This example illustrates using a piecewise exponential model in a Bayesian analysis. Consider the Rats
data set in the section Getting Started: PHREG Procedure. In the following statements, PROC PHREG is used to carry out a Bayesian analysis for the piecewise exponential model. In
the BAYES statement, the option PIECEWISE stipulates a piecewise exponential model, and PIECEWISE=HAZARD requests that the
constant hazards be modeled in the original scale. By default, eight intervals of constant hazards are used, and the intervals
are chosen such that each has roughly the same number of events.
data Rats; label Days ='Days from Exposure to Death'; input Days Status Group @@; datalines; 143 1 0 164 1 0 188 1 0 188 1 0 190 1 0 192 1 0 206 1 0 209 1 0 213 1 0 216 1 0 220 1 0 227 1 0 230 1 0 234 1 0 246 1 0 265 1 0 304 1 0 216 0 0 244 0 0 142 1 1 156 1 1 163 1 1 198 1 1 205 1 1 232 1 1 232 1 1 233 1 1 233 1 1 233 1 1 233 1 1 239 1 1 240 1 1 261 1 1 280 1 1 280 1 1 296 1 1 296 1 1 323 1 1 204 0 1 344 0 1 ;
proc phreg data=Rats; model Days*Status(0)=Group; bayes seed=1 piecewise=hazard statistics=(summary interval) diagnostics=(autocorr geweke ess); run;
The “Model Information” table in Output 71.14.1 shows that the piecewise exponential model is being used.
Output 71.14.1: Model Information
Model Information | ||
---|---|---|
Data Set | WORK.RATS | |
Dependent Variable | Days | Days from Exposure to Death |
Censoring Variable | Status | |
Censoring Value(s) | 0 | |
Model | Piecewise Exponential | |
Sampling Algorithm | ARMS | |
Burn-In Size | 2000 | |
MC Sample Size | 10000 | |
Thinning | 1 |
By default the time axis is partitioned into eight intervals of constant hazard. Output 71.14.2 details the number of events and observations in each interval. Note that the constant hazard parameters are named Lambda1
,…, Lambda8
. You can supply your own partition by using the INTERVALS= suboption within the PIECEWISE=HAZARD option.
Output 71.14.2: Interval Partition
Constant Hazard Time Intervals | ||||
---|---|---|---|---|
Interval | N | Event | Hazard Parameter |
|
[Lower, | Upper) | |||
0 | 176 | 5 | 5 | Lambda1 |
176 | 201.5 | 5 | 5 | Lambda2 |
201.5 | 218 | 7 | 5 | Lambda3 |
218 | 232.5 | 5 | 5 | Lambda4 |
232.5 | 233.5 | 4 | 4 | Lambda5 |
233.5 | 253.5 | 5 | 4 | Lambda6 |
253.5 | 288 | 4 | 4 | Lambda7 |
288 | Infty | 5 | 4 | Lambda8 |
The model parameters consist of the eight hazard parameters Lambda1
, …, Lambda8
, and the regression coefficient Group
. The maximum likelihood estimates are displayed in Output 71.14.3. Again, these estimates are used as the starting values for simulation of the posterior distribution.
Output 71.14.3: Maximum Likelihood Estimates
Maximum Likelihood Estimates | |||||
---|---|---|---|---|---|
Parameter | DF | Estimate | Standard Error |
95% Confidence Limits | |
Lambda1 | 1 | 0.000953 | 0.000443 | 0.000084 | 0.00182 |
Lambda2 | 1 | 0.00794 | 0.00371 | 0.000672 | 0.0152 |
Lambda3 | 1 | 0.0156 | 0.00734 | 0.00120 | 0.0300 |
Lambda4 | 1 | 0.0236 | 0.0115 | 0.00112 | 0.0461 |
Lambda5 | 1 | 0.3669 | 0.1959 | -0.0172 | 0.7509 |
Lambda6 | 1 | 0.0276 | 0.0148 | -0.00143 | 0.0566 |
Lambda7 | 1 | 0.0262 | 0.0146 | -0.00233 | 0.0548 |
Lambda8 | 1 | 0.0545 | 0.0310 | -0.00626 | 0.1152 |
Group | 1 | -0.6223 | 0.3468 | -1.3020 | 0.0573 |
Without using the PRIOR= suboption within the PIECEWISE=HAZARD option to specify the prior of the hazard parameters, the default is to use the noninformative and improper prior displayed in Output 71.14.4.
Output 71.14.4: Hazard Prior
Improper Prior for Hazards | |
---|---|
Parameter | Prior |
Lambda1 | 1 / Lambda1 |
Lambda2 | 1 / Lambda2 |
Lambda3 | 1 / Lambda3 |
Lambda4 | 1 / Lambda4 |
Lambda5 | 1 / Lambda5 |
Lambda6 | 1 / Lambda6 |
Lambda7 | 1 / Lambda7 |
Lambda8 | 1 / Lambda8 |
The noninformative uniform prior is used for the regression coefficient Group
(Output 71.14.5), as in the section Bayesian Analysis.
Output 71.14.5: Coefficient Prior
Uniform Prior for Regression Coefficients |
|
---|---|
Parameter | Prior |
Group | Constant |
Summary statistics for all model parameters are shown in Output 71.14.6 and Output 71.14.7.
Output 71.14.6: Summary Statistics
Posterior Summaries | ||||||
---|---|---|---|---|---|---|
Parameter | N | Mean | Standard Deviation |
Percentiles | ||
25% | 50% | 75% | ||||
Lambda1 | 10000 | 0.000945 | 0.000444 | 0.000624 | 0.000876 | 0.00118 |
Lambda2 | 10000 | 0.00782 | 0.00363 | 0.00519 | 0.00724 | 0.00979 |
Lambda3 | 10000 | 0.0155 | 0.00735 | 0.0102 | 0.0144 | 0.0195 |
Lambda4 | 10000 | 0.0236 | 0.0116 | 0.0152 | 0.0217 | 0.0297 |
Lambda5 | 10000 | 0.3634 | 0.1965 | 0.2186 | 0.3266 | 0.4685 |
Lambda6 | 10000 | 0.0278 | 0.0153 | 0.0166 | 0.0249 | 0.0356 |
Lambda7 | 10000 | 0.0265 | 0.0151 | 0.0157 | 0.0236 | 0.0338 |
Lambda8 | 10000 | 0.0558 | 0.0323 | 0.0322 | 0.0488 | 0.0721 |
Group | 10000 | -0.6154 | 0.3570 | -0.8569 | -0.6186 | -0.3788 |
Output 71.14.7: Interval Statistics
Posterior Intervals | |||||
---|---|---|---|---|---|
Parameter | Alpha | Equal-Tail Interval | HPD Interval | ||
Lambda1 | 0.050 | 0.000289 | 0.00199 | 0.000208 | 0.00182 |
Lambda2 | 0.050 | 0.00247 | 0.0165 | 0.00194 | 0.0152 |
Lambda3 | 0.050 | 0.00484 | 0.0331 | 0.00341 | 0.0301 |
Lambda4 | 0.050 | 0.00699 | 0.0515 | 0.00478 | 0.0462 |
Lambda5 | 0.050 | 0.0906 | 0.8325 | 0.0541 | 0.7469 |
Lambda6 | 0.050 | 0.00676 | 0.0654 | 0.00409 | 0.0580 |
Lambda7 | 0.050 | 0.00614 | 0.0648 | 0.00421 | 0.0569 |
Lambda8 | 0.050 | 0.0132 | 0.1368 | 0.00637 | 0.1207 |
Group | 0.050 | -1.3190 | 0.0893 | -1.3379 | 0.0652 |
The requested diagnostics—namely, lag1, lag5, lag10, lag50 autocorrelations (Output 71.14.8), the Geweke diagnostics (Output 71.14.9), and the effective sample size diagnostics (Output 71.14.10)—show a good mixing of the Markov chain.
Output 71.14.8: Autocorrelations
Posterior Autocorrelations | ||||
---|---|---|---|---|
Parameter | Lag 1 | Lag 5 | Lag 10 | Lag 50 |
Lambda1 | 0.0705 | 0.0015 | 0.0017 | -0.0076 |
Lambda2 | 0.0909 | 0.0206 | -0.0013 | -0.0039 |
Lambda3 | 0.0861 | -0.0072 | 0.0011 | 0.0002 |
Lambda4 | 0.1447 | -0.0023 | 0.0081 | 0.0082 |
Lambda5 | 0.1086 | 0.0072 | -0.0038 | -0.0028 |
Lambda6 | 0.1281 | 0.0049 | -0.0036 | 0.0048 |
Lambda7 | 0.1925 | -0.0011 | 0.0094 | -0.0011 |
Lambda8 | 0.2128 | 0.0322 | -0.0042 | -0.0045 |
Group | 0.5638 | 0.0410 | -0.0003 | -0.0071 |
Output 71.14.9: Geweke Diagnostics
Geweke Diagnostics | ||
---|---|---|
Parameter | z | Pr > |z| |
Lambda1 | -0.0705 | 0.9438 |
Lambda2 | -0.4936 | 0.6216 |
Lambda3 | 0.5751 | 0.5652 |
Lambda4 | 1.0514 | 0.2931 |
Lambda5 | 0.8910 | 0.3729 |
Lambda6 | 0.2976 | 0.7660 |
Lambda7 | 1.6543 | 0.0981 |
Lambda8 | 0.6686 | 0.5038 |
Group | -1.2621 | 0.2069 |
Output 71.14.10: Effective Sample Size
Effective Sample Sizes | |||
---|---|---|---|
Parameter | ESS | Autocorrelation Time |
Efficiency |
Lambda1 | 7775.3 | 1.2861 | 0.7775 |
Lambda2 | 6874.8 | 1.4546 | 0.6875 |
Lambda3 | 7655.7 | 1.3062 | 0.7656 |
Lambda4 | 6337.1 | 1.5780 | 0.6337 |
Lambda5 | 6563.3 | 1.5236 | 0.6563 |
Lambda6 | 6720.8 | 1.4879 | 0.6721 |
Lambda7 | 5968.7 | 1.6754 | 0.5969 |
Lambda8 | 5137.2 | 1.9466 | 0.5137 |
Group | 2980.4 | 3.3553 | 0.2980 |