The MI Procedure

Example 61.8 FCS Method with Trace Plot

This example uses FCS methods to impute missing values in both continuous and classification variables in a data set with an arbitrary missing pattern. The following statements use a logistic regression method to impute values of the classification variable Species:

ods graphics on;
proc mi data=Fish3 seed=1305417 out=outex8;
   class Species;
   fcs plots=trace
       logistic(Species= Length Width Length*Width /details link=glogit);
   var Species Length Width;
run;
ods graphics off;

The Model Information  table in Output 61.8.1 describes the method and options used in the multiple imputation process. By default, a regression method is used to impute missing values in each continuous variable.

Output 61.8.1: Model Information

The MI Procedure

Model Information
Data Set WORK.FISH3
Method FCS
Number of Imputations 5
Number of Burn-in Iterations 20
Seed for random number generator 1305417


The FCS Model Specification  table in Output 61.8.2 describes methods and imputed variables in the imputation model. The procedure uses the logistic regression method to impute the variable Species, and the regression method to impute variables Height and Width.

Output 61.8.2: FCS Model Specification

FCS Model Specification
Method Imputed Variables
Regression Length Width
Logistic Regression Species


The Missing Data Patterns table in Output 61.8.3 lists distinct missing data patterns with corresponding frequencies and percentages.

Output 61.8.3: Missing Data Patterns

Missing Data Patterns
Group Species Length Width Freq Percent Group Means
Length Width
1 X X X 67 77.01 27.910448 4.361860
2 X X . 5 5.75 24.620000 .
3 X . X 6 6.90 . 4.167667
4 . X X 6 6.90 26.683333 4.136233
5 . X . 2 2.30 31.500000 .
6 . . X 1 1.15 . 3.663600


When you use the DETAILS keyword in the LOGISTIC option, parameters estimated from the observed data and the parameters used in each imputation are displayed in the Logistic Models for FCS Method table in Output 61.8.4.

Output 61.8.4: FCS Logistic Regression Model for Species

Logistic Models for FCS Method
Imputed
Variable
Effect Species Imputation
1 2 3 4 5
Species Intercept Parkki -2.172588 -2.324226 -2.418362 -1.832884 -0.929242
Species Intercept Perch 1.878263 0.445966 1.585375 0.919562 1.547549
Species Length Parkki 6.107448 6.377145 2.447654 -1.004869 2.363073
Species Length Perch -5.493897 -4.711566 -7.778194 -5.400749 -0.053788
Species Width Parkki -8.624156 -6.965179 -5.718729 -0.997851 -2.978868
Species Width Perch 8.111323 5.608314 9.426901 5.502755 1.241239
Species Length*Width Parkki -0.006404 2.138551 0.883903 0.072525 -0.152662
Species Length*Width Perch 1.151183 1.278025 1.117492 -0.195462 0.672738


With ODS Graphics enabled, the PLOTS=TRACE option displays trace plots of means for all continuous variables by default, as shown in Output 61.8.5 and Output 61.8.6. The dashed vertical lines indicate the imputed iterations—that is, the variable values used in the imputations. The plot shows no apparent trends for the two variables.

Output 61.8.5: Trace Plot for Length


Output 61.8.6: Trace Plot for Width


The following statements list the first 10 observations of the data set Outex8 in Output 61.8.7:

proc print data=outex8(obs=10);
   title 'First 10 Observations of the Imputed Data Set';
run;

Output 61.8.7: Imputed Data Set

First 10 Observations of the Imputed Data Set

Obs _Imputation_ Species Length Width
1 1 Roach 16.2000 2.26800
2 1 Roach 20.3000 2.82170
3 1 Roach 21.2000 3.40493
4 1 Roach 22.4203 3.17460
5 1 Roach 22.2000 3.57420
6 1 Roach 22.8000 3.35160
7 1 Roach 23.1000 3.39570
8 1 Roach 23.7000 3.73166
9 1 Roach 24.7000 3.75440
10 1 Roach 24.3000 3.54780


After the completion of five imputations by default, the Variance Information table in Output 61.8.8 displays the between-imputation variance, within-imputation variance, and total variance for combining complete-data inferences for continuous variables. The relative increase in variance due to missingness, the fraction of missing information, and the relative efficiency for each variable are also displayed. These statistics are described in the section Combining Inferences from Multiply Imputed Data Sets.

Output 61.8.8: Variance Information

Variance Information
Variable Variance DF Relative
Increase
in Variance
Fraction
Missing
Information
Relative
Efficiency
Between Within Total
Length 0.005177 0.815388 0.821601 83.332 0.007620 0.007590 0.998484
Width 0.000108 0.028944 0.029074 83.656 0.004496 0.004486 0.999104


The Parameter Estimates table in Output 61.8.9 displays a 95% mean confidence interval and a t statistic with its associated p-value for each of the hypotheses requested with the default MU0=0 option.

Output 61.8.9: Parameter Estimates

Parameter Estimates
Variable Mean Std Error 95% Confidence Limits DF Minimum Maximum Mu0 t for H0:
Mean=Mu0
Pr > |t|
Length 27.606967 0.906422 25.80424 29.40970 83.332 27.485512 27.675952 0 30.46 <.0001
Width 4.307702 0.170510 3.96860 4.64680 83.656 4.297146 4.321571 0 25.26 <.0001