The BCHOICE Procedure (Experimental)

References

  • Albert, J. H. and Chib, S. (1993), “Bayesian Analysis of Binary and Polychotomous Response Data,” Journal of the American Statistical Association, 88, 669–679.

  • Allenby, G. M. (1997), “An Introduction to Hierarchical Bayesian Modeling,” American Marketing Association, Advanced Research Techniques Forum, Tutorial Notes.

  • Allenby, G. M. and Lenk, P. (1994), “Modeling Household Purchase Behavior with Logistic Normal Regression,” Journal of the American Statistical Association, 89, 1218–1231.

  • Allenby, G. M. and Rossi, P. E. (1991), “Quality Perceptions and Asymmetric Switching between Brands,” Marketing Science, 10, 185–205.

  • Allenby, G. M. and Rossi, P. E. (1999), “Marketing Models of Consumer Heterogeneity,” Journal of Econometrics, 89, 57–78.

  • Bhat, C. R. (1995), “A Heteroscedastic Extreme Value Model of Intercity Travel Mode Choice,” Transportation Research, 29, 471–483.

  • Eilers, P. H. C. and Marx, B. D. (1996), “Flexible Smoothing with B-Splines and Penalties,” Statistical Science, 11, 89–121, with discussion.

  • Gamerman, D. (1997), “Sampling from the Posterior Distribution in Generalized Linear Models,” Statistics and Computing, 7, 57–68.

  • Herriges, J. A. and Kling, C. L. (1996), “Testing the Consistency of Nested Logit Models with Utility Maximization,” Economics Letters, 50, 33–39.

  • Kass, R. E., Carlin, B. P., Gelman, A., and Neal, R. M. (1998), “Markov Chain Monte Carlo in Practice: A Roundtable Discussion,” American Statistician, 52, 93–100.

  • Kling, C. L. and Herriges, J. A. (1995), “An Empirical Investigation of the Consistency of Nested Logit Models with Utility Maximization,” American Journal of Agricultural Economics, 77, 875–884.

  • Kuhfeld, W. F. (2010), Marketing Research Methods in SAS, Technical report, SAS Institute Inc., http://support.sas.com/resources/papers/tnote/tnote_marketresearch.html.

  • Lahiri, K. and Gao, J. (2002), “Bayesian Analysis of Nested Logit Model by Markov Chain Monte Carlo,” Journal of Econometrics, 11, 103–133.

  • McCullagh, P. and Nelder, J. A. (1989), Generalized Linear Models, 2nd Edition, London: Chapman & Hall.

  • McCulloch, R. and Rossi, P. E. (1994), “An Exact Likelihood Analysis of the Multinomial Probit Model,” Journal of Econometrics, 64, 207–240.

  • McFadden, D. (1974), “Conditional Logit Analysis of Qualitative Choice Behavior,” in P. Zarembka, ed., Frontiers in Econometrics, New York: Academic Press.

  • McFadden, D. (1978), “Modelling the Choice of Residential Location,” in A. Karlqvist, L. Lundqvist, F. Snickars, and J. Weibull, eds., Spatial Interaction Theory and Planning Models, Amsterdam: North-Holland.

  • McFadden, D. (2001), “Economic Choices,” American Economic Review, 91, 351–378.

  • Roberts, G. O., Gelman, A., and Gilks, W. R. (1997), “Weak Convergence and Optimal Scaling of Random Walk Metropolis Algorithms,” Annals of Applied Probability, 7, 110–120.

  • Roberts, G. O. and Rosenthal, J. S. (2001), “Optimal Scaling for Various Metropolis-Hastings Algorithms,” Statistical Science, 16, 351–367.

  • Rossi, P. E. (2012), “Bayesm Package: Bayesian Inference for Marketing/Micro-econometrics,” http://www.perossi.org/home/bsm-1.

  • Rossi, P. E. (2013), personal communication.

  • Rossi, P. E., Allenby, G. M., and McCulloch, R. (2005), Bayesian Statistics and Marketing, Chichester, UK: John Wiley & Sons.

  • Rossi, P. E., McCulloch, R., and Allenby, G. M. (1996), “The Value of Purchase History Data in Target Marketing,” Marketing Science, 15, 321–340.

  • Train, K. E. (2009), Discrete Choice Methods with Simulation, Cambridge: Cambridge University Press.

  • Train, K. E., McFadden, D., and Ben-Akiva, M. (1987), “The Demand for Local Telephone Service: A Fully Discrete Model of Residential Calling Patterns and Service Choice,” Rand Journal of Economics, 18, 109–123.