If the data are contaminated in the x-space, M estimation does not do well. The following example shows how you can use LTS estimation to deal with this situation.
data hbk; input index $ x1 x2 x3 y @@; datalines; 1 10.1 19.6 28.3 9.7 2 9.5 20.5 28.9 10.1 3 10.7 20.2 31.0 10.3 4 9.9 21.5 31.7 9.5 5 10.3 21.1 31.1 10.0 6 10.8 20.4 29.2 10.0 7 10.5 20.9 29.1 10.8 8 9.9 19.6 28.8 10.3 9 9.7 20.7 31.0 9.6 10 9.3 19.7 30.3 9.9 11 11.0 24.0 35.0 -0.2 12 12.0 23.0 37.0 -0.4 13 12.0 26.0 34.0 0.7 14 11.0 34.0 34.0 0.1 15 3.4 2.9 2.1 -0.4 16 3.1 2.2 0.3 0.6 17 0.0 1.6 0.2 -0.2 18 2.3 1.6 2.0 0.0 19 0.8 2.9 1.6 0.1 20 3.1 3.4 2.2 0.4 21 2.6 2.2 1.9 0.9 22 0.4 3.2 1.9 0.3 23 2.0 2.3 0.8 -0.8 24 1.3 2.3 0.5 0.7 25 1.0 0.0 0.4 -0.3 26 0.9 3.3 2.5 -0.8 27 3.3 2.5 2.9 -0.7 28 1.8 0.8 2.0 0.3 29 1.2 0.9 0.8 0.3 30 1.2 0.7 3.4 -0.3 31 3.1 1.4 1.0 0.0 32 0.5 2.4 0.3 -0.4 33 1.5 3.1 1.5 -0.6 34 0.4 0.0 0.7 -0.7 35 3.1 2.4 3.0 0.3 36 1.1 2.2 2.7 -1.0 37 0.1 3.0 2.6 -0.6 38 1.5 1.2 0.2 0.9 39 2.1 0.0 1.2 -0.7 40 0.5 2.0 1.2 -0.5 41 3.4 1.6 2.9 -0.1 42 0.3 1.0 2.7 -0.7 43 0.1 3.3 0.9 0.6 44 1.8 0.5 3.2 -0.7 45 1.9 0.1 0.6 -0.5 46 1.8 0.5 3.0 -0.4 47 3.0 0.1 0.8 -0.9 48 3.1 1.6 3.0 0.1 49 3.1 2.5 1.9 0.9 50 2.1 2.8 2.9 -0.4 51 2.3 1.5 0.4 0.7 52 3.3 0.6 1.2 -0.5 53 0.3 0.4 3.3 0.7 54 1.1 3.0 0.3 0.7 55 0.5 2.4 0.9 0.0 56 1.8 3.2 0.9 0.1 57 1.8 0.7 0.7 0.7 58 2.4 3.4 1.5 -0.1 59 1.6 2.1 3.0 -0.3 60 0.3 1.5 3.3 -0.9 61 0.4 3.4 3.0 -0.3 62 0.9 0.1 0.3 0.6 63 1.1 2.7 0.2 -0.3 64 2.8 3.0 2.9 -0.5 65 2.0 0.7 2.7 0.6 66 0.2 1.8 0.8 -0.9 67 1.6 2.0 1.2 -0.7 68 0.1 0.0 1.1 0.6 69 2.0 0.6 0.3 0.2 70 1.0 2.2 2.9 0.7 71 2.2 2.5 2.3 0.2 72 0.6 2.0 1.5 -0.2 73 0.3 1.7 2.2 0.4 74 0.0 2.2 1.6 -0.9 75 0.3 0.4 2.6 0.2 ;
The data set hbk
is an artificial data set generated by Hawkins, Bradu, and Kass (1984). Both ordinary least squares (OLS) estimation and M estimation (not shown here) suggest that observations 11 to 14 are outliers.
However, these four observations were generated from the underlying model, whereas observations 1 to 10 were contaminated.
The reason that OLS estimation and M estimation do not pick up the contaminated observations is that they cannot distinguish
good leverage points (observations 11 to 14) from bad leverage points (observations 1 to 10). In such cases, the LTS method
identifies the true outliers.
The following statements invoke the ROBUSTREG procedure with the LTS estimation method:
proc robustreg data=hbk fwls method=lts; model y = x1 x2 x3 / diagnostics leverage; id index; run;
Figure 80.12 displays the model fitting information and summary statistics for the response variable and independent covariates.
Figure 80.12: Model Fitting Information and Summary Statistics
Model Information | |
---|---|
Data Set | WORK.HBK |
Dependent Variable | y |
Number of Independent Variables | 3 |
Number of Observations | 75 |
Method | LTS Estimation |
Summary Statistics | ||||||
---|---|---|---|---|---|---|
Variable | Q1 | Median | Q3 | Mean | Standard Deviation |
MAD |
x1 | 0.8000 | 1.8000 | 3.1000 | 3.2067 | 3.6526 | 1.9274 |
x2 | 1.0000 | 2.2000 | 3.3000 | 5.5973 | 8.2391 | 1.6309 |
x3 | 0.9000 | 2.1000 | 3.0000 | 7.2307 | 11.7403 | 1.7791 |
y | -0.5000 | 0.1000 | 0.7000 | 1.2787 | 3.4928 | 0.8896 |
Figure 80.13 displays information about the LTS fit, which includes the breakdown value of the LTS estimate. The breakdown value is a measure of the proportion of contamination that an estimation method can withstand and still maintain its robustness. In this example the LTS estimate minimizes the sum of 57 smallest squares of residuals. It can still estimate the true underlying model if the remaining 18 observations are contaminated. This corresponds to the breakdown value around 0.25, which is set as the default.
Figure 80.13: LTS Profile
LTS Profile | |
---|---|
Total Number of Observations | 75 |
Number of Squares Minimized | 57 |
Number of Coefficients | 4 |
Highest Possible Breakdown Value | 0.2533 |
Figure 80.14 displays parameter estimates for covariates and scale. Two robust estimates of the scale parameter are displayed. See the section Final Weighted Scale Estimator for how these estimates are computed. The weighted scale estimator (Wscale) is a more efficient estimator of the scale parameter.
Figure 80.14: LTS Parameter Estimates
LTS Parameter Estimates | ||
---|---|---|
Parameter | DF | Estimate |
Intercept | 1 | -0.3431 |
x1 | 1 | 0.0901 |
x2 | 1 | 0.0703 |
x3 | 1 | -0.0731 |
Scale (sLTS) | 0 | 0.7451 |
Scale (Wscale) | 0 | 0.5749 |
Figure 80.15 displays outlier and leverage-point diagnostics. The ID variable index
is used to identify the observations. If you do not specify this ID variable, the observation number is used to identify
the observations. However, the observation number depends on how the data are read. The first 10 observations are identified
as outliers, and observations 11 to 14 are identified as good leverage points.
Figure 80.15: Diagnostics
Diagnostics | ||||||
---|---|---|---|---|---|---|
Obs | index | Mahalanobis Distance | Robust MCD Distance | Leverage | Standardized Robust Residual |
Outlier |
1 | 1 | 1.9168 | 29.4424 | * | 17.0868 | * |
2 | 2 | 1.8558 | 30.2054 | * | 17.8428 | * |
3 | 3 | 2.3137 | 31.8909 | * | 18.3063 | * |
4 | 4 | 2.2297 | 32.8621 | * | 16.9702 | * |
5 | 5 | 2.1001 | 32.2778 | * | 17.7498 | * |
6 | 6 | 2.1462 | 30.5892 | * | 17.5155 | * |
7 | 7 | 2.0105 | 30.6807 | * | 18.8801 | * |
8 | 8 | 1.9193 | 29.7994 | * | 18.2253 | * |
9 | 9 | 2.2212 | 31.9537 | * | 17.1843 | * |
10 | 10 | 2.3335 | 30.9429 | * | 17.8021 | * |
11 | 11 | 2.4465 | 36.6384 | * | 0.0406 | |
12 | 12 | 3.1083 | 37.9552 | * | -0.0874 | |
13 | 13 | 2.6624 | 36.9175 | * | 1.0776 | |
14 | 14 | 6.3816 | 41.0914 | * | -0.7875 |
Figure 80.16 displays the final weighted least squares estimates. These estimates are least squares estimates computed after deleting the detected outliers.
Figure 80.16: Final Weighted LS Estimates
Parameter Estimates for Final Weighted Least Squares Fit | |||||||
---|---|---|---|---|---|---|---|
Parameter | DF | Estimate | Standard Error | 95% Confidence Limits | Chi-Square | Pr > ChiSq | |
Intercept | 1 | -0.1805 | 0.1044 | -0.3852 | 0.0242 | 2.99 | 0.0840 |
x1 | 1 | 0.0814 | 0.0667 | -0.0493 | 0.2120 | 1.49 | 0.2222 |
x2 | 1 | 0.0399 | 0.0405 | -0.0394 | 0.1192 | 0.97 | 0.3242 |
x3 | 1 | -0.0517 | 0.0354 | -0.1210 | 0.0177 | 2.13 | 0.1441 |
Scale | 0 | 0.5572 |