The PHREG Procedure

Survivor Function Estimators

Three estimators of the survivor function are available: the Breslow (1972) estimator, which is based on the empirical cumulative hazard function, the Fleming and Harrington (1984) estimator, which is a tie-breaking modification of the Breslow estimator, and the product-limit estimator (Kalbfleisch and Prentice, 1980, pp. 84–86).

Let $\{ t_1 < \ldots < t_ k\} $ be the distinct uncensored times of the survival data.

Breslow Estimator

To select this estimator, specify the METHOD=BRESLOW option in the BASELINE statement or OUTPUT statement. For the jth subject, let $\{ (X_ j, \Delta _ j, \bZ _ j(.))\} $ represent the failure time, the event indicator, and the vector of covariate values, respectively. For $t \geq 0$, let

$\displaystyle  Y_ j(t)  $
$\displaystyle = $
$\displaystyle  I(X_ j \geq t) $
$\displaystyle \Delta _ j(t)  $
$\displaystyle = $
$\displaystyle  \left\{ \begin{array}{ll} 1 &  X_ j=t ~ \&  ~  \Delta _ j=1\\ 0 &  \textrm{otherwise} \end{array} \right.  $
$\displaystyle d(t) $
$\displaystyle = $
$\displaystyle \sum _ j\Delta _ j(t)  $

Note that $d(t)$ is the number of subjects that have an event at t. Let

$\displaystyle  S^{(0)}(\bbeta ,t)  $
$\displaystyle = $
$\displaystyle  \sum _{j} Y_{j}(t) \mr {e}^{\bbeta \bZ _{j}(t)}  $
$\displaystyle S^{(1)}(\bbeta ,t)  $
$\displaystyle = $
$\displaystyle  \sum _{j} Y_{j}(t) \mr {e}^{\bbeta \bZ _{j}(t)} \bZ _{j}(t)  $
$\displaystyle \bar{\bZ }(\bbeta ,t)  $
$\displaystyle = $
$\displaystyle  \frac{ S^{(1)}(\bbeta ,t)}{ S^{(0)}(\bbeta ,t)}  $

For a given realization of the explanatory variables $\bxi $, the cumulative hazard function estimator at $\bxi $ is

\[  \hat{\Lambda }_ B(t,\bxi ) = \mr {e}^{\hat{\bbeta }\bxi } \sum _{t_ i\leq t} \frac{d(t_ i)}{S^{(0)}(\hat{\bbeta },t_ i)}  \]

with variance estimated by

\[  \hat{\sigma }^2(\hat{\Lambda }_ B(t,\bxi )) = \mr {e}^{2\hat{\bbeta }\bxi } \sum _{t_ i \leq t} \frac{d(t_ i)}{[S^{(0)}(\hat{\bbeta },t_ i)]^2} + H(t,\bxi )’[\mc {I}(\hat{\bbeta })]^{-1} H(t,\bxi )  \]

where

\[  H(t,\bxi ) = \mr {e}^{\hat{\bbeta }\bxi }\sum _{t_ i \leq t} \frac{d(t_ i)}{S^{(0)}(\hat{\bbeta },t_ i)} \biggl ( \bar{\bZ }(\hat{\bbeta },t_ i)- \bxi \biggr )  \]

For the marginal model, the variance estimator computation follows Spiekerman and Lin (1998).

The Breslow estimate of the survivor function for $\bZ =\bxi $ is

\[  \hat{S}_ B(t,\bxi ) = \exp (-\hat{\Lambda }_ B(t,\bxi ))  \]

By the delta method, the standard error of $\hat{S}_ B(t,\bxi )$ is approximated by

\[  \hat{\sigma }(\hat{S}_ B(t,\bxi )) = \hat{S}_ B(t,\bxi ) \hat{\sigma }(\hat{\Lambda }_ B(t,\bxi ))  \]

Fleming-Harrington Estimator

To select this estimator, specify the METHOD=FH option in the BASELINE statement or OUTPUT statement. With $Y_ j(t)$ and $d(t)$ as defined in the section Breslow Estimator and for $1\leq k \leq d(t)$, let

$\displaystyle  S_ E^{(0)}(\bbeta ,k, t)  $
$\displaystyle = $
$\displaystyle  \sum _{j} Y_{j}(t) \biggl \{ 1- \frac{k-1}{d(t)} \Delta _{j}(t) \biggr \} \mr {e}^{\bbeta \bZ _{j}(t)}  $
$\displaystyle S_ E^{(1)}(\bbeta ,k,t)  $
$\displaystyle = $
$\displaystyle  \sum _{j} Y_{j}(t) \biggl \{ 1- \frac{k-1}{d(t)} \Delta _{j}(t) \biggr \}  \mr {e}^{\bbeta \bZ _{j}(t)} \bZ _{j}(t)  $
$\displaystyle \bar{\bZ }_ E\bbeta ,k,t)  $
$\displaystyle = $
$\displaystyle  \frac{ S_ E^{(1)}(\bbeta ,k,t)}{ S_ E^{(0)}(\bbeta ,k,t) }  $

For a given realization of the explanatory variables, the Fleming-Harrington adjustment of the cumulative hazard function is

\[  \hat{\Lambda }_ F(t,\bxi ) = \mr {e}^{\hat{\bbeta }\bxi } \sum _{t_ i\leq t} \biggr \{  \sum _{k=1}^{d(t_ i)} \frac{1}{S_ E^{(0)}(\hat{\bbeta },k,t_ i)} \biggr \}   \]

with variance estimated by

\[  \hat{\sigma }^2(\hat{\Lambda }_ F(t,\bxi )) = \mr {e}^{2\hat{\bbeta }\bxi } \sum _{t_ i \leq t} \biggl \{  \sum _{k=1}^{d(t_ i)} \frac{1}{[S_ E^{(0)}(\hat{\bbeta },k,t_ i)]^2} \biggr \}  + H_ E(t,\bxi )’[\mc {I}(\hat{\bbeta })]^{-1} H_ E(t,\bxi )  \]

where

\[  H_ E(t,\bxi ) = \mr {e}^{\hat{\bbeta }\bxi } \biggl \{  \biggl [\sum _{t_ i \leq t} \sum _{k=1}^{d(t_ i)} \frac{1}{ S_ E^{(0)}(\hat{\bbeta },k,t_ i)} \bar{\bZ }_ E(\hat{\bbeta },k, t_ i) \biggr ] - \hat{\Lambda }_ F(t,\mb {0})\bxi \biggl \}   \]

The Fleming-Harrington estimate of the survivor function for $\bZ =\bxi $ is

\[  \hat{S}_ F(t,\bxi ) = \exp (-\hat{\Lambda }_ F(t,\bxi ))  \]

By the delta method, the standard error of $\hat{S}_ B(t,\bxi )$ is approximated by

\[  \hat{\sigma }(\hat{S}_ F(t,\bxi )) = \hat{S}_ F(t,\bxi ) \hat{\sigma }(\hat{\Lambda }_ F(t,\bxi ))  \]

Product-Limit Estimator

To select this estimator, specify the METHOD=PL option in the BASELINE statement or OUTPUT statement. Let $\mc {D}_ i$ denote the set of individuals that fail at $t_ i$. Let $\mc {C}_ i$ denote the set of individuals that are censored in the half-open interval $[t_{i} , t_{i+1})$, where $t_{0}=0$ and $t_{k+1}=\infty $. Let $\gamma _ l$ denote the censoring times in $[t_{i} , t_{i+1})$, where l ranges over $\mc {C}_ i$.

The likelihood function for all individuals is given by

\[  \mc {L}=\prod _{i=0}^{k} \left\{  \prod _{l \in \mc {D}_ i} \left( [S_{0}(t_{i})]^{ \  \mr {exp}(\mb {Z}_{l}\bbeta ) } -[S_{0}(t_{i}+0)]^{ \  \mr {exp}(\mb {Z}_{l}\bbeta ) } \right) \prod _{l \in \mc {C}_ i} [S_{0}(\gamma _{l}+0)]^{\  \mr {exp}(\mb {Z}_{l}\bbeta )} \right\}   \]

where $\mc {D}_0$ is empty. The likelihood $\mc {L}$ is maximized by taking $S_{0}(t)=S_{0}(t_{i}+0)$ for $t_{i}<t \leq t_{i+1}$ and allowing the probability mass to fall only on the observed event times $t_{1}$, $\ldots \  $, $t_{k}$. By considering a discrete model with hazard contribution $1-\alpha _{i}$ at $t_ i$, you take $S_{0}(t_{i})=S_{0}(t_{i-1}+0)=\prod _{j=0}^{i-1} \alpha _ j$, where $\alpha _{0}=1$. Substitution into the likelihood function produces

\[  \mc {L}=\prod _{i=0}^{k} \left\{  \prod _{j \in \mc {D}_ i } \left( 1-\alpha _{i}^{\  \mr {exp}(\mb {Z}_{j}\bbeta ) } \right) \prod _{ l \in \mc {R}_{i}-\mc {D}_{i} } \alpha _{i}^{ \  \mr {exp}(\mb {z}_{l}\bbeta )} \right\}   \]

If you replace $\bbeta $ with $\hat{\bbeta }$ estimated from the partial likelihood function and then maximize with respect to $\alpha _{1},\ldots , \alpha _{k}$, the maximum likelihood estimate $\hat{\alpha }_ i$ of $\alpha _ i$ becomes a solution of

\[  \sum _{ j \in \mc {D}_ i } \frac{ \mr {exp}(\mb {Z}_{j}\hat{\bbeta }) }{ 1-\hat{\alpha }_{i}^{ \  \mr {exp}(\mb {Z}_{j}\hat{\bbeta }) } } =\sum _{l \in \mc {R}_ i } \mr {exp}(\mb {Z}’_{l}\hat{\bbeta })  \]

When only a single failure occurs at $t_{i}$, $\hat{\alpha }_{i}$ can be found explicitly. Otherwise, an iterative solution is obtained by the Newton method.

The baseline survival function is estimated by

\[  \hat{S}_{0}(t)=\hat{S}_{0}(t_{i-1}+0) =\prod _{j=0}^{i-1} \hat{\alpha }_{j}, t_{i-1} < t \leq t_{i}  \]

For a given realization of the explanatory variables $\bxi $, the product-limit estimate of the survival function at $\bZ =\bxi $ is

\[  \hat{S}_ P(t,\bxi ) = [\hat{S}_{0}(t)]^{\mr {exp}(\bbeta \bxi )}  \]

Approximating the variance of $-\log (S_ P(t,\bxi ))$ by the variance estimate of the Breslow estimator of the cumulative hazard function, the variance of the product-limit estimator at $\bZ =\bxi $ is given by

\[  \hat{\sigma }(\hat{S}_ P(t,\bxi )) = \hat{S}_ P(t,\bxi ) \hat{\sigma }(\hat{\Lambda }_ B(t,\bxi ))  \]

Direct Adjusted Survival Curves

Consider the Breslow estimator of the survival function. For $j=1,\ldots ,n$, let $\bxi _ j$ represent the covariate set of the jth patient. The direct adjusted survival curve averages the estimated survival curves for each patient:

\[  \bar{S}(t) = \frac{1}{n}\sum _{j=1}^ n \hat{S}(t,\bxi _ j)  \]

The variance of $\bar{S}(t)$ can be estimated by

\[  \hat{\sigma }^2(\bar{S}(t)) = \frac{1}{n^2} \biggl (V^{(1)}t)+V^{(2)}(t) \biggr )  \]

where

$\displaystyle  V^{(1)}(t) $
$\displaystyle = $
$\displaystyle  \biggl ( \sum _{j=1}^ n \mr {e}^{\hat{\bbeta }\bxi _ j} \hat{S}(t,\bxi _ j) \biggr )^2 \sum _{t_ i\leq t} \frac{d(t_ i)}{[S^{(0)}(\hat{\bbeta },t_ i)]^2}  $
$\displaystyle V^{(2)}(t) $
$\displaystyle = $
$\displaystyle  \biggl (\sum _{j=1}^ n \hat{S}(t,\bxi _ j)H(t,\bxi _ j)\biggr )’ \biggl [\mc {I}(\hat{\bbeta }) \biggr ]^{-1} \biggl (\sum _{j=1}^ n \hat{S}(t,\bxi _ j) H(t,\bxi _ j) \biggr )  $
Comparison of Direct Adjusted Probabilities of Two Strata

For a stratified Cox model, let k index the strata. For the jth patient, let $\hat{S}_ k(t,\bxi _ j)$ and $H_ k(t, \bxi _ j)$ be the estimated survival function and the $\bH $ vector for the kth stratum. The direct adjusted survival curve for the kth stratum is

\[  \bar{S}_ k(t) = \frac{1}{n}\sum _{j=1}^ n \hat{S}_ k(t,\bxi _{j})  \]

The variance of $\bar{S}_1(t) - \bar{S}_2(t)$ can be estimated by

\[  \hat{\sigma }^2(\bar{S}_1(t) - \bar{S}_2(t)) = \frac{1}{n^2} \biggl (U^{(1)}_1(t)+U^{(1)}_2 + U^{(2)}_{12}(t) \biggr )  \]

where

$\displaystyle  U^{(1)}_ k(t)  $
$\displaystyle = $
$\displaystyle  \left( \sum _{j=1}^ n \mr {e}^{\bbeta \bxi _{j}} \hat{S}_ k(t,\bxi _{j}) \right)^2 \sum _{t_ i\leq t} \frac{d(t_ i)}{[S^{(0)}(\hat{\bbeta },t_ i)]^2} \mbox{~ ~ ~ } k=1,2  $
$\displaystyle U^{(2)}_{12}(t) $
$\displaystyle = $
$\displaystyle  \left\{ \sum _{j=1}^ n \left[\hat{S}_1(t,\bxi _{j})H_1(t,\bxi _{j})-\hat{S}_2(t,\bxi _{j})H_2(t,\bxi _{j}) \right] \right\} ^{\prime } \mc {I} ^{-1}(\hat{\bbeta })  $
$\displaystyle  $
$\displaystyle  $
$\displaystyle  \left\{ \sum _{j=1}^ n \left[\hat{S}_1(t,\bxi _{j})H_2(t,\bxi _{j})-\hat{S}_1(t,\bxi _{j})H(_2t,\bxi _{j}) \right] \right\}   $
Comparison of Direct Adjusted Survival Probabilities of Two Treatments

For $j=1,\ldots ,n$, let $\bxi _{jk}$ represent the covariate set of the jth patient with the kth treatment, $k=1,2$. The direct adjusted survival curve for the kth treatment is

\[  \bar{S}_ k(t) = \frac{1}{n}\sum _{i=j}^ n \hat{S}(t,\bxi _{jk})  \]

The variance of $\bar{S}_1(t) - \bar{S}_2(t)$ can be estimated by

\[  \hat{\sigma }^2\left(\bar{S}_1(t)-\bar{S}_2(t)\right) = \frac{1}{n^2} \biggl (V^{(1)}_{12}(t) + V^{(2)}_{12}(t) \biggr )  \]

where

$\displaystyle  V^{(1)}_{12}(t)  $
$\displaystyle = $
$\displaystyle  \left\{  \sum _{j=1}^ n \left[\mr {e}^{\bbeta \bxi _{1j}} \hat{S}(t,\bxi _{1j}) - \mr {e}^{\bbeta \bxi _{2j}} \hat{S}(t,\bxi _{2j}) \right] \right\} ^2 \sum _{t_ i\leq t} \frac{d(t_ i)}{[S^{(0)}(\hat{\bbeta },t_ i)]^2}  $
$\displaystyle V^{(2)}_{12}(t) $
$\displaystyle = $
$\displaystyle  \left\{ \sum _{j=1}^ n \left[\hat{S}(t,\bxi _{1j})H(t,\bxi _{1j})-\hat{S}(t,\bxi _{2j})H(t,\bxi _{2j}) \right] \right\} ^{\prime } \mc {I} ^{-1}(\hat{\bbeta }) $
$\displaystyle  $
$\displaystyle  $
$\displaystyle  \left\{ \sum _{j=1}^ n \left[\hat{S}(t,\bxi _{1j})H(t,\bxi _{1j})-\hat{S}(t,\bxi _{2j})H(t,\bxi _{2j}) \right] \right\}   $

Confidence Intervals for the Survivor Function

When the computation of confidence limits for the survivor function $S(t)$ is based on the asymptotic normality of the survival estimator $\hat{S}(t)$—which can be the Breslow estimator $\hat{S}_ B(t)$, the Fleming-Harrington estimator $\hat{S}_ F(t)$, or the product-limit estimator $\hat{S}_ P(t)$—the approximate confidence interval might include impossible values outside the range [0,1] at extreme values of t. This problem can be avoided by applying the asymptotic normality to a transformation of $S(t)$ for which the range is unrestricted. In addition, certain transformed confidence intervals for $S(t)$ perform better than the usual linear confidence intervals (Borgan and Liestøl, 1990). The CLTYPE= option in the BASELINE statement enables you to choose one of the following transformations: the log-log function, the log function, and the linear function.

Let g be the transformation that is being applied to the survivor function $S(t)$. By the delta method, the standard error of $g(\hat{S}(t))$ is estimated by

\[  \tau (t) = \hat{\sigma }\left[g(\hat{S}(t))\right] = g’\left(\hat{S}(t)\right)\hat{\sigma }[\hat{S}(t)]  \]

where $g’$ is the first derivative of the function g. The 100(1–$\alpha $)% confidence interval for $S(t)$ is given by

\[  g^{-1}\left\{ g[\hat{S}(t)] \pm z_{\frac{\alpha }{2}} g’[\hat{S}(t)]\hat{\sigma }[\hat{S}(t)] \right\}   \]

where $g^{-1}$ is the inverse function of g. The choices for the transformation g are as follows:

  • CLTYPE=NORMAL specifies linear transformation, which is the same as having no transformation in which g is the identity. The 100(1–$\alpha $)% confidence interval for $S(t)$ is given by

    \[  \hat{S}(t) - z_{\frac{\alpha }{2}}\hat{\sigma }\left[\hat{S}(t)\right] \le S(t) \le \hat{S}(t) + z_{\frac{\alpha }{2}}\hat{\sigma }\left[\hat{S}(t)\right]  \]
  • CLTYPE=LOG specifies log transformation. The estimated variance of $\log (\hat{S}(t))$ is $ \hat{\tau }^2(t) = \frac{\hat{\sigma }^2(\hat{S}(t))}{\hat{S}^2(t)}. $ The 100(1–$\alpha $)% confidence interval for $S(t)$ is given by

    \[  \hat{S}(t)\exp \left(-z_{\frac{\alpha }{2}}\hat{\tau }(t)\right) \le S(t) \le \hat{S}(t)\exp \left(z_{\frac{\alpha }{2}}\hat{\tau }(t)\right)  \]
  • CLTYPE=LOGLOG specifies log-log transformation. The estimated variance of $\log (-\log (\hat{S}(t))$ is $ \hat{\tau }^2(t) = \frac{\hat{\sigma }^2[\hat{S}(t)]}{ [\hat{S}(t)\log (\hat{S}(t))]^2 }. $ The 100(1–$\alpha $)% confidence interval for $S(t)$ is given by

    \[  \left[\hat{S}(t)\right]^{\exp \left( z_{\frac{\alpha }{2}} \hat{\tau }(t)\right)} \le S(t) \le \left[\hat{S}(t)\right]^{\exp \left(-z_{\frac{\alpha }{2}} \hat{\tau }(t)\right)}  \]