This example uses FCS methods to impute missing values in both continuous and classification variables in a data set with
an arbitrary missing pattern. The following statements use a logistic regression method to impute values of the classification
variable Species
:
ods graphics on; proc mi data=Fish3 seed=1305417 out=outex8; class Species; fcs plots=trace logistic(Species= Height Width Height*Width /details); var Species Height Width; run; ods graphics off;
The “Model Information” table in Output 57.8.1 describes the method and options used in the multiple imputation process. By default, a regression method is used to impute missing values in each continuous variable.
Output 57.8.1: Model Information
Model Information | |
---|---|
Data Set | WORK.FISH3 |
Method | FCS |
Number of Imputations | 5 |
Number of Burn-in Iterations | 20 |
Seed for random number generator | 1305417 |
The “FCS Model Specification” table in Output 57.8.2 describes methods and imputed variables in the imputation model. The procedure uses the logistic regression method to impute
the variable Species
, and the regression method to impute variables Height
and Width
.
Output 57.8.2: FCS Model Specification
FCS Model Specification | |
---|---|
Method | Imputed Variables |
Regression | Height Width |
Logistic Regression | Species |
The “Missing Data Patterns” table in Output 57.8.3 lists distinct missing data patterns with corresponding frequencies and percentages.
Output 57.8.3: Missing Data Patterns
Missing Data Patterns | |||||||
---|---|---|---|---|---|---|---|
Group | Species | Height | Width | Freq | Percent | Group Means | |
Height | Width | ||||||
1 | X | X | X | 40 | 76.92 | 12.627350 | 5.347450 |
2 | X | X | . | 1 | 1.92 | 18.037000 | . |
3 | . | X | X | 3 | 5.77 | 11.797667 | 4.587667 |
4 | . | X | . | 4 | 7.69 | 13.346750 | . |
5 | . | . | X | 2 | 3.85 | . | 5.135000 |
6 | O | O | O | 2 | 3.85 | . | . |
When you use the DETAILS keyword in the LOGISTIC option, parameters estimated from the observed data and the parameters used in each imputation are displayed in the “Logistic Models for FCS Method” table in Output 57.8.4.
Output 57.8.4: FCS Logistic Regression Model for Species
Logistic Models for FCS Method | ||||||
---|---|---|---|---|---|---|
Imputed Variable |
Effect | Imputation | ||||
1 | 2 | 3 | 4 | 5 | ||
Species | Intercept | 27.250540 | 27.240843 | 27.242699 | 27.254682 | 27.251468 |
Species | Height | 59.970974 | 59.962249 | 59.964027 | 59.980855 | 59.971742 |
Species | Width | -26.032805 | -26.021304 | -26.023556 | -26.028866 | -26.033865 |
Species | Height*Width | -6.760308 | -6.739118 | -6.742934 | -6.754780 | -6.762477 |
With ODS Graphics enabled, the PLOTS=TRACE option displays trace plots of means for all continuous variables by default, as shown in Output 57.8.5 and Output 57.8.6. The dashed vertical lines indicate the imputed iterations—that is, the variable values used in the imputations. The plot shows no apparent trends for the two variables.
Output 57.8.5: Trace Plot for Height
Output 57.8.6: Trace Plot for Width
The following statements list the first 10 observations of the data set outex8
in Output 57.8.7:
proc print data=outex8(obs=10); title 'First 10 Observations of the Imputed Data Set'; run;
Output 57.8.7: Imputed Data Set
First 10 Observations of the Imputed Data Set |
Obs | _Imputation_ | Species | Length | Height | Width |
---|---|---|---|---|---|
1 | 1 | Bream | 30.0000 | 11.5200 | 4.02000 |
2 | 1 | Bream | 31.2000 | 12.4800 | 4.30600 |
3 | 1 | Bream | 31.1000 | 12.3780 | 4.69600 |
4 | 1 | Bream | 33.5000 | 12.7300 | 4.45600 |
5 | 1 | Pike | 68.0455 | 12.4440 | 6.46920 |
6 | 1 | Bream | 34.7000 | 13.6020 | 4.92700 |
7 | 1 | Bream | 34.5000 | 14.1800 | 5.27900 |
8 | 1 | Pike | 35.0000 | 4.9290 | 4.69000 |
9 | 1 | Bream | 35.1000 | 14.0050 | 4.84400 |
10 | 1 | Bream | 36.2000 | 14.2270 | 4.95900 |
After the completion of five imputations by default, the “Variance Information” table in Output 57.8.8 displays the between-imputation variance, within-imputation variance, and total variance for combining complete-data inferences for continuous variables. The relative increase in variance due to missingness, the fraction of missing information, and the relative efficiency for each variable are also displayed. These statistics are described in the section Combining Inferences from Multiply Imputed Data Sets.
Output 57.8.8: Variance Information
Variance Information | |||||||
---|---|---|---|---|---|---|---|
Variable | Variance | DF | Relative Increase in Variance |
Fraction Missing Information |
Relative Efficiency |
||
Between | Within | Total | |||||
Height | 0.003691 | 0.318783 | 0.323212 | 46.369 | 0.013894 | 0.013797 | 0.997248 |
Width | 0.001464 | 0.017777 | 0.019534 | 39.458 | 0.098807 | 0.093580 | 0.981628 |
The “Parameter Estimates” table in Output 57.8.9 displays a 95% mean confidence interval and a t statistic with its associated p-value for each of the hypotheses requested with the default MU0=0 option.
Output 57.8.9: Parameter Estimates
Parameter Estimates | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Variable | Mean | Std Error | 95% Confidence Limits | DF | Minimum | Maximum | Mu0 | t for H0: Mean=Mu0 |
Pr > |t| | |
Height | 12.710577 | 0.568517 | 11.56646 | 13.85470 | 46.369 | 12.677842 | 12.819080 | 0 | 22.36 | <.0001 |
Width | 5.331652 | 0.139764 | 5.04906 | 5.61425 | 39.458 | 5.287861 | 5.393360 | 0 | 38.15 | <.0001 |