PROC PHREG assigns a name to each table it creates. You can use these names to reference the table when using the Output Delivery System (ODS) to select tables and create output data sets. These names are listed separately in Table 67.13 for the maximum likelihood analysis and in Table 67.14 for the Bayesian analysis. For more information about ODS, see Chapter 20: Using the Output Delivery System.
Each of the EFFECT, ESTIMATE, LSMEANS, LSMESTIMATE, and SLICE statements creates ODS tables, which are not listed in Table 67.13 and Table 67.14. For information about these tables, see the corresponding sections of Chapter 19: Shared Concepts and Topics.
Table 67.13: ODS Tables for a Maximum Likelihood Analysis Produced by PROC PHREG
ODS Table Name |
Description |
Statement / Option |
---|---|---|
BestSubsets |
Best subset selection |
MODEL / SELECTION=SCORE |
CensoredSummary |
Summary of event and censored observations |
Default |
ClassLevelFreq |
Frequency distribution of CLASS variables |
CLASS, PROC / SIMPLE |
ClassLevelInfo |
CLASS variable levels and design variables |
CLASS |
ClassLevelInfoR |
Class levels for random effects |
RANDOM |
ContrastCoeff |
L matrix for contrasts |
CONTRAST / E |
ContrastEstimate |
Individual contrast estimates |
CONTRAST / ESTIMATE= |
ContrastTest |
Wald test for contrasts |
CONTRAST |
ConvergenceStatus |
Convergence status |
Default |
CorrB |
Estimated correlation matrix of parameter estimators |
MODEL / CORRB |
CovB |
Estimated covariance matrix of parameter estimators |
MODEL / COVB |
CovParms |
Variance estimates of the random effects |
RANDOM |
EffectsToEnter |
Analysis of effects for entry |
MODEL / SELECTION=F|S |
EffectsToRemove |
Analysis of effects for removal |
MODEL / SELECTION=B|S |
FitStatistics |
Model fit statistics |
Default |
FunctionalFormSupTest |
Supremum test for functional form |
ASSESS / VAR= |
GlobalScore |
Global chi-square test |
MODEL / NOFIT |
GlobalTests |
Tests of the global null |
Default |
HazardRatios |
Hazard ratios and confidence limits |
HAZARDRATIO |
IterHistory |
Iteration history |
MODEL /ITPRINT |
LastGradient |
Last evaluation of gradient |
MODEL / ITPRINT |
ModelBuildingSummary |
Summary of model building |
MODEL / SELECTION=B|F|S |
ModelInfo |
Model information |
Default |
NObs |
Number of observations |
Default |
ParameterEstimates |
Maximum likelihood estimates of model parameters |
Default |
ProportionalHazardsSupTest |
Supremum test for proportional hazards assumption |
ASSESS / PH |
ResidualChiSq |
Residual chi-square |
MODEL / SELECTION=F|B |
ReferenceSet |
Reference set of covariates for plotting |
PROC / PLOTS= |
RiskSetInfo |
Risk set information |
PROC / ATRISK |
SimpleStatistics |
Summary statistics of input continuous explanatory variables |
PROC / SIMPLE |
SolutionR |
Solutions for random effects |
RANDOM / SOLUTION |
TestAverage |
Average effect for test |
TEST / AVERAGE |
TestCoeff |
Coefficients for linear hypotheses |
TEST / E |
TestPrint1 |
L[cov(b)]L’ and Lb-c |
TEST / PRINT |
TestPrint2 |
Ginv(L[cov(b)]L’) and |
TEST / PRINT |
TestStmts |
Linear hypotheses testing results |
TEST |
Type1 |
Type 1 likelihood ratio tests |
MODEL / TYPE1 |
Type3 |
Type 3 chi-square tests |
MODEL / TYPE3 | CLASS |
Table 67.14: ODS Table for a Bayesian Analysis Produced by PROC PHREG
ODS Table Name |
Description |
Statement / Option |
---|---|---|
AutoCorr |
Autocorrelations of the posterior samples |
BAYES |
CensoredSummary |
Numbers of the event and censored observations |
PROC |
ClassLevelFreq |
Frequency distribution of CLASS variables |
CLASS, PROC / SIMPLE |
ClassLevelInfo |
CLASS variable levels and design variables |
CLASS |
CoeffPrior |
Prior distribution of the regression coefficients |
BAYES |
Corr |
Posterior correlation matrix |
BAYES / SUMMARY=CORR |
Cov |
Posterior covariance Matrix |
BAYES / SUMMARY=COV |
ESS |
Effective sample sizes |
BAYES / DIAGNOSTICS=ESS |
FitStatistics |
Fit statistics |
BAYES |
Gelman |
Gelman-Rubin convergence diagnostics |
BAYES / DIAGNOSTICS=GELMAN |
Geweke |
Geweke convergence diagnostics |
BAYES |
HazardPrior |
Prior distribution of the baseline hazards |
BAYES / PIECEWISE |
HazardRatios |
Posterior summary statistics for hazard ratios |
HAZARDRATIO |
Heidelberger |
Heidelberger-Welch convergence diagnostics |
BAYES / DIAGNOSTICS=HEIDELBERGER |
InitialValues |
Initial values of the Markov chains |
BAYES |
ModelInfo |
Model information |
Default |
NObs |
Number of observations |
Default |
MCError |
Monte Carlo standard errors |
BAYES / DIAGNOSTICS=MCERROR |
ParameterEstimates |
Maximum likelihood estimates of model parameters |
Default |
ParmInfo |
Names of regression coefficients |
CLASS,BAYES |
Partition |
Partition of constant baseline hazard intervals |
BAYES / PIECEWISE |
PostIntervals |
Equal-tail and high probability density intervals of the posterior samples |
BAYES |
PosteriorSample |
Posterior samples |
BAYES / (for ODS output data set only) |
PostSummaries |
Summary statistics of the posterior samples |
BAYES |
Raftery |
Raftery-Lewis convergence diagnostics |
BAYES / DIAGNOSTICS=RAFTERY |
ReferenceSet |
Reference set of covariates for plotting |
PROC / PLOTS= |
SimpleStatistics |
Summary statistics of input continuous explanatory variables |
PROC / SIMPLE |