The section Univariate Distributions (Table 55.7 through Table 55.34) lists all univariate distributions that PROC MCMC recognizes. The section Multivariate Distributions (Table 55.35 through Table 55.39) lists all multivariate distributions that PROC MCMC recognizes. With the exception of the multinomial distribution, all these distributions can be used in the MODEL, PRIOR, and HYPERPRIOR statements. The multinomial distribution is supported only in the MODEL statement. The RANDOM statement supports a limited number of distributions; see Table 55.4 for the complete list.
See the section Using Density Functions in the Programming Statements for information about how to use distributions in the programming statements. To specify an arbitrary distribution, you can use the GENERAL and DGENERAL functions. See the section Specifying a New Distribution for more details. See the section Truncation and Censoring for tips about how to work with truncated distributions and censoring data.
Table 55.7: Beta Distribution
Table 55.8: Binary Distribution
PROC specification |
binary(p) |
Density |
|
Parameter restriction |
|
Range |
|
Mean |
round |
Variance |
|
Mode |
|
Random number |
Generate . If , ; else, |
Table 55.9: Binomial Distribution
PROC specification |
binomial(n, p) |
Density |
|
Parameter restriction |
|
Range |
|
Mean |
|
Variance |
|
Mode |
|
Table 55.10: Cauchy Distribution
PROC specification |
cauchy(a, b) |
Density |
|
Parameter restriction |
|
Range |
|
Mean |
Does not exist. |
Variance |
Does not exist. |
Mode |
a |
Random number |
Generate ; let . Repeat the procedure until . is a draw from the standard Cauchy, and (Ripley, 1987). |
Table 55.11: Distribution
PROC specification |
chisq() |
Density |
|
Parameter restriction |
|
Range |
if ; otherwise. |
Mean |
|
Variance |
|
Mode |
if ; does not exist otherwise. |
Random number |
is a special case of the gamma distribution: is a draw from the distribution. |
Table 55.12: Exponential Distribution
PROC specification |
expchisq() |
Density |
|
Parameter restriction |
|
Range |
|
Mode |
|
Random number |
Generate , and is a draw from the exponential distribution. |
Relationship to the distribution |
|
Table 55.13: Exponential Exponential Distribution
PROC specification |
expexpon( |
expexpon( |
Density |
|
|
Parameter restriction |
|
|
Range |
|
Same |
Mode |
|
|
Random number |
Generate , and is a draw from the exponential exponential distribution. Note that an exponential exponential distribution is not the same as the double exponential distribution. |
|
Relationship to the exponential distribution |
|
Table 55.14: Exponential Gamma Distribution
PROC specification |
expgamma(a, |
expgamma(a, |
Density |
|
|
Parameter restriction |
|
|
Range |
|
Same |
Mode |
|
|
Random number |
Generate , and is a draw from the exponential gamma distribution. |
|
Relationship to the distribution |
|
Table 55.15: Exponential Inverse Distribution
PROC specification |
expichisq() |
Density |
|
Parameter restriction |
|
Range |
|
Mode |
|
Random number |
Generate , and is a draw from the exponential inverse distribution. |
Relationship to the distribution |
|
Table 55.16: Exponential Inverse-Gamma Distribution
PROC specification |
expigamma(a, |
expigamma(a, |
Density |
|
|
Parameter restriction |
|
|
Range |
|
Same |
Mode |
|
|
Random number |
Generate , and is a draw from the exponential inverse-gamma distribution. |
|
Relationship to the distribution |
|
Table 55.17: Exponential Scaled Inverse Distribution
PROC specification |
expsichisq(, s) |
Density |
|
Parameter restriction |
|
Range |
|
Mode |
|
Random number |
Generate , and is a draw from the exponential scaled inverse distribution. |
Relationship to the distribution |
|
Table 55.18: Exponential Distribution
PROC specification |
expon( |
expon( |
Density |
|
|
Parameter restriction |
|
|
Range |
|
Same |
Mean |
b |
|
Variance |
|
|
Mode |
0 |
0 |
Random number |
The exponential distribution is a special case of the gamma distribution: is a draw from the exponential distribution. |
Table 55.19: Gamma Distribution
PROC specification |
gamma(a, |
gamma(a, |
Density |
|
|
Parameter restriction |
|
|
Range |
if otherwise. |
Same |
Mean |
ab |
|
Variance |
|
|
Mode |
if |
if |
Random number |
See (McGrath and Irving, 1973). |
Table 55.20: Geometric Distribution
PROC specification |
geo(p) |
||||||||||||||||||||||||||||||||||||||||||||||||
Density [a] |
|
||||||||||||||||||||||||||||||||||||||||||||||||
Parameter restriction |
|
||||||||||||||||||||||||||||||||||||||||||||||||
Range |
|
||||||||||||||||||||||||||||||||||||||||||||||||
Mean |
round() |
||||||||||||||||||||||||||||||||||||||||||||||||
Variance |
|
||||||||||||||||||||||||||||||||||||||||||||||||
Mode |
0 |
||||||||||||||||||||||||||||||||||||||||||||||||
Random number |
Based on samples obtained from a Bernoulli distribution with probability p until the first success. |
||||||||||||||||||||||||||||||||||||||||||||||||
[a] The random variable is the total number of failures in an experiment before the first success. This density function is not to be confused with another popular formulation, , which counts the total number of trials until the first success. |
Table 55.21: Inverse Distribution
PROC specification |
ichisq() |
Density |
|
Parameter restriction |
|
Range |
|
Mean |
if |
Variance |
if |
Mode |
|
Random number |
Inverse is a special case of the inverse-gamma distribution: is a draw from the inverse distribution. |
Table 55.22: Inverse-Gamma Distribution
PROC specification |
igamma(a, |
igamma(a, |
Density |
|
|
Parameter restriction |
|
|
Range |
|
Same |
Mean |
if |
if |
Variance |
|
|
Mode |
|
|
Random number |
Generate , and is a draw from the distribution. |
|
Relationship to the gamma distribution |
|
Table 55.23: Laplace (Double Exponential) Distribution
PROC specification |
laplace(a, |
laplace(a, |
Density |
|
|
Parameter restriction |
|
|
Range |
|
Same |
Mean |
a |
a |
Variance |
|
|
Mode |
a |
a |
Random number |
Inverse CDF. Generate . If else . is a draw from the Laplace distribution. |
Table 55.24: Logistic Distribution
PROC specification |
logistic(a, b) |
Density |
|
Parameter restriction |
|
Range |
|
Mean |
a |
Variance |
|
Mode |
a |
Random number |
Inverse CDF method with . Generate , and is a draw from the logistic distribution. |
Table 55.25: Lognormal Distribution
PROC specification |
lognormal(, |
lognormal(, |
lognormal(, |
Density |
|
|
|
Parameter restriction |
|
|
|
Range |
|
Same |
Same |
Mean |
|
|
|
Variance |
|
|
|
Mode |
|
|
|
Random number |
Generate , and is a draw from the lognormal distribution. |
Table 55.26: Negative Binomial Distribution
PROC specification |
negbin(n, p) |
Density |
|
Parameter restriction |
|
Range |
|
Mean |
round |
Variance |
|
Mode |
|
Random number |
Generate , and (Fishman, 1996). |
Table 55.27: Normal Distribution
PROC specification |
normal(, |
normal(, |
normal(, |
Density |
|
|
|
Parameter restriction |
|
|
|
Range |
|
Same |
Same |
Mean |
|
Same |
Same |
Variance |
|
v |
|
Mode |
|
Same |
Same |
Table 55.28: Pareto Distribution
PROC specification |
pareto(a, b) |
Density |
|
Parameter restriction |
|
Range |
|
Mean |
if |
Variance |
if |
Mode |
b |
Random number |
Inverse CDF method with . Generate , and is a draw from the Pareto distribution. |
Useful transformation |
is Beta(a, 1)I{}. |
Table 55.29: Poisson Distribution
PROC specification |
poisson() |
Density |
|
Parameter restriction |
|
Range |
|
Mean |
|
Variance |
, if |
Mode |
round |
Table 55.30: Scaled Inverse Distribution
PROC specification |
sichisq() |
Density |
|
Parameter restriction |
|
Range |
|
Mean |
if |
Variance |
if |
Mode |
|
Random number |
Scaled inverse is a special case of the inverse-gamma distribution: is a draw from the scaled inverse distribution. |
Table 55.31: t Distribution
PROC specification |
t(, |
t(, |
t(, |
Density |
|
|
|
Parm restriction |
, |
, |
, |
Range |
|
Same |
Same |
Mean |
if |
Same |
Same |
Variance |
if |
if |
if |
Mode |
|
Same |
Same |
Random number |
is a draw from the t distribution. |
Table 55.32: Uniform Distribution
Table 55.33: Wald Distribution
PROC specification |
wald(, ) |
Density |
|
Parameter restriction |
|
Range |
|
Mean |
|
Variance |
|
Mode |
|
Random number |
Generate . Let and . Perform a Bernoulli trial, . If , choose ; otherwise, choose (Michael, Schucany, and Haas, 1976). |
Table 55.34: Weibull Distribution
PROC specification |
weibull(, c, ) |
Density |
|
Parameter restriction |
|
Range |
if otherwise |
Mean |
|
Variance |
|
Mode |
if |
Random number |
Inverse CDF method with . Generate , and is a draw from the Weibull distribution. |
Table 55.35: Dirichlet Distribution
PROC specification |
dirich(), where , for |
Density |
, where |
Parameter restriction |
|
Range |
, |
Mean |
|
Mode |
|
Table 55.36: Inverse Wishart Distribution
PROC specification |
iwishart(, ), both and are matrices |
Density |
|
Parameter restriction |
must be symmetric and positive definite; |
Range |
is symmetric and positive definite |
Mean |
|
Mode |
|
Table 55.37: Multivariate Normal Distribution
PROC specification |
mvn(, ), where , for , and is a variance matrix |
Density |
|
Parameter restriction |
must be symmetric and positive definite |
Range |
|
Mean |
|
Mode |
|
Table 55.38: Autoregressive Multivariate Normal Distribution
PROC specification |
mvnar(, |
mvnar(, |
mvnar(, |
|
Density |
where
|
|||
Parameter restriction |
and |
|||
Range |
|
|||
Mean |
|
|||
Mode |
|
|||
Special Case |
When , the distribution simplifies to mvn(, ), where denotes the identity matrix |
Table 55.39: Multinomial Distribution
PROC specification |
multinom(), where and , for |
Density |
, where |
Parameter restriction |
with all |
Range |
, nonnegative integers |
Mean |
|