The Whitehead methods (Whitehead and Stratton, 1983; Whitehead, 1997, 2001) derive boundary values by adjusting the boundary values generated from continuous monitoring. With continuous monitoring, the boundary values are on a straight line in the score scale for each boundary. For a group sequential design, the boundary values at an interim stage k depend on the information fractions
where is the information available at stage k and
is the maximum information, the information available at the end of the trial if the trial does not stop early.
A one-sided symmetric design is a one-sided design with identical Type I and Type II error probabilities. For a one-sided
symmetric design with an upper alternative, , the boundary values in the score scale from continuous monitoring are as follows:
where is the upper alternative reference,
is a specified constant for the slope,
, and
is a constant, fixed for STOP=BOTH and derived for STOP=ACCEPT and STOP=REJECT.
The upper boundary value can also be expressed as
Thus, these straight-line boundaries form a triangle in the score statistic scale.
To adjust for the nature of discrete monitoring, the group sequential boundary values are given by the following:
where and
,
are the adjustments.
Note that with the adjustment , the resulting boundaries form a Christmas tree shape within the original triangle and are referred to as the Christmas tree
boundaries (Whitehead, 1997, p. 73).
For a one-sided asymmetric design with an upper alternative, , the boundary values computed using the score scale, are given by the following:
where is the modified alternative reference
The modified alternative reference if
.
For a design with early stopping to reject or accept the null hypothesis, , the boundary values at the final stage are equal. The modified drift parameter
is given by
where .
A one-sided Whitehead design with early stopping to reject or accept the null hypothesis is illustrated in Example 89.7.
The boundary values for a two-sided design are generated by combining boundary values from two one-sided designs. With the STOP=BOTH option, this produces a double triangular design (Whitehead, 1997, p. 98).
The boundary values for a two-sided design, using the score scale, are then given by the following:
where the modified alternative references are
The modified alternative reference if
and
if
.
For a design with early stopping to reject or accept the null hypothesis, the two upper boundary values at the final stage
are identical and the two lower boundary values at the final stage are identical. That is, and
. These modified drift parameters are then given by
where .
For a design with early stopping to reject the null hypothesis, or a design with early stopping to accept the null hypothesis,
you can specify the slope parameters and
in the TAU= option, and then the intercept parameters
and
, and the resulting boundary values are derived. If both the maximum information and alternative references are specified,
the procedure derives
and
by maintaining either the overall
levels (BOUNDARYKEY=ALPHA) or the overall
levels (BOUNDARYKEY=BETA). If the maximum information and alternative reference are not both specified, the procedure derives
the boundary values
and
by maintaining both the overall
and overall
levels.
For a design with early stopping to reject or accept the null hypothesis (STOP=BOTH), Whitehead’s triangular test uses and compute
and
for the boundary values. If the maximum information and alternative reference are both specified, the BOUNDARYKEY=ALPHA option
uses the specified
values to compute the
values and boundary values. The final-stage boundary values are modified to maintain the overall
levels if they exist. Similarly, the BOUNDARYKEY=BETA option uses the specified
values to compute the
values and boundary values. The final-stage boundary values are modified to maintain the overall
levels if they exist.
If the maximum information and alternative reference are not both specified, the specified and
values are used to derive boundary values. The BOUNDARYKEY=NONE option uses these boundary values without adjustment. The
BOUNDARYKEY=ALPHA option modifies the final-stage boundary values to maintain the overall
levels if they exist. Similarly, the BOUNDARYKEY=BETA option modifies the final-stage boundary values to maintain the overall
levels if they exist.
Table 89.7 lists applicable boundary keys for a design that uses Whitehead methods.
Table 89.7: Applicable Boundary Keys for Whitehead Methods
Specified Parameters |
Boundary Keys |
|||||||
---|---|---|---|---|---|---|---|---|
Early Stopping |
(Alt Ref – Max Info) |
Tau |
Alpha |
Beta |
None |
Both |
||
Reject |
X |
X |
|
X |
X |
|||
Accept |
X |
X |
X |
X |
||||
Reject/Accept |
X |
0.25 |
X |
X |
||||
Reject |
X |
X |
||||||
Accept |
X |
X |
||||||
Reject/Accept |
0.25 |
X |
X |
X |
Note that the symbol "X" under "(Alt Ref – Max Info)" indicates that both alternative reference and maximum information are specified.
For a design with early stopping to reject the null hypothesis, or a design with early stopping to accept the null hypothesis,
you can specify the slope parameter in the TAU= option, and then the intercept parameter
and the resulting boundary values are derived. If both the maximum information and alternative reference are specified, the
procedure derives
by maintaining either the overall
levels (BOUNDARYKEY=ALPHA) or the overall
levels (BOUNDARYKEY=BETA). If the maximum information and alternative reference are not both specified, the procedure derives
the boundary values and
by maintaining both the overall
and overall
levels.
For a design with early stopping to reject or accept the null hypothesis (STOP=BOTH), Whitehead’s triangular test uses and solves
for the boundary values. If the maximum information and alternative reference are both specified, the BOUNDARYKEY=ALPHA option
uses the specified
value to compute the
value and boundary values. The final-stage boundary value is modified to maintain the overall
level if it exists. Similarly, the BOUNDARYKEY=BETA option uses the specified
value to compute the
value and boundary values. The final-stage boundary value is modified to maintain the overall
level if it exists.
If the maximum information and alternative reference are not both specified, the specified and
values are used to derive boundary values. The BOUNDARYKEY=NONE option uses these boundary values without adjustment. The
BOUNDARYKEY=ALPHA option modifies the final-stage boundary value to maintain the overall
level if it exists. Similarly, the BOUNDARYKEY=BETA option modifies the final-stage boundary value to maintain the overall
level if it exists.