The FMM Procedure

References

  • Aldrich, J. (1997), “R. A. Fisher and the Making of Maximum Likelihood, 1912–1922,” Statistical Science, 12, 162–176.

  • Breslow, N. E. (1984), “Extra-Poisson Variation in Log-Linear Models,” Applied Statistics, 33, 38–44.

  • Brier, S. S. (1980), “Analysis of Contingency Tables under Cluster Sampling,” Biometrika, 67, 591–596.

  • Cameron, A. C. and Trivedi, P. K. (1998), Regression Analysis of Count Data, Cambridge: Cambridge University Press.

  • Celeux, G., Forbes, F., Robert, C. P., and Titterington, D. M. (2006), “Deviance Information Criteria for Missing Data Models,” Bayesian Analysis, 1, 651–674.

  • Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977), “Maximum Likelihood from Incomplete Data via the EM Algorithm,” Journal of the Royal Statistical Society, Series B, 39, 1–38.

  • Everitt, B. S. and Hand, D. J. (1981), Finite Mixture Distributions, London: Chapman & Hall.

  • Ferrari, S. L. P. and Cribari-Neto, F. (2004), “Beta Regression for Modelling Rates and Proportions,” Journal of Applied Statistics, 31, 799–815.

  • Fisher, R. A. (1921), “On the 'Probable Error' of a Coefficient of Correlation Deduced from a Small Sample,” Metron, 1, 3–32.

  • Frühwirth-Schnatter, S. (2006), Finite Mixture and Markov Switching Models, New York: Springer.

  • Gamerman, D. (1997), “Sampling from the Posterior Distribution in Generalized Linear Models,” Statistics and Computing, 7, 57–68.

  • Geweke, J. (1992), “Evaluating the Accuracy of Sampling-Based Approaches to Calculating Posterior Moments,” in J. M. Bernardo, J. O. Berger, A. P. Dawid, and A. F. M. Smith, eds., Bayesian Statistics, volume 4, Oxford: Clarendon Press.

  • Griffiths, D. A. (1973), “Maximum Likelihood Estimation for the Beta-Binomial Distribution and an Application to the Household Distribution of the Total Number of Cases of a Disease,” Biometrics, 29, 637–648.

  • Haseman, J. K. and Kupper, L. L. (1979), “Analysis of Dichotomous Response Data from Certain Toxicological Experiments,” Biometrics, 35, 281–293.

  • Heidelberger, P. and Welch, P. D. (1981), “A Spectral Method for Confidence Interval Generation and Run Length Control in Simulations,” Communications of the ACM, 24, 233–245.

  • Heidelberger, P. and Welch, P. D. (1983), “Simulation Run Length Control in the Presence of an Initial Transient,” Operations Research, 31, 1109–1144.

  • Joe, H. and Zhu, R. (2005), “Generalized Poisson Distribution: The Property of Mixture of Poisson and Comparison with Negative Binomial Distribution,” Biometrical Journal, 47, 219–229.

  • Kass, R. E., Carlin, B. P., Gelman, A., and Neal, R. M. (1998), “Markov Chain Monte Carlo in Practice: A Roundtable Discussion,” American Statistician, 52, 93–100.

  • Koehler, K. J. and Wilson, J. R. (1986), “Chi-Square Tests for Comparing Vectors of Proportions for Several Cluster Samples,” Communications in Statistics—Theory and Methods, 15, 2977–2990.

  • Lawless, J. F. (1987), “Negative Binomial and Mixed Poisson Regression,” Canadian Journal of Statistics, 15, 209–225.

  • Margolin, B. H., Kaplan, N. L., and Zeiger, E. (1981), “Statistical Analysis of the Ames Salmonella Microsome Test,” Proceedings of the National Academy of Sciences, 76, 3779–3783.

  • McLachlan, G. J. and Peel, D. (2000), Finite Mixture Models, New York: John Wiley & Sons.

  • Morel, J. G. and Nagaraj, N. K. (1993), “A Finite Mixture Distribution for Modelling Multinomial Extra Variation,” Biometrika, 80, 363–371.

  • Morel, J. G. and Neerchal, N. K. (1997), “Clustered Binary Logistic Regression in Teratology Data Using a Finite Mixture Distribution,” Statistics in Medicine, 16, 2843–2853.

  • Neerchal, N. K. and Morel, J. G. (1998), “Large Cluster Results for Two Parametric Multinomial Extra Variation Models,” Journal of the American Statistical Association, 93, 1078–1087.

  • Pearson, K. (1915), “On Certain Types of Compound Frequency Distributions in Which the Components Can Be Individually Described by Binomial Series,” Biometrika, 11, 139–144.

  • Raftery, A. E. (1996), “Hypothesis Testing and Model Selection,” in W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, eds., Markov Chain Monte Carlo in Practice, 163–188, London: Chapman & Hall.

  • Raftery, A. E. and Lewis, S. M. (1992), “One Long Run with Diagnostics: Implementation Strategies for Markov Chain Monte Carlo,” Statistical Science, 7, 493–497.

  • Raftery, A. E. and Lewis, S. M. (1995), “The Number of Iterations, Convergence Diagnostics, and Generic Metropolis Algorithms,” in W. R. Gilks, D. J. Spiegelhalter, and S. Richardson, eds., Markov Chain Monte Carlo in Practice, London: Chapman & Hall.

  • Richardson, S. (2002), “Discussion of Spiegelhalter et al.” Journal of the Royal Statistical Society, Series B, 64, 631.

  • Roeder, K. (1990), “Density Estimation with Confidence Sets Exemplified by Superclusters and Voids in the Galaxies,” Journal of the American Statistical Association, 85, 617–624.

  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van der Linde, A. (2002), “Bayesian Measures of Model Complexity and Fit,” Journal of the Royal Statistical Society, Series B, 64(4), 583–616, with discussion.

  • Titterington, D. M., Smith, A. F. M., and Makov, U. E. (1985), Statistical Analysis of Finite Mixture Distributions, New York: John Wiley & Sons.

  • Viallefont, V., Richardson, S., and Greene, P. J. (2002), “Bayesian Analysis of Poisson Mixtures,” Journal of Nonparametric Statistics, 14, 181–202.

  • Wang, P., Puterman, M. L., Cockburn, I., and Le, N. (1996), “Mixed Poisson Regression Models with Covariate Dependent Rates,” Biometrics, 52, 381–400.

  • Williams, D. A. (1975), “The Analysis of Binary Responses from Toxicological Experiments Involving Reproduction and Teratogenicity,” Biometrics, 31, 949–952.

  • Wilson, J. R. (1989), “Chi-Square Tests for Overdispersion with Multiparameter Estimates,” Applied Statistics, 38, 441–443.