The NLIN Procedure

References

  • Bard, Y. (1970), “Comparison of Gradient Methods for the Solution of the Nonlinear Parameter Estimation Problem,” SIAM Journal of Numerical Analysis, 7, 157–186.

  • Bard, Y. (1974), Nonlinear Parameter Estimation, New York: Academic Press.

  • Bates, D. M. and Watts, D. G. (1980), “Relative Curvature Measures of Nonlinearity (with Discussion),” Journal of the Royal Statistical Society, Series B, 42, 1–25.

  • Bates, D. M. and Watts, D. G. (1981), “A Relative Offset Orthogonality Convergence Criterion for Nonlinear Least Squares,” Technometrics, 23, 179–183.

  • Bates, D. M. and Watts, D. G. (1988), Nonlinear Regression Analysis and Its Applications, John Wiley & Sons.

  • Beaton, A. E. and Tukey, J. W. (1974), “The Fitting of Power Series, Meaning Polynomials, Illustrated on Band-Spectroscopic Data,” Technometrics, 16, 147–185.

  • Box, M. J. (1971), “Bias in Nonlinear Estimation (with Discussion),” Journal of the Royal Statistical Society, Series B, 33, 171–201.

  • Charnes, A., Frome, E. L., and Yu, P. L. (1976), “The Equivalence of Generalized Least Squares and Maximum Likelihood Estimation in the Exponential Family,” Journal of the American Statistical Association, 71, 169–172.

  • Clarke, G. P. Y. (1987a), “Approximate Confidence Limits for a Parameter Function in Nonlinear Regression,” Journal of the American Statistical Association, 82, 221–230.

  • Cook, R. D. and Tsai, C. L. (1985), “Residuals in Nonlinear Regression,” Biometrika, 72, 23–9.

  • Cook, R. D. and Weisberg, S. (1990), “Confidence Curves in Nonlinear Regression,” Journal of the American Statistical Association, 85, 544–551.

  • Cox, D. R. (1970), Analysis of Binary Data, London: Metheun.

  • Donaldson, J. R. and Schnabel, B. (1987), “Computational Experiences for Confidence Regions and Confidence Intervals for Nonlinear Regression,” Technometrics, 29, 67–82.

  • Finney, D. J. (1971), Probit Analysis, Third Edition, Cambridge: Cambridge University Press.

  • Gallant, A. R. (1975), “Nonlinear Regression,” The American Statistician, 29, 73–81.

  • Gill, P. E., Murray, W., and Wright, M. H. (1981), Practical Optimization, New York: Academic Press.

  • Goodnight, J. H. (1979), “A Tutorial on the Sweep Operator,” The American Statistician, 33, 149–158.

  • Hartley, H. O. (1961), “The Modified Gauss-Newton Method for the Fitting of Non-linear Regression Functions by Least Squares,” Technometrics, 3, 269–280.

  • Holland, P. H. and Welsch, R. E. (1977), “Robust Regression Using Iteratively Reweighted Least-Squares,” Communications Statistics: Theory and Methods, 6, 813–827.

  • Hougaard, P. (1982), “Parameterizations of Nonlinear Models,” Journal of the Royal Statistical Society, Series B, 44, 244–252.

  • Hougaard, P. (1985), “The Appropriateness of the Asymptotic Distribution in a Nonlinear Regression Model in Relation to Curvature,” Journal of the Royal Statistical Society, Series B, 47, 103–114.

  • Huber, P. J. (1964), “Robust Estimation of a Location Parameter,” Annals of Mathematical Statistics, 35, 73–101.

  • Huber, P. J. (1973), “Robust Regression: Asymptotics, Conjectures and Monte Carlo,” Annals of Statistics, 1, 799–821.

  • Jennrich, R. I. (1969), “Asymptotic Properties of Nonlinear Least Squares Estimators,” Annals of Mathematical Statistics, 40, 633–643.

  • Jennrich, R. I. and Moore, R. H. (1975), “Maximum Likelihood Estimation by Means of Nonlinear Least Squares,” American Statistical Association, 1975 Proceedings of the Statistical Computing Section, 57–65.

  • Jennrich, R. I. and Sampson, P. F. (1968), “Application of Stepwise Regression to Nonlinear Estimation,” Technometrics, 10, 63–72.

  • Judge, G. G., Griffiths, W. E., Hill, R. C., and Lee, T.-C. (1980), The Theory and Practice of Econometrics, New York: John Wiley & Sons.

  • Kennedy, W. J., Jr. and Gentle, J. E. (1980), Statistical Computing, New York: Marcel Dekker.

  • Lee, E. T. (1974), “A Computer Program for Linear Logistic Regression Analysis,” Computer Programs in Biomedicine, 80–92.

  • Marquardt, D. W. (1963), “An Algorithm for Least-Squares Estimation of Nonlinear Parameters,” Journal for the Society of Industrial and Applied Mathematics, 11, 431–441.

  • McCullagh, P. and Nelder, J. A. (1989), Generalized Linear Models, Second Edition, London: Chapman & Hall.

  • Nelder, J. A. and Wedderburn, R. W. M. (1972), “Generalized Linear Models,” Journal of the Royal Statistical Society, Series A, 135, 370–384.

  • Pinheiro, J. C. and Bates, D. M. (1995), “Approximations to the Log-Likelihood Function in the Nonlinear Mixed-Effects Model,” Journal of Computational and Graphical Statistics, 4, 12–35.

  • Pringle, R. M. and Rayner, A. A. (1971), Generalized Inverse Matrices with Applications to Statistics, New York: Hafner Publishing.

  • Ratkowsky, D. (1983), Nonlinear Regression Modeling, New York and Basel: Marcel Dekker.

  • Ratkowsky, D. (1990), Handbook of Nonlinear Regression Models, New York: Marcel Dekker.

  • Schabenberger, O. and Pierce, F. J. (2002), Contemporary Statistical Models for the Plant and Soil Sciences, Boca Raton, FL: CRC Press.

  • Schabenberger, O., Tharp, B. E., Kells, J. J., and Penner, D. (1999), “Statistical Tests for Hormesis and Effective Dosages in Herbicide Dose Response,” Agronomy Journal, 91, 713–721.

  • Seber, G. A. F. and Wild, C. J. (1989), Nonlinear Regression, New York: John Wiley & Sons.

  • St. Laurent, R. T. and Cook, R. D. (1992), “Leverages and Superleverages in Nonlinear Regression,” Journal of the American Statistical Association, 87, 985–990.

  • St. Laurent, R. T. and Cook, R. D. (1993), “Leverages, Local Influence, and Curvature in Nonlinear Regression,” Biometrika, 80, 99–106.