The QUANTSELECT Procedure

Example 84.3 Pollution and Mortality

This example shows how you can use the PARTITION statement and other options to control the effect selection process. The data for this example come from a study by McDonald and Schwing (1973). The data set contains 60 observations, 15 covariates, and one response variable. The response variable is the total age-adjusted mortality rate for Standard Metropolitan Statistical Areas in 1959–1961.

The following statements fit a median model for mortality rate conditional on a set of climate, demographic, and pollution covariates by using the forward selection method. Because linear terms alone might not be sufficient to fit this model, quadratic terms are also added in the MODEL statement. The FRACTION option of the PARTITION statement requests that 30% of the observations be used for validation and the remaining 70% of the observations for training. The HIER=SINGLE option in the MODEL statement forces the effect selection process to ignore quadratic effect candidates if their corresponding main effects are not in the model. The OUTPUT statement creates a SAS data set named OutData, which contains the variable _ROLE_. This variable shows the role of each observation that the PARTITION statement assigns.

data mortality;
   input index aap ajant ajult size65 nph nsch25 nfek ppsm snwp nowk nin3k
   hpi nopi sdpi datm DeathRate;
   label index="the index"
      aap="Average Annual Precipitation"
      ajant="Average January Temperature"
      ajult="Average July Temperature"
      size65="Size of Population older than 65"
      nph="Number of Members per Household"
      nsch25="Number of Years of Schooling for Persons over 25"
      nfek="Number of Households with fully Equipped Kitchens"
      ppsm="Population per Square Mile" 
      snwp="Size of the Nonwhite Population"
      nowk="Number of Office Workers"
      nin3k="Number of Families with an Income less than $3000"
      hpi="Hydrocarbon Pollution Index"
      nopi="Nitric Oxide Pollution Index"
      sdpi="Sulfur Dioxide Pollution Index"
      datm="Degree of Atmospheric Moisture"
      DeathRate="Age-Adjusted Death Rate: Deaths per 100,000 Population";
   datalines;
 1  36  27  71   8.1  3.34  11.4  81.5  3243   8.8  42.6  11.7   21
    15   59  59   921.870
 2  35  23  72  11.1  3.14  11.0  78.8  4281   3.6  50.7  14.4    8
    10   39  57   997.875
 3  44  29  74  10.4  3.21   9.8  81.6  4260   0.8  39.4  12.4    6
     6   33  54   962.354
 4  47  45  79   6.5  3.41  11.1  77.5  3125  27.1  50.2  20.6   18
     8   24  56   982.291
 5  43  35  77   7.6  3.44   9.6  84.6  6441  24.4  43.7  14.3   43

   ... more lines ...   

    11   42  56  1003.502
58  45  24  70  11.8  3.25  11.1  79.8  3678   1.0  44.8  14.0    7
     3    8  56   895.696
59  42  83  76   9.7  3.22   9.0  76.2  9699   4.8  42.2  14.5    8
     8   49  54   911.817
60  38  28  72   8.9  3.48  10.7  79.8  3451  11.7  37.5  13.0   14
    13   39  58   954.442
;
ods graphics on;
proc quantselect data=Mortality seed=800 plots=all;
   partition fraction(validate=0.3);
   model DeathRate = aap aap*aap ajant ajant*ajant ajult
      ajult*ajult size65 size65*size65 nph nph*nph nsch25
      nsch25*nsch25 nfek nfek*nfek  ppsm ppsm*ppsm snwp snwp*snwp
      nowk nowk*nowk nin3k nin3k*nin3k hpi hpi*hpi nopi
      nopi*nopi sdpi sdpi*sdpi datm datm*datm
      / quantile=0.5 selection=forward(choose=val sh=8) hier=single;
   output out=OutData p=Pred;
run;

proc print data=OutData(obs=10); run;

Output 84.3.1 shows the selection summary. You can see that the best model is at step 13 for validation ACL, step 5 for the SBC, and step 14 for the AIC.

Output 84.3.1: Selection Summary

The QUANTSELECT Procedure
Quantile Level = 0.5

Selection Summary
Step Effect
Entered
Number
Effects
In
AIC AICC SBC Validation
ACL
Adjusted
R1
0 Intercept 1 276.5053 276.6005 278.2895 31.7900 0.0000
1 snwp 2 251.6460 251.9387 255.2144 23.9139 0.2455
2 sdpi 3 240.3445 240.9445 245.6971 20.3977 0.3355
3 nopi 4 238.3223 239.3480 245.4591 16.9704 0.3493
4 ppsm 5 239.3875 240.9664 248.3084 16.3677 0.3397
5 aap 6 226.5892 228.8595* 237.2943* 15.7333 0.4272
6 aap*aap 7 227.6860 230.7971 240.1754 14.8892 0.4177
7 ajult 8 228.5136 232.6279 242.7871 14.5477 0.4095
8 nin3k 9 229.4258 234.7199 245.4835 14.3532 0.4001
9 ajant 10 224.7397 231.4063 242.5816 13.5693 0.4276*
10 ppsm*ppsm 11 226.5785 234.8285 246.2046 12.4032 0.4114
11 hpi 12 228.5050 238.5696 249.9153 11.6356 0.3935
12 ajant*ajant 13 229.9796 242.1129 253.1740 11.1214 0.3776
13 nfek 14 231.9208 246.4035 256.8994 10.9947* 0.3573
14 snwp*snwp 15 221.3905* 238.5334 248.1533 13.3735 0.4234
15 ajult*ajult 16 223.3153 243.4635 251.8624 13.0557 0.4033
16 sdpi*sdpi 17 224.8099 248.3483 255.1411 14.2347 0.3847
17 size65 18 226.7756 254.1356 258.8910 14.3067 0.3613
18 nin3k*nin3k 19 223.8621 255.5288 257.7618 14.5143 0.3719
19 nfek*nfek 20 224.0342 260.5559 259.7180 14.6314 0.3591
20 datm 21 222.7062 264.7062 260.1742 15.4604 0.3561
* Optimal Value Of Criterion



Output 84.3.2 shows the selected effects and the relevant estimates.

Output 84.3.2: Parameter Estimates

Selected Effects: Intercept aap aap*aap ajant ajant*ajant ajult nfek ppsm ppsm*ppsm snwp nin3k hpi nopi sdpi

Parameter Estimates
Parameter DF Estimate Standardized
Estimate
Intercept 1 909.689797 0
aap 1 4.634741 0.750747
aap*aap 1 -0.047789 -0.533679
ajant 1 0.009723 0.001962
ajant*ajant 1 -0.020447 -0.389447
ajult 1 -1.672607 -0.146182
nfek 1 -0.323920 -0.030436
ppsm 1 -0.007194 -0.194141
ppsm*ppsm 1 0.000001906 0.534144
snwp 1 3.483423 0.574703
nin3k 1 3.228388 0.252681
hpi 1 -0.401693 -0.351016
nopi 1 0.795823 0.389110
sdpi 1 0.151049 0.152444



Output 84.3.3 shows the progression of the standardized parameter estimates as the selection process proceeds.

Output 84.3.3: Coefficient Panel

Coefficient Panel


Output 84.3.4 shows the progression of the average check losses for training data and validation data as the selection process proceeds.

Output 84.3.4: Average Check Loss Plot

Average Check Loss Plot


Output 84.3.5 shows the progression of five effect selection criteria as the selection process proceeds.

Output 84.3.5: Criterion Panel

Criterion Panel


Output 84.3.6 shows the first 10 observations of the OUTPUT data set.

Output 84.3.6: OUTPUT Data Set

Obs index aap ajant ajult size65 nph nsch25 nfek ppsm snwp nowk nin3k hpi nopi sdpi datm DeathRate Pred _ROLE_
1 1 36 27 71 8.1 3.34 11.4 81.5 3243 8.8 42.6 11.7 21 15 59 59 921.87 932.36 TRAIN
2 2 35 23 72 11.1 3.14 11.0 78.8 4281 3.6 50.7 14.4 8 10 39 57 997.88 930.62 VALIDATE
3 3 44 29 74 10.4 3.21 9.8 81.6 4260 0.8 39.4 12.4 6 6 33 54 962.35 908.09 TRAIN
4 4 47 45 79 6.5 3.41 11.1 77.5 3125 27.1 50.2 20.6 18 8 24 56 982.29 983.55 TRAIN
5 5 43 35 77 7.6 3.44 9.6 84.6 6441 24.4 43.7 14.3 43 38 206 55 1071.29 1047.71 VALIDATE
6 6 53 45 80 7.7 3.45 10.2 66.8 3325 38.5 43.1 25.5 30 32 72 54 1030.38 1062.56 TRAIN
7 7 43 30 74 10.9 3.23 12.1 83.9 4679 3.5 49.2 11.3 21 32 62 56 934.70 934.70 TRAIN
8 8 45 30 73 9.3 3.29 10.6 86.0 2140 5.3 40.4 10.5 6 4 4 56 899.53 900.48 TRAIN
9 9 36 24 70 9.0 3.31 10.5 83.2 6582 8.1 42.5 12.6 18 12 37 61 1001.90 971.06 TRAIN
10 10 36 27 72 9.5 3.36 10.7 79.3 4213 6.7 41.0 13.2 12 7 20 59 912.35 927.10 VALIDATE