The REG Procedure

References

  • Akaike, H. (1969), “Fitting Autoregressive Models for Prediction,” Annals of the Institute of Statistical Mathematics, 21, 243–247.

  • Allen, D. M. (1971), “Mean Square Error of Prediction as a Criterion for Selecting Variables,” Technometrics, 13, 469–475.

  • Allen, D. M. and Cady, F. B. (1982), Analyzing Experimental Data by Regression, Belmont, CA: Lifetime Learning Publications.

  • Amemiya, T. (1976), Selection of Regressors, Technical Report 225, Stanford University, Stanford, CA.

  • Belsley, D. A., Kuh, E., and Welsch, R. E. (1980), Regression Diagnostics: Identifying Influential Data and Sources of Collinearity, New York: John Wiley & Sons.

  • Berk, K. N. (1977), “Tolerance and Condition in Regression Computations,” Journal of the American Statistical Association, 72, 863–866.

  • Bock, R. D. (1975), Multivariate Statistical Methods in Behavioral Research, New York: McGraw-Hill.

  • Box, G. E. P. (1966), “The Use and Abuse of Regression,” Technometrics, 8, 625–629.

  • Cleveland, W. S. (1993), Visualizing Data, Summit, NJ: Hobart Press.

  • Cook, R. D. (1977), “Detection of Influential Observations in Linear Regression,” Technometrics, 19, 15–18.

  • Cook, R. D. (1979), “Influential Observations in Linear Regression,” Journal of the American Statistical Association, 74, 169–174.

  • Daniel, C. and Wood, F. (1980), Fitting Equations to Data, Revised Edition, New York: John Wiley & Sons.

  • Darlington, R. B. (1968), “Multiple Regression in Psychological Research and Practice,” Psychological Bulletin, 69, 161–182.

  • Draper, N. R. and Smith, H. (1981), Applied Regression Analysis, Second Edition, New York: John Wiley & Sons.

  • Durbin, J. and Watson, G. S. (1951), “Testing for Serial Correlation in Least Squares Regression,” Biometrika, 37, 409–428.

  • Freund, R. J. and Littell, R. C. (1986), SAS System for Regression, 1986 Edition, Cary, NC: SAS Institute Inc.

  • Furnival, G. M. and Wilson, R. W. (1974), “Regression by Leaps and Bounds,” Technometrics, 16, 499–511.

  • Goodnight, J. H. (1979), “A Tutorial on the Sweep Operator,” The American Statistician, 33, 149–158.

  • Hocking, R. R. (1976), “The Analysis and Selection of Variables in a Linear Regression,” Biometrics, 32, 1–50.

  • Johnston, J. (1972), Econometric Methods, Second Edition, New York: McGraw-Hill.

  • Judge, G. G., Griffiths, W. E., Hill, R. C., and Lee, T.-C. (1980), The Theory and Practice of Econometrics, New York: John Wiley & Sons.

  • Judge, G. G., Griffiths, W. E., Hill, R. C., Lutkepohl, H., and Lee, T. C. (1985), The Theory and Practice of Econometrics, Second Edition, New York: John Wiley & Sons.

  • Kennedy, W. J., Jr. and Gentle, J. E. (1980), Statistical Computing, New York: Marcel Dekker.

  • LaMotte, L. R. (1994), “A Note on the Role of Independence in t Statistics Constructed from Linear Statistics in Regression Models,” The American Statistician, 48, 238–240.

  • Lewis, T. and Taylor, L. R. (1967), Introduction to Experimental Ecology, New York: Academic Press.

  • Long, J. S. and Ervin, L. H. (2000), “Using Heteroscedasticity Consistent Standard Errors in the Linear Regression Model,” The American Statistician, 54, 217–224.

  • Lord, F. M. (1950), Efficiency of Prediction When a Progression Equation from One Sample Is Used in a New Sample, Research bulletin, Educational Testing Service., Princeton, NJ.

  • MacKinnon, J. G. and White, H. (1985), “Some Heteroskedasticity-Consistent Covariance Matrix Estimators with Improved Finite Sample Properties,” Journal of Econometrics, 29, 305–325.

  • Mallows, C. L. (1967), “Choosing a Subset Regression,” Bell Telephone Laboratories.

  • Mallows, C. L. (1973), “Some Comments on $C_ p$,” Technometrics, 15, 661–675.

  • Mardia, K. V., Kent, J. T., and Bibby, J. M. (1979), Multivariate Analysis, London: Academic Press.

  • Marquardt, D. W. and Snee, R. D. (1975), “Ridge Regression in Practice,” The American Statistician, 29, 3–20.

  • Morrison, D. F. (1976), Multivariate Statistical Methods, Second Edition, New York: McGraw-Hill.

  • Mosteller, F. and Tukey, J. W. (1977), Data Analysis and Regression, Reading, MA: Addison-Wesley.

  • Neter, J., Wasserman, W., and Kutner, M. H. (1990), Applied Linear Statistical Models, Third Edition, Homewood, IL: Irwin.

  • Nicholson, G. E., Jr. (1948), “The Application of a Regression Equation to a New Sample,” Unpublished Ph.D. dissertation, University of North Carolina at Chapel Hill.

  • Pillai, K. C. S. (1960), Statistical Table for Tests of Multivariate Hypotheses, Manila: The Statistical Center, University of Philippines.

  • Pindyck, R. S. and Rubinfeld, D. L. (1981), Econometric Models and Econometric Forecasts, Second Edition, New York: McGraw-Hill.

  • Pringle, R. M. and Rayner, A. A. (1971), Generalized Inverse Matrices with Applications to Statistics, New York: Hafner Publishing.

  • Rao, C. R. (1973), Linear Statistical Inference and Its Applications, Second Edition, New York: John Wiley & Sons.

  • Rawlings, J. O., Pantula, S. G., and Dickey, D. A. (1998), Applied Regression Analysis: A Research Tool, Springer Texts in Statistics, Second Edition, New York: Springer-Verlag.

  • Reichler, J. L., ed. (1987), The 1987 Baseball Encyclopedia Update, New York: Macmillan.

  • Rothman, D. (1968), “letter to the editor,” Technometrics, 10, 432.

  • Sall, J. P. (1981), SAS Regression Applications, Revised Edition, SAS Technical Report A-102, Cary, NC: SAS Institute Inc.

  • Sawa, T. (1978), “Information Criteria for Discriminating Among Alternative Regression Models,” Econometrica, 46, 1273–1282.

  • Schwarz, G. (1978), “Estimating the Dimension of a Model,” Annals of Statistics, 6, 461–464.

  • Stein, C. (1960), “Multiple Regression,” in I. Olkin, ed., Contributions to Probability and Statistics, Stanford, CA: Stanford University Press.

  • Time Inc. (1987), “What They Make,” Sports Illustrated, 54–81.

  • Timm, N. H. (1975), Multivariate Analysis with Applications in Education and Psychology, Monterey, CA: Brooks/Cole.

  • Weisberg, S. (1980), Applied Linear Regression, New York: John Wiley & Sons.

  • White, H. (1980), “A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity,” Econometrica, 48, 817–838.