The GENMOD Procedure

References

  • Agresti, A. (2002), Categorical Data Analysis, 2nd Edition, New York: John Wiley & Sons.

  • Aitkin, M., Anderson, D. A., Francis, B., and Hinde, J. (1989), Statistical Modelling in GLIM, Oxford: Oxford Science Publications.

  • Akaike, H. (1979), “A Bayesian Extension of the Minimum AIC Procedure of Autoregressive Model Fitting,” Biometrika, 66, 237–242.

  • Akaike, H. (1981), “Likelihood of a Model and Information Criteria,” Journal of Econometrics, 16, 3–14.

  • Boos, D. (1992), “On Generalized Score Tests,” American Statistician, 46, 327–333.

  • Cameron, A. C. and Trivedi, P. K. (1998), Regression Analysis of Count Data, Cambridge: Cambridge University Press.

  • Carey, V., Zeger, S. L., and Diggle, P. J. (1993), “Modelling Multivariate Binary Data with Alternating Logistic Regressions,” Biometrika, 80, 517–526.

  • Collett, D. (2003), Modelling Binary Data, 2nd Edition, London: Chapman & Hall.

  • Cook, R. D. and Weisberg, S. (1982), Residuals and Influence in Regression, New York: Chapman & Hall.

  • Cox, D. R. and Snell, E. J. (1989), The Analysis of Binary Data, 2nd Edition, London: Chapman & Hall.

  • Davison, A. C. and Snell, E. J. (1991), “Residuals and Diagnostics,” in D. V. Hinkley, N. Reid, and E. J. Snell, eds., Statistical Theory and Modelling, London: Chapman & Hall.

  • Diggle, P. J., Liang, K.-Y., and Zeger, S. L. (1994), Analysis of Longitudinal Data, Oxford: Clarendon Press.

  • Dobson, A. (1990), An Introduction to Generalized Linear Models, London: Chapman & Hall.

  • Dunn, P. K. and Smyth, G. K. (2005), “Series Evaluation of Tweedie Exponential Dispersion Model Densities,” Statistics and Computing, 15, 267–280.

  • Dunn, P. K. and Smyth, G. K. (2008), “Series Evaluation of Tweedie Exponential Dispersion Model Densities by Fourier Inversion,” Statistics and Computing, 18, 73–86.

  • Firth, D. (1991), “Generalized Linear Models,” in D. V. Hinkley, N. Reid, and E. J. Snell, eds., Statistical Theory and Modelling, London: Chapman & Hall.

  • Fischl, M. A., Richman, D. D., and Hansen, N. (1990), “The Safety and Efficacy of Zidovudine (AZT) in the Treatment of Subjects with Mildly Symptomatic Human Immunodeficiency Virus Type I (HIV) Infection,” Annals of Internal Medicine, 112, 727–737.

  • Gamerman, D. (1997), “Sampling from the Posterior Distribution in Generalized Linear Models,” Statistics and Computing, 7, 57–68.

  • Gilks, W. R. (2003), “Adaptive Metropolis Rejection Sampling (ARMS),” software from MRC Biostatistics Unit, Cambridge, UK, http://www.maths.leeds.ac.uk/~wally.gilks/adaptive.rejection/web_page/Welcome.html.

  • Gilks, W. R., Best, N. G., and Tan, K. K. C. (1995), “Adaptive Rejection Metropolis Sampling within Gibbs Sampling,” Applied Statistics, 44, 455–472.

  • Gilks, W. R., Richardson, S., and Spiegelhalter, D. J. (1996), Markov Chain Monte Carlo in Practice, London: Chapman & Hall.

  • Gilks, W. R. and Wild, P. (1992), “Adaptive Rejection Sampling for Gibbs Sampling,” Applied Statistics, 41, 337–348.

  • Hardin, J. W. and Hilbe, J. M. (2003), Generalized Estimating Equations, Boca Raton, FL: Chapman & Hall/CRC.

  • Hilbe, J. M. (1994), “Log Negative Binomial Regression Using the GENMOD Procedure,” in Proceedings of the Nineteenth Annual SAS Users Group International Conference, Cary, NC: SAS Institute Inc.

  • Hilbe, J. M. (2007), Negative Binomial Regression, New York: Cambridge University Press.

  • Hilbe, J. M. (2009), Logistic Regression Models, London: Chapman & Hall/CRC.

  • Hirji, K. F., Mehta, C. R., and Patel, N. R. (1987), “Computing Distributions for Exact Logistic Regression,” Journal of the American Statistical Association, 82, 1110–1117.

  • Hougaard, P. (1986), “Survival Models for Heterogeneous Populations Derived from Stable Distributions,” Biometrika, 73, 387–396.

  • Ibrahim, J. G., Chen, M.-H., and Lipsitz, S. R. (1999), “Monte Carlo EM for Missing Covariates in Parametric Regression Models,” Biometrics, 55, 591–596.

  • Ibrahim, J. G., Chen, M.-H., and Sinha, D. (2001), Bayesian Survival Analysis, New York: Springer-Verlag.

  • Ibrahim, J. G. and Laud, P. W. (1991), “On Bayesian Analysis of Generalized Linear Models Using Jeffreys’ Prior,” Journal of the American Statistical Association, 86, 981–986.

  • Lambert, D. (1992), “Zero-Inflated Poisson Regression with an Application to Defects in Manufacturing,” Technometrics, 34, 1–14.

  • Lawless, J. F. (1987), “Negative Binomial and Mixed Poisson Regression,” Canadian Journal of Statistics, 15, 209–225.

  • Lawless, J. F. (2003), Statistical Model and Methods for Lifetime Data, 2nd Edition, New York: John Wiley & Sons.

  • Liang, K.-Y. and Zeger, S. L. (1986), “Longitudinal Data Analysis Using Generalized Linear Models,” Biometrika, 73, 13–22.

  • Lin, D. Y., Wei, L. J., and Ying, Z. (2002), “Model-Checking Techniques Based on Cumulative Residuals,” Biometrics, 58, 1–12.

  • Lipsitz, S. R., Fitzmaurice, G. M., Orav, E. J., and Laird, N. M. (1994), “Performance of Generalized Estimating Equations in Practical Situations,” Biometrics, 50, 270–278.

  • Lipsitz, S. R., Kim, K., and Zhao, L. (1994), “Analysis of Repeated Categorical Data Using Generalized Estimating Equations,” Statistics in Medicine, 13, 1149–1163.

  • Littell, R. C., Freund, R. J., and Spector, P. C. (1991), SAS System for Linear Models, 3rd Edition, Cary, NC: SAS Institute Inc.

  • Long, J. S. (1997), Regression Models for Categorical and Limited Dependent Variables, Thousand Oaks, CA: Sage Publications.

  • McCullagh, P. (1983), “Quasi-likelihood Functions,” Annals of Statistics, 11, 59–67.

  • McCullagh, P. and Nelder, J. A. (1989), Generalized Linear Models, 2nd Edition, London: Chapman & Hall.

  • Meeker, W. Q. and Escobar, L. A. (1998), Statistical Methods for Reliability Data, New York: John Wiley & Sons.

  • Mehta, C. R., Patel, N. R., and Senchaudhuri, P. (1992), “Exact Stratified Linear Rank Tests for Ordered Categorical and Binary Data,” Journal of Computational and Graphical Statistics, 1, 21–40.

  • Miller, M. E., Davis, C. S., and Landis, J. R. (1993), “The Analysis of Longitudinal Polytomous Data: Generalized Estimating Equations and Connections with Weighted Least Squares,” Biometrics, 49, 1033–1044.

  • Muller, K. E. and Fetterman, B. A. (2002), Regression and ANOVA: An Integrated Approach Using SAS Software, Cary, NC: SAS Institute Inc.

  • Myers, R. H., Montgomery, D. C., and Vining, G. G. (2002), Generalized Linear Models with Applications in Engineering and the Sciences, New York: John Wiley & Sons.

  • Nelder, J. A. and Wedderburn, R. W. M. (1972), “Generalized Linear Models,” Journal of the Royal Statistical Society, Series A, 135, 370–384.

  • Nelson, W. (1982), Applied Life Data Analysis, New York: John Wiley & Sons.

  • Neter, J., Kutner, M. H., Nachtsheim, C. J., and Wasserman, W. (1996), Applied Linear Statistical Models, 4th Edition, Chicago: Irwin.

  • Pan, W. (2001), “Akaike’s Information Criterion in Generalized Estimating Equations,” Biometrics, 57, 120–125.

  • Pregibon, D. (1981), “Logistic Regression Diagnostics,” Annals of Statistics, 9, 705–724.

  • Preisser, J. S. and Qaqish, B. F. (1996), “Deletion Diagnostics for Generalised Estimating Equations,” Biometrika, 83, 551–562.

  • Rao, C. R. (1973), Linear Statistical Inference and Its Applications, 2nd Edition, New York: John Wiley & Sons.

  • Rotnitzky, A. and Jewell, N. P. (1990), “Hypothesis Testing of Regression Parameters in Semiparametric Generalized Linear Models for Cluster Correlated Data,” Biometrika, 77, 485–497.

  • Royall, R. M. (1986), “Model Robust Inference Using Maximum Likelihood Estimators,” International Statistical Review, 54, 221–226.

  • Searle, S. R. (1971), Linear Models, New York: John Wiley & Sons.

  • Simonoff, J. S. (2003), Analyzing Categorical Data, New York: Springer-Verlag.

  • Smyth, G. K. (1996), “Regression Analysis of Quantity Data with Exact Zeros,” in R. J. Wilson, S. Osaki, and D. N. P. Murthy, eds., Proceedings of the Second Australia-Japan Workshop on Stochastic Models in Engineering, Technology, and Management, Queensland: Technology Management Centre, University of Queensland.

  • Spiegelhalter, D. J., Best, N. G., Carlin, B. P., and Van der Linde, A. (2002), “Bayesian Measures of Model Complexity and Fit,” Journal of the Royal Statistical Society, Series B, 64(4), 583–616, with discussion.

  • Stokes, M. E., Davis, C. S., and Koch, G. G. (2000), Categorical Data Analysis Using the SAS System, 2nd Edition, Cary, NC: SAS Institute Inc.

  • Thall, P. F. and Vail, S. C. (1990), “Some Covariance Models for Longitudinal Count Data with Overdispersion,” Biometrics, 46, 657–671.

  • Tweedie, M. C. K. (1984), “An Index Which Distinguishes between Some Important Exponential Families,” in J. K. Ghosh and J. Roy, eds., Statistics: Applications and New Directions—Proceedings of the Indian Statistical Institute Golden Jubilee International Conference, 579–604.

  • Ware, J. H., Dockery, S. A., III, Speizer, F. E., and Ferris, B. G., Jr. (1984), “Passive Smoking, Gas Cooking, and Respiratory Health of Children Living in Six Cities,” American Review of Respiratory Diseases, 129, 366–374.

  • White, H. (1982), “Maximum Likelihood Estimation of Misspecified Models,” Econometrica, 50, 1–25.

  • Williams, D. A. (1987), “Generalized Linear Model Diagnostics Using the Deviance and Single Case Deletions,” Applied Statistics, 36, 181–191.

  • Zeger, S. L., Liang, K.-Y., and Albert, P. S. (1988), “Models for Longitudinal Data: A Generalized Estimating Equation Approach,” Biometrics, 44, 1049–1060.