Consider the problem of diet optimization. There are six different foods: bread, milk, cheese, potato, fish, and yogurt. The cost and nutrition values per unit are displayed in Table 12.6.
Table 12.6: Cost and Nutrition Values
Bread |
Milk |
Cheese |
Potato |
Fish |
Yogurt |
|
---|---|---|---|---|---|---|
Cost |
2.0 |
3.5 |
8.0 |
1.5 |
11.0 |
1.0 |
Protein, g |
4.0 |
8.0 |
7.0 |
1.3 |
8.0 |
9.2 |
Fat, g |
1.0 |
5.0 |
9.0 |
0.1 |
7.0 |
1.0 |
Carbohydrates, g |
15.0 |
11.7 |
0.4 |
22.6 |
0.0 |
17.0 |
Calories |
90 |
120 |
106 |
97 |
130 |
180 |
The objective is to find a minimum-cost diet that contains at least 300 calories, not more than 10 grams of protein, not less than 10 grams of carbohydrates, and not less than 8 grams of fat. In addition, the diet should contain at least 0.5 unit of fish and no more than 1 unit of milk.
You can use the following SAS code to create the MPS-format input data set:
data ex3; input field1 $ field2 $ field3 $ field4 field5 $ field6; datalines; NAME . EX3 . . . ROWS . . . . . N diet . . . . G calories . . . . L protein . . . . G fat . . . . G carbs . . . . COLUMNS . . . . . . br diet 2 calories 90 . br protein 4 fat 1 . br carbs 15 . . . mi diet 3.5 calories 120 . mi protein 8 fat 5 . mi carbs 11.7 . . . ch diet 8 calories 106 . ch protein 7 fat 9 . ch carbs .4 . . . po diet 1.5 calories 97 . po protein 1.3 fat .1 . po carbs 22.6 . . . fi diet 11 calories 130 . fi protein 8 fat 7 . fi carbs 0 . . . yo diet 1 calories 180 . yo protein 9.2 fat 1 . yo carbs 17 . . RHS . . . . . . . calories 300 protein 10 . . fat 8 carbs 10 BOUNDS . . . . . UP . mi 1 . . LO . fi .5 . . ENDATA . . . . . ;
You can solve the diet problem by using PROC OPTLP as follows:
proc optlp data=ex3 presolver = none algorithm = ps primalout = ex3pout dualout = ex3dout logfreq = 1; run;
The solution summary and the optimal primal solution are displayed in Output 12.3.1.
Output 12.3.1: Diet Problem: Solution Summary and Optimal Primal Solution
Solution Summary |
Obs | Label1 | cValue1 | nValue1 |
---|---|---|---|
1 | Solver | LP | . |
2 | Algorithm | Primal Simplex | . |
3 | Objective Function | diet | . |
4 | Solution Status | Optimal | . |
5 | Objective Value | 12.081337881 | 12.081338 |
6 | . | ||
7 | Primal Infeasibility | 1.776357E-15 | 1.776357E-15 |
8 | Dual Infeasibility | 0 | 0 |
9 | Bound Infeasibility | 0 | 0 |
10 | . | ||
11 | Iterations | 8 | 8.000000 |
12 | Presolve Time | 0.00 | 0 |
13 | Solution Time | 0.00 | 0 |
Primal Solution |
Obs | Objective Function ID |
RHS ID | Variable Name |
Variable Type |
Objective Coefficient |
Lower Bound | Upper Bound | Variable Value | Variable Status |
Reduced Cost |
---|---|---|---|---|---|---|---|---|---|---|
1 | diet | br | N | 2.0 | 0.0 | 1.7977E308 | 0.00000 | L | 1.19066 | |
2 | diet | mi | D | 3.5 | 0.0 | 1 | 0.05360 | B | 0.00000 | |
3 | diet | ch | N | 8.0 | 0.0 | 1.7977E308 | 0.44950 | B | 0.00000 | |
4 | diet | po | N | 1.5 | 0.0 | 1.7977E308 | 1.86517 | B | 0.00000 | |
5 | diet | fi | O | 11.0 | 0.5 | 1.7977E308 | 0.50000 | L | 5.15641 | |
6 | diet | yo | N | 1.0 | 0.0 | 1.7977E308 | 0.00000 | L | 1.10849 |
The cost of the optimal diet is 12.08 units.