This example illustrates the use of fixed regression parameters in PROC X12. Suppose that you have the same data set as in the section Basic Seasonal Adjustment. You can specify the following statements to use TRAMO to automatically identify a model that includes a U.S. Census Bureau Easter(25) regressor:
title 'Estimate Easter(25) Parameter'; proc x12 data=sales date=date MdlInfoOut=mdlout1; var sales; regression predefined=easter(25); automdl; run ;
The displayed results are shown in Output 38.8.1.
Output 38.8.1: Automatic Model ID with Easter(25) Regression
Estimate Easter(25) Parameter |
Regression Model Parameter Estimates | ||||||
---|---|---|---|---|---|---|
For Variable sales | ||||||
Type | Parameter | NoEst | Estimate | Standard Error | t Value | Pr > |t| |
Easter | Easter[25] | Est | -5.09298 | 3.50786 | -1.45 | 0.1489 |
Exact ARMA Maximum Likelihood Estimation | |||||
---|---|---|---|---|---|
For Variable sales | |||||
Parameter | Lag | Estimate | Standard Error | t Value | Pr > |t| |
Nonseasonal AR | 1 | 0.62148 | 0.09279 | 6.70 | <.0001 |
2 | 0.23354 | 0.10385 | 2.25 | 0.0262 | |
3 | -0.07191 | 0.09055 | -0.79 | 0.4285 | |
Nonseasonal MA | 1 | 0.97377 | 0.03771 | 25.82 | <.0001 |
Seasonal MA | 12 | 0.10558 | 0.10205 | 1.03 | 0.3028 |
The MDLINFOOUT= data set, mdlout1
, that contains the model and parameter estimates is shown in Output 38.8.2.
proc print data=mdlout1; run;
Output 38.8.2: MDLINFOOUT= Data Set, Estimation of Automatic Model ID with Easter(25) Regression
Estimate Easter(25) Parameter |
Obs | _NAME_ | _MODELTYPE_ | _MODELPART_ | _COMPONENT_ | _PARMTYPE_ | _DSVAR_ | _VALUE_ | _FACTOR_ | _LAG_ | _SHIFT_ | _NOEST_ | _EST_ | _STDERR_ | _TVALUE_ | _PVALUE_ | _STATUS_ | _SCORE_ | _LABEL_ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | sales | REG | PREDEFINED | SCALE | EASTER | EASTER | 25 | . | . | . | 0 | -5.09298 | 3.50786 | -1.4519 | 0.14894 | . | ||
2 | sales | ARIMA | FORECAST | NONSEASONAL | DIF | sales | . | . | 1 | . | . | . | . | . | . | . | ||
3 | sales | ARIMA | FORECAST | SEASONAL | DIF | sales | . | . | 1 | . | . | . | . | . | . | . | ||
4 | sales | ARIMA | FORECAST | NONSEASONAL | AR | sales | . | 1 | 1 | . | 0 | 0.62148 | 0.09279 | 6.6980 | 0.00000 | . | ||
5 | sales | ARIMA | FORECAST | NONSEASONAL | AR | sales | . | 1 | 2 | . | 0 | 0.23354 | 0.10385 | 2.2488 | 0.02621 | . | ||
6 | sales | ARIMA | FORECAST | NONSEASONAL | AR | sales | . | 1 | 3 | . | 0 | -0.07191 | 0.09055 | -0.7942 | 0.42851 | . | ||
7 | sales | ARIMA | FORECAST | NONSEASONAL | MA | sales | . | 1 | 1 | . | 0 | 0.97377 | 0.03771 | 25.8240 | 0.00000 | . | ||
8 | sales | ARIMA | FORECAST | SEASONAL | MA | sales | . | 2 | 1 | . | 0 | 0.10558 | 0.10205 | 1.0346 | 0.30277 | . |
To fix the Easter(25) parameter while adding a regressor that is weighted according to the number of Saturdays in a month, either use the REGRESSION and EVENT statements or create a MDLINFOIN= data set. The following statements show the method for using the REGRESSION statement to fix the EASTER parameter and the EVENT statement to add the SATURDAY regressor. The output is shown in Output 38.8.3.
title 'Use SAS Statements to Alter Model'; proc x12 data=sales date=date MdlInfoOut=mdlout2grm; var sales; regression predefined=easter(25) / b=-5.029298 F; event Saturday; automdl; run ;
Output 38.8.3: Automatic Model ID with Fixed Easter(25) and Saturday Regression
Use SAS Statements to Alter Model |
Regression Model Parameter Estimates | ||||||
---|---|---|---|---|---|---|
For Variable sales | ||||||
Type | Parameter | NoEst | Estimate | Standard Error | t Value | Pr > |t| |
User Defined | Saturday | Est | 3.23225 | 1.16701 | 2.77 | 0.0064 |
Easter | Easter[25] | Fixed | -5.02930 | . | . | . |
Exact ARMA Maximum Likelihood Estimation | |||||
---|---|---|---|---|---|
For Variable sales | |||||
Parameter | Lag | Estimate | Standard Error | t Value | Pr > |t| |
Nonseasonal AR | 1 | -0.32506 | 0.08256 | -3.94 | 0.0001 |
To fix the EASTER regressor and add the new SATURDAY regressor by using a DATA step, you can create the data set mdlin2
as shown. The data set mdlin2
is displayed in Output 38.8.4.
title 'Use a SAS DATA Step to Create a MdlInfoIn= Data Set'; data plusSaturday; _NAME_ = 'sales'; _MODELTYPE_ = 'REG'; _MODELPART_ = 'EVENT'; _COMPONENT_ = 'SCALE'; _PARMTYPE_ = 'USER'; _DSVAR_ = 'SATURDAY'; run; data mdlin2; set mdlout1; if ( _DSVAR_ = 'EASTER' ) then do; _NOEST_ = 1; _EST_ = -5.029298; end; run; proc append base=mdlin2 data=plusSaturday force; run;
proc print data=mdlin2; run;
Output 38.8.4: MDLINFOIN= Data Set, Fixed Easter(25) and Added Saturday Regression, Previously Identified Model
Use a SAS DATA Step to Create a MdlInfoIn= Data Set |
Obs | _NAME_ | _MODELTYPE_ | _MODELPART_ | _COMPONENT_ | _PARMTYPE_ | _DSVAR_ | _VALUE_ | _FACTOR_ | _LAG_ | _SHIFT_ | _NOEST_ | _EST_ | _STDERR_ | _TVALUE_ | _PVALUE_ | _STATUS_ | _SCORE_ | _LABEL_ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | sales | REG | PREDEFINED | SCALE | EASTER | EASTER | 25 | . | . | . | 1 | -5.02930 | 3.50786 | -1.4519 | 0.14894 | . | ||
2 | sales | ARIMA | FORECAST | NONSEASONAL | DIF | sales | . | . | 1 | . | . | . | . | . | . | . | ||
3 | sales | ARIMA | FORECAST | SEASONAL | DIF | sales | . | . | 1 | . | . | . | . | . | . | . | ||
4 | sales | ARIMA | FORECAST | NONSEASONAL | AR | sales | . | 1 | 1 | . | 0 | 0.62148 | 0.09279 | 6.6980 | 0.00000 | . | ||
5 | sales | ARIMA | FORECAST | NONSEASONAL | AR | sales | . | 1 | 2 | . | 0 | 0.23354 | 0.10385 | 2.2488 | 0.02621 | . | ||
6 | sales | ARIMA | FORECAST | NONSEASONAL | AR | sales | . | 1 | 3 | . | 0 | -0.07191 | 0.09055 | -0.7942 | 0.42851 | . | ||
7 | sales | ARIMA | FORECAST | NONSEASONAL | MA | sales | . | 1 | 1 | . | 0 | 0.97377 | 0.03771 | 25.8240 | 0.00000 | . | ||
8 | sales | ARIMA | FORECAST | SEASONAL | MA | sales | . | 2 | 1 | . | 0 | 0.10558 | 0.10205 | 1.0346 | 0.30277 | . | ||
9 | sales | REG | EVENT | SCALE | USER | SATURDAY | . | . | . | . | . | . | . | . | . | . |
The data set mdlin2
can be used to replace the regression and model information contained in the REGRESSION, EVENT, and AUTOMDL statements. Note
that the model specified in the mdlin2
data set is the same model as the automatically identified model. The following example uses the mdlin2
data set as input; the results are displayed in Output 38.8.5.
title 'Use Updated Data Set to Alter Model'; proc x12 data=sales date=date MdlInfoIn=mdlin2 MdlInfoOut=mdlout2DS; var sales; estimate; run ;
Output 38.8.5: Estimate MDLINFOIN= File for Model with Fixed Easter(25) and Saturday Regression, Previously Identified Model
Use Updated Data Set to Alter Model |
Regression Model Parameter Estimates | ||||||
---|---|---|---|---|---|---|
For Variable sales | ||||||
Type | Parameter | NoEst | Estimate | Standard Error | t Value | Pr > |t| |
User Defined | SATURDAY | Est | 3.41762 | 1.07641 | 3.18 | 0.0019 |
Easter | Easter[25] | Fixed | -5.02930 | . | . | . |
Exact ARMA Maximum Likelihood Estimation | |||||
---|---|---|---|---|---|
For Variable sales | |||||
Parameter | Lag | Estimate | Standard Error | t Value | Pr > |t| |
Nonseasonal AR | 1 | 0.62225 | 0.09175 | 6.78 | <.0001 |
2 | 0.30429 | 0.10109 | 3.01 | 0.0031 | |
3 | -0.14862 | 0.08859 | -1.68 | 0.0958 | |
Nonseasonal MA | 1 | 0.97125 | 0.03798 | 25.57 | <.0001 |
Seasonal MA | 12 | 0.11691 | 0.10000 | 1.17 | 0.2445 |
The following statements specify almost the same information as contained in the data set mdlin2
. The ARIMA statement specifies the lags of the model. However, the initial AR and MA parameter values are the default. When
using the mdlin2
data set as input, the initial values can be specified. The results are displayed in Output 38.8.6.
title 'Use SAS Statements to Alter Model'; proc x12 data=sales date=date MdlInfoOut=mdlout3grm; var sales; regression predefined=easter(25) / b=-5.029298 F; event Saturday; arima model=((3 1 1)(0 1 1)); estimate; run ;
proc print data=mdlout3grm; run;
Output 38.8.6: MDLINFOOUT= Statement, Fixed Easter(25) and Added Saturday Regression, Previously Identified Model
Use SAS Statements to Alter Model |
Obs | _NAME_ | _MODELTYPE_ | _MODELPART_ | _COMPONENT_ | _PARMTYPE_ | _DSVAR_ | _VALUE_ | _FACTOR_ | _LAG_ | _SHIFT_ | _NOEST_ | _EST_ | _STDERR_ | _TVALUE_ | _PVALUE_ | _STATUS_ | _SCORE_ | _LABEL_ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | sales | REG | EVENT | SCALE | USER | Saturday | . | . | . | . | 0 | 3.41760 | 1.07640 | 3.1750 | 0.00187 | . | ||
2 | sales | REG | PREDEFINED | SCALE | EASTER | EASTER | 25 | . | . | . | 1 | -5.02930 | . | . | . | . | ||
3 | sales | ARIMA | FORECAST | NONSEASONAL | DIF | sales | . | . | 1 | . | . | . | . | . | . | . | ||
4 | sales | ARIMA | FORECAST | SEASONAL | DIF | sales | . | . | 1 | . | . | . | . | . | . | . | ||
5 | sales | ARIMA | FORECAST | NONSEASONAL | AR | sales | . | 1 | 1 | . | 0 | 0.62228 | 0.09175 | 6.7825 | 0.00000 | . | ||
6 | sales | ARIMA | FORECAST | NONSEASONAL | AR | sales | . | 1 | 2 | . | 0 | 0.30431 | 0.10109 | 3.0103 | 0.00314 | . | ||
7 | sales | ARIMA | FORECAST | NONSEASONAL | AR | sales | . | 1 | 3 | . | 0 | -0.14864 | 0.08859 | -1.6779 | 0.09579 | . | ||
8 | sales | ARIMA | FORECAST | NONSEASONAL | MA | sales | . | 1 | 1 | . | 0 | 0.97128 | 0.03796 | 25.5881 | 0.00000 | . | ||
9 | sales | ARIMA | FORECAST | SEASONAL | MA | sales | . | 2 | 1 | . | 0 | 0.11684 | 0.10000 | 1.1684 | 0.24481 | . |
The MDLINFOOUT= data set provides a method for comparing the results of the model identification. The data set mdlout3grm
that results from using the MODEL= option in the ARIMA statement can be compared to the data set mdlout2DS
that results from using the MDLINFOIN= data set with initial values for the AR and MA parameters. The mdlout2DS
data set is shown in Output 38.8.7, and the results of the comparison are shown in Output 38.8.8. The slight difference in the estimated parameters can be attributed to the difference in the initial values for the AR and
MA parameters.
proc print data=mdlout2DS; run;
Output 38.8.7: MDLINFOOUT= Data Set, Fixed Easter(25) and Added Saturday Regression, Previously Identified Model
Use SAS Statements to Alter Model |
Obs | _NAME_ | _MODELTYPE_ | _MODELPART_ | _COMPONENT_ | _PARMTYPE_ | _DSVAR_ | _VALUE_ | _FACTOR_ | _LAG_ | _SHIFT_ | _NOEST_ | _EST_ | _STDERR_ | _TVALUE_ | _PVALUE_ | _STATUS_ | _SCORE_ | _LABEL_ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | sales | REG | EVENT | SCALE | USER | SATURDAY | . | . | . | . | 0 | 3.41762 | 1.07641 | 3.1750 | 0.00187 | . | ||
2 | sales | REG | PREDEFINED | SCALE | EASTER | EASTER | 25 | . | . | . | 1 | -5.02930 | . | . | . | . | ||
3 | sales | ARIMA | FORECAST | NONSEASONAL | DIF | sales | . | . | 1 | . | . | . | . | . | . | . | ||
4 | sales | ARIMA | FORECAST | SEASONAL | DIF | sales | . | . | 1 | . | . | . | . | . | . | . | ||
5 | sales | ARIMA | FORECAST | NONSEASONAL | AR | sales | . | 1 | 1 | . | 0 | 0.62225 | 0.09175 | 6.7817 | 0.00000 | . | ||
6 | sales | ARIMA | FORECAST | NONSEASONAL | AR | sales | . | 1 | 2 | . | 0 | 0.30429 | 0.10109 | 3.0100 | 0.00314 | . | ||
7 | sales | ARIMA | FORECAST | NONSEASONAL | AR | sales | . | 1 | 3 | . | 0 | -0.14862 | 0.08859 | -1.6776 | 0.09584 | . | ||
8 | sales | ARIMA | FORECAST | NONSEASONAL | MA | sales | . | 1 | 1 | . | 0 | 0.97125 | 0.03798 | 25.5712 | 0.00000 | . | ||
9 | sales | ARIMA | FORECAST | SEASONAL | MA | sales | . | 2 | 1 | . | 0 | 0.11691 | 0.10000 | 1.1691 | 0.24451 | . |
title 'Compare Results of SAS Statement Input and MdlInfoIn= Input'; proc compare base= mdlout3grm compare=mdlout2DS; var _EST_; run ;
Output 38.8.8: Compare Parameter Estimates from Different MDLINFOOUT= Data Sets
Compare Results of SAS Statement Input and MdlInfoIn= Input |
Value Comparison Results for Variables __________________________________________________________ || Value of Parameter Estimate || Base Compare Obs || _EST_ _EST_ Diff. % Diff ________ || _________ _________ _________ _________ || 1 || 3.4176 3.4176 0.0000225 0.000658 5 || 0.6223 0.6222 -0.000033 -0.005237 6 || 0.3043 0.3043 -0.000021 -0.006977 7 || -0.1486 -0.1486 0.0000235 -0.0158 8 || 0.9713 0.9713 -0.000024 -0.002452 9 || 0.1168 0.1169 0.0000759 0.0650 __________________________________________________________ |