The PRINQUAL Procedure

References

  • Carroll, J. D. (1972), “Individual Differences and Multidimensional Scaling,” in R. N. Shepard, A. K. Romney, and S. B. Nerlove, eds., Multidimensional Scaling: Theory and Applications in the Behavioral Sciences, volume 1, New York: Seminar Press.

  • De Boor, C. (1978), A Practical Guide to Splines, New York: Springer-Verlag.

  • de Leeuw, J. (1985), personal communication, Leiden, Netherlands.

  • de Leeuw, J. (1986), Regression with Optimal Scaling of the Dependent Variable, Leiden, Netherlands: Department of Data Theory, University of Leiden.

  • Eckart, C. and Young, G. (1936), “The Approximation of One Matrix by Another of Lower Rank,” Psychometrika, 1, 211–218.

  • Fisher, R. A. (1938), Statistical Methods for Research Workers, 10th Edition, Edinburgh: Oliver & Boyd.

  • Gabriel, K. R. (1981), “Biplot Display of Multivariate Matrices for Inspection of Data and Diagnosis,” in V. Barnett, ed., Interpreting Multivariate Data, London: John Wiley & Sons.

  • Gifi, A. (1990), Nonlinear Multivariate Analysis, New York: John Wiley & Sons.

  • Goodnight, J. H. (1978), The SWEEP Operator: Its Importance in Statistical Computing, Technical Report R-106, SAS Institute Inc., Cary, NC.

  • Hotelling, H. (1933), “Analysis of a Complex of Statistical Variables into Principal Components,” Journal of Educational Psychology, 24, 417–441, 498–520.

  • Kruskal, J. B. (1964), “Nonmetric Multidimensional Scaling by Optimizing Goodness of Fit to a Nonmetric Hypothesis,” Psychometrika, 29, 1–27.

  • Kruskal, J. B. and Shepard, R. N. (1974), “A Nonmetric Variety of Linear Factor Analysis,” Psychometrika, 38, 123–157.

  • Sarle, W. S. (1984), personal communication, Cary, NC.

  • Siegel, S. (1956), Nonparametric Statistics, New York: McGraw-Hill.

  • Smith, P. L. (1979), “Splines as a Useful and Convenient Statistical Tool,” American Statistician, 33, 57–62.

  • Tenenhaus, M. and Vachette, J. L. (1977), “PRINQUAL: Un programme d’dnalyse en composantes principales d’un ensemble de variables nominales ou numériques,” Les Cahiers de Recherche, 68, CESA, Jout-en-Josas, France.

  • van Rijckevorsel, J. L. (1982), “Canonical Analysis with B-Splines,” in H. Caussinus, P. Ettinger, and R. Tomassone, eds., COMPUSTAT 1982, Part I, Vienna: Physica-Verlag.

  • Winsberg, S. and Ramsay, J. O. (1983), “Monotone Spline Transformations for Dimension Reduction,” Psychometrika, 48, 575–595.

  • Young, F. W. (1981), “Quantitative Analysis of Qualitative Data,” Psychometrika, 46, 357–388.

  • Young, F. W., Takane, Y., and de Leeuw, J. (1978), “The Principal Components of Mixed Measurement Level Multivariate Data: An Alternating Least Squares Method with Optimal Scaling Features,” Psychometrika, 43, 279–281.