorial Analysis of Qualitative Data,” British Journal of Psychology, 3, 166–185.

  • Carroll, J. D., Green, P. E., and Schaffer, C. M. (1986), “Interpoint Distance Comparisons in Correspondence Analysis,” Journal of Marketing Research, 23, 271–280.

  • Fisher, R. A. (1940), “The Precision of Discriminant Functions,” Annals of Eugenics, 10, 422–429.

  • Gifi, A. (1990), Nonlinear Multivariate Analysis, New York: John Wiley & Sons.

  • Greenacre, M. J. (1984), Theory and Applications of Correspondence Analysis, London: Academic Press.

  • Greenacre, M. J. (1988), “Correspondence Analysis of Multivariate Categorical Data by Weighted Least-Squares,” Biometrika, 75, 457–467.

  • Greenacre, M. J. (1989), “The Carroll-Green-Schaffer Scaling in Correspondence Analysis: A Theoretical and Empirical Appraisal,” Journal of Market Research, 26, 358–365.

  • Greenacre, M. J. (1994), “Multiple and Joint Correspondence Analysis,” in M. J. Greenacre and J. Blasius, eds., Correspondence Analysis in the Social Sciences, London: Academic Press.

  • Greenacre, M. J. and Hastie, T. J. (1987), “The Geometric Interpretation of Correspondence Analysis,” Journal of the American Statistical Association, 82, 437–447.

  • Guttman, L. (1941), “The Quantification of a Class of Attributes: A Theory and Method of Scale Construction,” in P. Horst, P. Wallin, and L. Guttman, eds., The Prediction of Personal Adjustment, New York: Social Science Research Council.

  • Hayashi, C. (1950), “On the Quantification of Qualitative Data from the Mathematico-Statistical Point of View,” Annals of the Institute of Statistical Mathematics, 2, 35–47.

  • Hirshfield, H. O. (1935), “A Connection between Correlation and Contingency,” Cambridge Philosophical Society Proceedings, 31, 520–524.

  • Hoffman, D. L. and Franke, G. R. (1986), “Correspondence Analysis: Graphical Representation of Categorical Data in Marketing Research,” Journal of Marketing Research, 23, 213–227.

  • Horst, P. (1935), “Measuring Complex Attitudes,” Journal of Social Psychology, 6, 369–374.

  • Kobayashi, R. (1981), An Introduction to Quantification Theory, Tokyo: Japan Union of Scientists and Engineers.

  • Komazawa, T. (1982), Quantification Theory and Data Processing, Tokyo: Asakura-shoten.

  • Lebart, L., Morineau, A., and Tabard, N. (1977), Techniques de la description statistique: Méthodes et logiciels pour l’analyse des grands tableaux, Paris: Dunod.

  • Lebart, L., Morineau, A., and Warwick, K. M. (1984), Multivariate Descriptive Statistical Analysis: Correspondence Analysis and Related Techniques for Large Matrices, New York: John Wiley & Sons.

  • Nishisato, S. (1980), Analysis of Categorical Data: Dual Scaling and Its Applications, Toronto: University of Toronto Press.

  • Nishisato, S. (1982), Quantification of Qualitative Data: Dual Scaling and Its Applications, Tokyo: Asakura-shoten.

  • Richardson, M. and Kuder, G. F. (1933), “Making a Rating Scale That Measures,” Personnel Journal, 12, 36–40.

  • Tenenhaus, M. and Young, F. W. (1985), “An Analysis and Synthesis of Multiple Correspondence Analysis, Optimal Scaling, Dual Scaling, Homogeneity Analysis, and Other Methods of Quantifying Categorical Multivariate Data,” Psychometrika, 50, 91–119.

  • U.S. Bureau of the Census (1979), Statistical Abstract of the United States, 100th Edition, Washington, DC: U.S. Government Printing Office.

  • van der Heijden, P. G. M. and de Leeuw, J. (1985), “Correspondence Analysis Used Complementary to Loglinear Analysis,” Psychometrika, 50, 429–447.